|
George Mason UniversityConor Philip NelsonSource: Home > Classes > Math 447 > Project 1 > Step 3 > Code for outputMath 447: Numerical Analysis
This code produces the output for problem 3: format long conditionA = zeros(11,1); errors = zeros(11,1); nlist = zeros(11,1); for k = 1:11 for n = 10 * 2^k n nlist(k,1) = n; j = n - 2; L = 2; % Length of beam h = L / n; % interval length for approximate solution w = .3; % width of the beam d = .03; % thickness of the beam g = 9.81; rho = 480; % density of the beam E = 1.3 * 10^(10); % Young's modulus of the wood I = w * d^(3) / 12; % area moment of inertia x = h:h:L; fc = -( rho * w * d * g ); f = -( rho * w * d * g ) * x ./ x; % weight of the beam on x_i A = sparse(n, n); % Commencement of construction of Coeff Matrix A(1,1) = 16; A(1,2) = -9; A(1,3) = (8/3); A(1,4) = (-1/4); A(2,1) = -4; A(2,2) = 6; A(2,3) = -4; A(2,4) = 1; for i=3:j A(i,i-2) = 1; A(i,i-1) = -4; A(i,i) = 6; A(i,i+1) = -4; A(i,i+2) = 1; end A(n-1,n-3) = (16/17); A(n-1,n-2) = -(60/17); A(n-1,n-1) = (72/17); A(n-1,n) = -(28/17); A(n,n-3) = -(12/17); A(n,n-2) = (96/17); A(n,n-1) = -(156/17); A(n,n) = (72/17); % Completion of construction of Coeff Matrix A; conditionA(k,1) = condest(A); sol = ( ( h^(4) / ( E * I ) ) * f' ); % Solution vector y = A \ sol; % approximate solution y1 = ( fc / ( 24 * E * I ) ) * x.^(2) .* ( x.^(2) - (4 * L * x) + (6 * L^(2)) ); y2 = y1'; p1 = y2(n,1); p2 = y(n,1); err = p1 - p2; errors(k,1) = err; end end nlist errors conditionA r = [nlist errors]
|