For the deflection of a clamped-free beam with a sinusoidal pile, we wish to show that the solution \[ y(x) = \frac{f}{24EI}x^2(x^2-4Lx+6L^2) - \frac{pgL}{EI\pi} \left( \frac{L^3}{\pi^3} \sin\frac{\pi}{L}x - \frac{x^3}{6} + \frac{L}{2}x^2 - \frac{L^2}{\pi^2}x\right) \] satsifies the Euler-Bernoulli beam equation (where \( f=-480wdg \) is the weight of the beam), \[ EIy''''(x) = f(x) = f - pg \sin\frac{\pi}{L}x \] and the clamped-free boundary conditions, \[ y(0) = y'(0) = y''(L) = y'''(L) = 0 \]
Let us begin by multiplying both sides of the solution by \( EI \), then deriving to get to \( EIy''''(x) \):
\[ EIy(x) = \frac{f}{24}(x^4-4Lx^3+6L^2x^2) - pg\frac{L}{\pi}\left(\frac{L^3}{\pi^3}\sin\frac{\pi}{L}x-
\frac{x^3}{6}+\frac{L}{2}x^2-\frac{L^2}{\pi^2}x\right) \]
\[ EIy'(x) = \frac{f}{24}(4x^3 - 12Lx^2 + 12L^2x) - pg\frac{L}{\pi}
\left( \frac{L^2}{\pi^2}\cos\frac{\pi}{L}x-\frac{x^2}{2}+Lx-\frac{L^2}{\pi^2} \right) \]
\[ EIy''(x) = \frac{f}{24}(12x^2 - 24Lx + 12L^2) - pg\frac{L}{\pi}
\left( -\frac{L}{\pi}\sin\frac{\pi}{L}x-x+L \right) \]
\[ EIy'''(x) = \frac{f}{24}(24x - 24L) - pg\frac{L}{\pi} \left( -\cos\frac{\pi}{L}x - 1 \right) \]
\[ EIy''''(x) = f - pg\sin\frac{\pi}{L}x \]
We can see from the final equation that the Euler-Bernoulli beam equation is satisfied.
Evaluating the first four equations at the appropriate values proves the boundary conditions:
\[ EIy(0) = \frac{f}{24}(0^4-4L0^3+6L^20^2) - pg\frac{L}{\pi} \left( \frac{L^3}{\pi^3}\sin0-
\frac{0^3}{6}+\frac{L}{2}0^2-\frac{L^3}{\pi^3}0 \right) = 0 \therefore y(0) = 0 \]
\[ EIy'(0) = \frac{f}{24}(4\cdot0^3-12L0^2+12L^20) - pg\frac{L}{\pi} \left(\frac{L^2}{\pi^2}\cos0-
\frac{0^2}{2}+L0-\frac{L^2}{\pi^2} \right) = -pg\frac{L}{\pi} \left( \frac{L^2}{\pi^2}-
\frac{L^2}{\pi^2} \right) = 0 \therefore y'(0) = 0 \]
\[ EIy''(L) = \frac{f}{24}(12L^2-24L^2+12L^2) - pg\frac{L}{\pi} \left( -\frac{L}{\pi}\sin\pi-L+L \right) =
\frac{f}{24}(0) - pg\frac{L}{\pi}(0) = 0 \therefore y''(L) = 0 \]
\[ EIy'''(L) = \frac{f}{24}(24L-24L) - pg\frac{L}{\pi}(-\cos\pi - 1) = \frac{f}{24}(0)-pg\frac{L}{\pi}(0) = 0
\therefore y'''(L) = 0 \]
Thus the solution is correct.
<< Previous Next >>Basic initialization of matrix with \(n=10\)
Comparison of solution obtained in Problem 1 and the theoretical solution
Similar problem for various values of \(n\)
Theoretical exercise for sinusoidal pile
Addition of sinusoidal load for various values of \(n\)
Replacing sinusoidal load with 70 kg diver
Clamped-clamped model with a sinusoidal load