Latency-Aware 360-Degree Video Analytics Framework for First Responders Situational Awareness

Jiaxi Li¹, Jingwei Liao², Bo Chen¹, Anh Nguyen², Aditi Tiwari¹, Qian Zhou¹, <u>Zhisheng Yan²</u>, Klara Nahrstedt¹

Background: First Responder Training

Training Field

Background: First Responder Training

Object of Interest	Priority
Civilian	High
Fire	High
Smoke	High
Gas Mask	High
Firefighter	Low
Helmet	Low

Data based on an interview with a physical training instructor at Illinois Fire Service Institute (IFSI)

Viewing and Query Service

Searching for Objects

Car

Found **3 Cars** in this video: 00:33 00:50 01:23

Labeling Objects			
Firefighter	\oslash	Civilian	0
Oxygen	\oslash	Ladder	\bigcirc
Helmet	0	Car	\cap

Our focus – Object Detection

360 Video Object Detection via 2D Object Detectors

Geometric Distortion

(Detection Error)

(Missed Detection)

Frame Size

• 4 times the number of pixels of a normal 1080p video

Dual-Projection Solution for 2D Object Detector Issues

Normal field of view

Dual-Projection Examples

ERP Tiles

Cubic Tiles

Dual-Projection Limitations

Leads to extra processing time in transforming ERP tiles to cubic tiles

E.g., >30% extra time on a 4-core CPU

Dual-Projection

Leads to extra processing time in transforming ERP tiles to cubic tiles

Dynamic Selection: filters out unnecessary projection and detection.

Dynamic Selection: Overview

Detect on *cubicTile_{i,j}* (*cubic tile j* at timestamp *i*) only when

- Condition (1) *cubicTile*_{*i*,*j*} is structurally different from *cubicTile*_{*i*-1,*j*}
- Condition (2) *cubicTile*_{*i*-1,*j*} contains a high *object cohesion*

Otherwise, inference result of the previous timestamp is adopted for *cubicTile*_{*i*,*i*}

Inter-Frame Similarity (sim): Motivation

ERP tiles

cubic tiles

Inter-Frame Similarity (sim): Estimation

Inter-Frame Similarity (sim): Distortion Correction

$$x' = x \cdot \frac{\text{pixel sample rate}}{\text{center sample rate}} = x \cdot \frac{2\pi r\cos(\theta)}{2\pi r} = x \cdot \cos(\theta)$$

 $sim(cubicTile_{i-1j}, cubicTile_{ij}) = NRMSE(erpTile'_{i-1j}, erpTile'_{ij})$

Object Cohesion (oc): Motivation

ERP tiles

cubic tiles

Object Cohesion (oc): Formula

oc measures if any objects will remain in the cubic tile in the next timestamp

Factors affecting the oc:

- Number of objects
- Distance of the object to the cubic tile center (d_o)
- Object size (s_o)
- Confidence level (c_o)

$$oc(cubicTile_{ij}) = \sum_{object \ o} \frac{c_o}{s_o \cdot d_o}$$

Models for Evaluation

- YV3: Detecting using the YOLOv3 model on ERP frames
- **DP**: Detecting using the **YOLOv3** model on cubic tiles generated by the **Dual-Projection** process
- DS: Our approach, detecting using the YOLOv3 model on cubic tiles generated by the Dynamic Selection algorithm
- A dataset of 25 360-degree videos collected at Illinois Firefighter Service Institute (19 training; 6 testing)
- One 6-core CPU with a 12GB GBP and one 4-core CPU without a GPU

Evaluation of Processing Speed

NVIDIA GeForce RTX 3080 Ti

No GPU

More than 4x speed up over dual projection on GPU and non-GPU machines

Evaluation of Memory Utilization

NVIDIA GeForce RTX 3080 Ti

Over 25% reduction in GPU memory (<4GB) compared to YV3, making high-resolution detection accessible to mid/low-end hardware

Evaluation of Detection Accuracy

Improved detection accuracy compared to YV3 (selected classes)

Conclusion

- 360 Video Object Detection Challenges
 - Geometric Distortion
 - High Computation

- Our Contribution: Dynamic Selection
 - >4X Speedup
 - >25% memory usage reduction
 - Improved detection accuracy

(Missed Detection due to Distortion)

Acknowledgments

- Illinois Fire Service Institute (IFSI)
- National Science Foundation (NSF)

Contact Information

- Presenter: **Zhisheng Yan** (zyan4@gmu.edu)
- Paper First Author: **Jiaxi Li** (jiaxili3@illinois.edu)