George Mason University



Zakaria Tarik Zerhouni

Source: Home > Project 2 > Step 1

Math 447: Numerical Analysis

Project 2 Step 1: Step 2: Step 4: Step 5: Step 6:


Step 1.
For step one, Multivariate Newton's Method was employed to solve for the position and time correction using four satellites.


The position solution for \( (x, y, z, d) \) .

Using 4 satellites \( (A_i, B_i, C_i, t_i) \) with a known answer, the Multivariate Newton's Method will be tested to solve for the same solution.

System 1.1 is algebraically manipulated into the form of System 1.2 below.

System 1.2

\( f_1 = (x - A_1)^2 + (y - B_1)^2 + (z - C_1)^2 - (c*(t_1 - d))^2 = 0 \)
\( f_2 = (x - A_2)^2 + (y - B_2)^2 + (z - C_2)^2 - (c*(t_2 - d))^2 = 0 \)
\( f_3 = (x - A_3)^2 + (y - B_3)^2 + (z - C_3)^2 - (c*(t_3 - d))^2 = 0 \)
\( f_4 = (x - A_4)^2 + (y - B_4)^2 + (z - C_4)^2 - (c*(t_4 - d))^2 = 0 \)


To solve for \( \alpha = (x, y, z ,d) \) the the Multivariate Newton Method takes the Jacobian matrix of System 1.2 as \( F(\alpha) = (f_1, f_2, f_3, f_4) \) as seen below.

\( DF(\alpha) = \left( \begin{array}{ccc} \frac{\delta f_1}{\delta x} & \frac{\delta f_1}{\delta y} & \frac{\delta f_1}{\delta z} & \frac{\delta f_1}{\delta t} \\ \frac{\delta f_2}{\delta x} & \frac{\delta f_2}{\delta y} & \frac{\delta f_2}{\delta z} & \frac{\delta f_2}{\delta t} \\ \frac{\delta f_3}{\delta x} & \frac{\delta f_3}{\delta y} & \frac{\delta f_3}{\delta z} & \frac{\delta f_3}{\delta t} \\ \frac{\delta f_4}{\delta x} & \frac{\delta f_4}{\delta y} & \frac{\delta f_4}{\delta z} & \frac{\delta f_4}{\delta t} \end{array} \right) \)

This Jacobian matrix is

\( DF(\alpha) = \left( \begin{array}{ccc} 2(x - A_1) & 2(y - B_1) & 2(z - C_1) & 2c^2(t_1 - d) \\ 2(x - A_2) & 2(y - B_2) & 2(z - C_2) & 2c^2(t_2 - d) \\ 2(x - A_3) & 2(y - B_3) & 2(z - C_3) & 2c^2(t_3 - d) \\ 2(x - A_4) & 2(y - B_4) & 2(z - C_4) & 2c^2(t_4 - d) \end{array} \right) \)

Beginning with an initial vector \(\alpha_0 \) we iterate through \(n \in \Bbb N \) steps of the process of solving

\( \left\{ \begin{array}{lr} DF(\alpha_k)s = -F(\alpha_k) \\ \alpha_{k+1} = \alpha_k + s \end{array} \right.\)

for \( k = 0, 1, \ldots , n \).

Depending on the initial vector \( \alpha_0 \) two solutions are computed this way.

To solve for the far from Earth solution the initial input \( (x, y, z, d) = (1000, 1000, 50000, 0) \) was used.

The initial input \( (x, y, z, d) = (0, 0, 6370, 0) \) converged to the near earth solution.

Figure 1.1 below displays the two solutions achieved using these initial vectors. By clicking on the table, the associated Matlab code used to produce the results will be displayed.

Figure (1.1)

Click on the table to view the associated code.

Project 2 Home Next: Step 2