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Abstract: 360° video camera sensing is an increasingly popular technology. Compared with tradi-
tional 2D video systems, it is challenging to ensure the viewing experience in 360° video camera
sensing because the massive omnidirectional data introduce adverse effects on start-up delay, event-
to-eye delay, and frame rate. Therefore, understanding the time consumption of computing tasks in
360° video camera sensing becomes the prerequisite to improving the system’s delay performance
and viewing experience. Despite the prior measurement studies on 360° video systems, none of
them delves into the system pipeline and dissects the latency at the task level. In this paper, we
perform the first in-depth measurement study of task-level time consumption for 360° video camera
sensing. We start with identifying the subtle relationship between the three delay metrics and the
time consumption breakdown across the system computing task. Next, we develop an open research
prototype Zeus to characterize this relationship in various realistic usage scenarios. Our measurement
of task-level time consumption demonstrates the importance of the camera CPU-GPU transfer and
the server initialization, as well as the negligible effect of 360° video stitching on the delay metrics.
Finally, we compare Zeus with a commercial system to validate that our results are representative
and can be used to improve today’s 360° video camera sensing systems.

Keywords: 360° video camera sensing; latency; measurement study; wireless multimedia sensor
networks

1. Introduction

Camera sensing through visual sensors has been an important technology in wireless
sensor networks [1–3]. Recently, there has been an increasing interest in 360° cameras.
Compared with traditional cameras, the 360° camera is an emerging visual sensor that can
record a remote scene in all directions. By live-streaming the omnidirectional visuals to
distant viewers through networks, 360° video camera sensing systems are able to offer an
immersive viewing experience, where viewers can enjoy the complete field-of-view of a
remote site. This enables a broad spectrum of new applications such as panoramic wildlife
monitoring in scientific studies, all-around security surveillance in airports, and 360° video
Internet viewing for entertainment [4].

A critical requirement of 360° video camera sensing systems is the delay because it
plays a pivotal role in ensuring users’ viewing experience. Complex system initialization
may lead to an excessive start-up delay, decreasing users’ willingness to continue the
viewing. The start-up delay may in turn incur a long event-to-eye delay which is the time
interval between when an event occurs on the remote scene and when it is displayed on
the user’s screen. Long event-to-eye delay causes significant lags in streaming live events
such as sports and business meetings and would be detrimental in applications that require
real-time interaction. Moreover, the frame rate of the 360° video is determined by how fast
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frames can be pushed through the system pipeline. A low frame rate would lead to an
unappealing viewing experience for the users.

It is challenging to guarantee acceptable delay and user experience in 360° video
camera sensing systems. This is because 360° video camera sensing systems generate far
more data than traditional 2D video camera sensing systems. A fundamental prerequisite
to preventing undesirable user experience caused by delays is understanding how different
components of a 360° video camera sensing system contribute to the aforementioned three
delay metrics.

Although many measurement studies have been conducted on 2D video camera
sensing and streaming [5–7], the delay of 360° video camera sensing systems has not been
well understood. Recent studies in 360° videos focused on rate-adaptive streaming [8–11]
and video encoding/projection [12–14]. The only two existing measurement studies on
live 360° video systems [15,16] only treated the system as a black box and performed
system-level measurements. For example, our previous study on YouTube live streaming
services [15] showed that the event-to-eye delay is unacceptably large. Users need to wait
for up to 42 s before viewing the most recent events captured by remote cameras. Although
these early works identified the problem of delay and the dissatisfaction of users in 360°
video camera sensing, they did not pinpoint the underlying limitations of today’s 360°
video camera sensing systems across the system design pipeline. Specifically, they were not
able to dissect the sensing and streaming pipeline to examine how each task of a 360° video
camera sensing system contributes to the start-up delay, event-to-eye delay, and frame rate.
As a result, the bottlenecks of the 360° video camera sensing are still unknown, making it
difficult to optimize the system performance and improving the user experience.

The goal of this paper is to fill this gap and conduct an in-depth measurement study of
the time consumption across the end-to-end system pipeline in 360° video camera sensing.
We aim to identify the bottleneck of a 360° video camera sensing system in terms of different
delay metrics and call for design guidelines for optimized 360° video systems.

One key challenge of the proposed measurement is that commercial 360° video systems
usually behave as black boxes. The closed-source nature of these systems makes it almost
impossible to study the per-task delay of the 360° video camera sensing pipeline. In
this paper, we overcome this challenge by building a 360° video camera sensing research
prototype—Zeus. Zeus includes a 360° camera, camera-server transmission, a video server,
server-client transmission, and a video client. Implemented by off-the-shelf hardware,
publicly available SDKs, and open-source software packages, Zeus can be easily reproduced
for future camera sensing research areas, e.g., simulation, modeling, and algorithm design.

We measure the time consumption of each computing task in all five system compo-
nents on Zeus and profile the delay characteristics of the system under various realistic
scenarios. Our micro- and macro-benchmarks demonstrate four crucial findings. First,
transferring video frames between the CPU and GPU in the camera is a critical task for
reaching a satisfactory frame rate because this internal camera transfer consumes non-
negligible time. Second, stitching a 360° video frame surprisingly has a negligible effect
on the frame rate. Third, server initialization before the live video streaming is greatly
time-consuming. This long start-up delay adds to a significant event-to-eye delay, which
could lead to an annoying time lag between what happens in the remote scene and what is
displayed on the screen. Fourth, we found across different real-world scenarios that camera
motion is a deciding factor in the system delay and viewing experience. Overall, the 360°
camera is the bottleneck for frame rate, whereas the server is the primary cause for low
start-up and event-to-eye delay.

As the implementations of Zeus and commercial 360° video platforms are not exactly
the same, the absolute values of the results obtained with Zeus may be different from
those measured on commercial platforms. Hence, we additionally measure the delay on a
commercial system that is based on Ricoh Theta V 360° camera and YouTube live streaming
servers. We treat it as a black box and compare its component-wise time consumption with
Zeus. The comparison shows a strong correlation between the two systems, indicating that
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our observations can be generalized to exiting 360° video camera sensing systems in the
current practice.

In sum, the contributions of the paper are

• We identify the relationship between the three delay metrics and the time consumption
breakdown across the system computing tasks (Section 3.2).

• We launch an open research prototype Zeus (https://github.com/junyiwo/Zeus
(accessed on 27 June 2022)). The methodology for building Zeus can be reused in
future 360° video research (Section 3.3).

• We perform an in-depth delay measurement to dissect the time consumption in 360°
video camera sensing and compare Zeus against a commercial live 360° video system
to validate our findings (Sections 4 and 5).

2. Related Work
2.1. 2D Video-on-Demand Streaming Systems

Video-on-demand (VoD) streaming services over Internet such as YouTube and Vimeo
were widely examined [17–22]. Different from video camera sensing systems, videos
are pre-stored at VoD servers and then streamed to users. No live camera capturing is
involved. Different metrics for quality of experience (QoE) of 2D VoD streaming services
have been measured by various tools [17]. For example, a large-scale study of YouTube
video streaming over IPv6 and IPv4 [18] showed that the playback stall is a more serious
problem in IPv6 networks. A comprehensive analysis of 12 common mobile VoD streaming
services over cellular networks [20] found that two to three segments are the ideal startup
buffer size to reduce the possibility of playback stall. While these measurements provide
insight into video streaming performance, the methodology cannot be directly used in
video camera sensing systems that have a different system pipeline.

2.2. 360° VoD Streaming Systems

Measurement studies on streaming pre-recorded 360° videos have received a growing
interest [14,23–27]. Researchers investigated thousands of pre-recorded 360° videos on
YouTube across more than a dozen categories and found that delay is a key criterion
when streaming and viewing 360° videos in VR headsets [23]. The video encoding and
streaming methods of Oculus 360° VoD streaming were studied in [14]. The authors
reverse-engineered the offset cubic projection advocated by Oculus. This popular project
method encodes a distorted version of the spherical surface and assigns more bits to a
particular view of the cubic. Other measurement studies discovered that the impacts of
delay on 360° VoD streaming mainly stem from the impacts of delay on viewport-adaptive
streaming algorithms [24,25,28]. Despite all the efforts to understand 360° VoD systems,
none considers the 360° camera and the management of a live streaming session, which are
essential components in 360° video camera sensing.

2.3. 2D Video Camera Sensing Systems

A wealth of studies were conducted to understand 2D video camera sensing systems
that live capture and stream 2D videos. The delay analysis of Periscope, a popular live
video App, showed that client buffering, chunking, and polling are the major contributors
to the high latency of the HTTP-based live streaming systems [5]. The QoE for camera
sensing and live video on mobile devices was also studies [6]. The observations indicated
that live video streaming time is significantly affected by the network protocols used for
streaming. Other measurement studies [29,30] investigated encoding algorithms to make
them bandwidth-efficient in order to reduce the live video streaming time. Although
this line of research is impactful on video camera sensing system design, the observations
cannot be applied to 360° videos since more than one video views and additional computing
tasks are enforced in 360° video camera sensing.

https://github.com/junyiwo/Zeus
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2.4. 360° Video Camera Sensing Systems

A limited number of studies were focused on 360° video camera sensing. 360° video
camera sensing using commercial cameras and YouTube live streaming platforms was
investigated recently. The results for streaming videos with up to 4 K resolution showed
that users suffer from a high event-to-eye delay in live 360° video systems [15]. Similarly, a
crowd-sourced study on YouTube and Facebook streaming platforms using simulated live
camera streams was conducted [16]. The measurement results confirmed the high event-to-
eye delay and demonstrated that users also experience long playback stalls. Chen et al. [11]
proposed a 360° video stitching method to ensure the delay in tile-based live 360° video
streaming under strict time budgets. Despite the improved understanding of commercial
live 360° video streaming platforms, none of the existing studies probes into the camera
performance. Moreover, existing works do not dissect the delay of a 360° video cam-
era sensing pipeline at the component or task level and fail to discover the impacts of
components/tasks on delay metrics (start-up, event-to-eye, and frame rate).

In contrast, the proposed study delves into each component of a canonical 360° video
camera sensing system and each task of the components in order to perform the in-depth
delay analysis. Our preliminary results were shown in [31]. This paper takes a step further
and expands the measurement from one experiment setup to five usage scenarios by
varying the camera motion and the sensing location. Additional validation of our results
against commercial platforms is also included. Our extensive results confirm the generality
of the measurement findings.

3. Measurement Design

In this section, we introduce the design of our measurement study including system
architecture, delay metrics, and Zeus prototype. We also explain the rationale of our
measurement design in dissecting the latency of 360° video camera sensing.

3.1. Identifying Canonical System Architecture

We first discuss the canonical system architecture of 360° video camera sensing as
illustrated in Figure 1. The computing pipeline of 360° video camera sensing consists
of five components—a camera, camera-server transmission (CST), a server, server-client
transmission (SCT), and a client. Each component must complete several computing tasks
in sequence.

Figure 1. The architecture of 360° video camera sensing and the tasks of the 5 system components.
The top rectangle represents one-time tasks whereas the 5 bottom pipes are the pipeline tasks that
must be passed through for every frame.

In particular, the 360° camera is typically composed of multiple 2D camera lenses
configured in specific directions to cover the ominidirectional scene. Multiple 2D video
frames of a remote scene are first captured. These frames are moved to the camera GPU and
stitched into a 360° equirectangular video frame. The equirectangular frame is transferred
to the camera CPU and then encoded at the CPU. The camera then uploads the frame



Sensors 2022, 22, 6001 5 of 25

to the server via its wireless connection to the Internet. The server parses the video data
received from the camera and stores it in a video buffer in the server memory. Before the
buffered video data reaches a certain amount, no client request will be accepted by the
server. Once the buffered video data is sufficient, a URL to access the live streaming session
will become available. Clients (e.g., PCs, head-mounted displays, and smartphones) can
then initiate live streaming via the URL. After a connection between the client and the
server is established, the server creates a metadata file about the streaming session and
sends it to the client. Then the server starts streaming data from its buffer. Upon receiving
data packets from the server, the client decodes, renders, and displays 360° video frames
on the screen.

Table 1 summarizes these computing tasks across system components. It should be
emphasized that the connection and metadata generation are one-time tasks for a given
session between the server and the client, whereas all other tasks are pipeline tasks that must
be passed through for every video frame. We aim to measure the delay of all these tasks.

Table 1. System components and computing tasks in 360° video camera sensing.

Component Computing Task Task Definition

Camera Video capture Obtain a video frame from each 2D camera lens of the 360° camera and put them in memory
Copy-in Transfer the stored 2D video frames from the memory to the GPU
Stitching Utilize the GPU to stitch multiple 2D video frames into an equirectangular 360° video frame
Copy-out Transfer the 360° video frame from the GPU to the memory
Format conversion Use the CPU to convert the stitched RGB frame to the YUV format
Encoding Compresses the YUV equirectangular 360° video frame using an H.264 encoder

CST CST Deliver data packets of the 360° video frame from the camera to the server

Server Connection Establish a connection with the client after a user clicks the live streaming URL
Metadata Generation Create a metadata file for the live 360° video and send it to the client
Packetization Packetize the received camera data for streaming

SCT SCT Transmit data packets of the 360° video frame from the server to the client

Client Decoding Convert the received packets to 360° video frames
Rendering Project the decoded equirectangula frame into a spherical frame and render the pixels of the

selected viewport on the spherical frame
Display Send viewport data to the display buffer and show the buffered data when screen refreshes

3.2. Analyzing Delay Metrics

We now identify the delay metrics that affect viewing experience and discuss how
they are determined by the time consumption of system components. The amount of time
consumption is denoted by the length of a pipe in Figure 1.

3.2.1. Start-Up Delay

Start-up delay defines the time it takes for the first video frame to display on the client
screen since a client initiates a viewing session. One main reason discouraging users from
continuing and complete the video viewing is the long start-up delay [32]. We formally
denote the time consumption for the one-time connection and metadata generation as
Tsrv,once, the server-client transmission of a frame as Tsct, and the processing and display of
a frame on the client device as Tclnt. We then express the start-up delay Dstart, i.e.,

Dstart = Tsrv,once + Tsct + Tclnt. (1)

Note that the time consumption in the camera and camera-server transmission does
not affect the start-up delay. The reason is that the live streaming of camera-recorded
videos will not start until the server buffers sufficient video frames from the camera. Hence,
video frames should have already been stored in the server before the server creates the
streaming URL and accepts the client’s request.
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3.2.2. Event-to-Eye Delay

The time difference between the moment when an event occurs on the remote scene
and the moment when the event is displayed on the user screen is the event-to-eye delay. An
excessive event-to-eye delay makes users perceive the annoying mismatch and lag between
what happens and what is displayed in camera sensing of live events and activities. This
greatly degrades the responsiveness of real-time communications in interactive applications
such as disaster command and response [33]. The event-to-eye delay Devent−to−eye is
determined by all computing tasks in 360° video camera sensing. Video frames must spend
time at all components and undergo each task before being displayed, i.e.,

Devent−to−eye = Tcam + Tcst + Tsrv,once + Tsrv,pipe + Tsct + Tclnt (2)

where Tcam is the time a frame spends on the camera, Tcst is the camera-server transmission
time, and Tsrv,pipe is the time consumption of a frame going through the pipeline tasks
in the server (packetization). We note that although not all frames experience one-time
connection and metadata tasks, their time consumption is propagated to subsequent frames,
thus contributing to the event-to-eye delay.

3.2.3. Frame Rate

Frame rate represents the number of frames that can be processed and pushed through
system components in the pipeline per unit time. The end-to-end frame rate of the system,
FR, must be greater than a threshold to ensure the smooth video playback on the client
screen. By considering the system as a set of pipes, the system frame rate is jointly de-
termined by the frame rates of all system components (all individual pipes) and can be
defined by the minimum of these frame rates (the narrowest pipe). Formally, we have

FR = min{FRcam, FRcst, FRsrv, FRsct, FRclnt} (3)

where FRcam, FRcst, FRsrv, FRsct, FRclnt are the frame rate of each system component. It
is important to note that the frame rate of a component, i.e., how many frames can flow
through a pipe per unit time, is not necessarily the inverse of the per-frame time consump-
tion on that component. Only if the tasks within the component are run sequentially, e.g.,
in the camera, the frame rate is the inverse of the per-frame time consumption. If tasks in
that component are executed in parallel by different hardware units, e.g., in the server, this
rule does not hold. As shown in Figure 1, the end-to-end frame rate is determined by the
radius rather than the length of each pipe. We will scrutinize how tasks affect frame rate in
Section 4.

3.2.4. Delay Dissection at the Task Level

We have defined the three delay metrics in terms of the time consumption of sys-
tem components. It is straightforward to dissect the delay metrics using task-level time
consumption because the tasks within each component are mostly serialized. Specifically,
Tcam, Tsrv,once, Tsrv,pipe, Tclnt can be represented as follows.

Tcam = Tcapt + Tcpin + Tstch + Tcpout + Tcnvt + Tencode

Tsrv,once = Tconnect + Tmeta

Tsrv,pipe = Tpkt

Tclnt = Tdecode + Trndr + Tdsply

(4)

By replacing the component time in (1)–(3) by the above Equation (4), we can dissect
the delay metrics at the task level.
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3.3. Implementing Zeus Prototype

Measuring the delay in 360° video camera sensing systems is challenging because
camera sensing systems using commercial cameras and live streaming platforms are closed-
source. Furthermore, no measurement tool is available to examine the black-box commercial
cameras (e.g., Ricoh Theta V), live streaming servers (e.g., Facebook), and players (e.g.,
YouTube). Although commercial APIs are provided to allow App development, none
of them can be used to obtain the delay breakdown at the task level. To enable the
measurement of how the time consumption at the task level affects 360° video camera
sensing and user experience, we build an end-to-end system prototype, Zeus, shown
in Figure 2, as a reference implementation to the canonical architecture. We implement
Zeus by only using off-the-shelf hardware, publicly available SDKs, and open-source
software packages such that the research community can readily reproduce the reference
implementation for future research.

Figure 2. The Zeus prototype.

3.3.1. Hardware Design

Similar to a commercial 360° camera, the 360° camera in Zeus consists of multiple 2D
camera lenses—six GoPro Hero cameras [34]. These 2D cameras are held and positioned
by a 360° camera rig and connected to a laptop that serves as the processing unit. The 2D
camera visuals are processed by six HDMI capture cards and then combined and fed to the
processing unit via three USB 3.0 hubs. The laptop processing unit has an 8-core CPU at
3.1 GHz and an NVIDIA Quadro P4000 GPU. The processing power makes it feasible to
process, stitch, and encode 360° videos. The video server is deployed at a university data
center which runs Ubuntu 18.04.3 LTS. The client device is a laptop running Windows 10
with an Intel Core i7-6600U CPU and an integrated HD graphics card.

3.3.2. Software Design

To capture wide-angle video frames from the 2D camera lenses, we configure the
six GoPro in the SuperView mode. The VRWorks 360 Video SDK [35] is used to move,
store, and stitch the 2D video frames. One of the primary challenges in the camera design
is the 360° video stitching quality. We first calculate camera distortion parameters [36]
using the OpenCV function cv.fisheye.ca- librate() and the second-order distortion
model [37] to reduce the effects of camera lens distortion during stitching. We then utilize
these camera parameters to calibrate the video frames during stitching. This calibration
ensures that the overlapping areas of two adjacent frames will not be distorted. A sample
configuration file recording the camera resolution and the size and position of the camera
rig is shown in Listing 1 and is used as input to the VRWorks 360 Video SDK. The 2D
frames are transferred to the GPU via cudaMemcpy2D() and stitched to a 360° frame via
nvssVideoStitch(). Finally, FFmpeg is used for encoding and streaming the 360° video.
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Real-Time Message Protocol (RTMP) is utilized to upload the 360° video to the server for
low-delay transmission. Our upload protocol is similar to most commercial cameras, e.g.,
Ricoh Theta V and Samsung Gear 360.

Listing 1. XML file of the camera rig.

<?xml version="1.0" encoding="utf -8"?>
<rig coord_axes="z-up" rig_diameter_cm="9.5">
<camera width="1024" height="768" layout="equatorial">
<input_calib_file name="camera1.jpg"/>
<pose>
<rotation yaw_deg ="0" pitch_deg ="0.0" roll_deg=" -90.0" />
......
</rig>

As for the video server, we run an open-source Nginx-1.16.1 web server. The video is
streamed from the server to the client through the HTTP-FLV protocol since HTTP-FLV
can penetrate firewalls and is more acceptable to web servers. While other popular live
streaming protocols, e.g., HLS, may have been used, HLS protocol consumes significant
time for segmenting a video stream into chunks with different video quality. As a result,
the start-up delay might be higher. To allow the server to receive RTMP live video streams
from the 360° camera and deliver HTTP-FLV streams to the client, we configure Nginx as
the nginx-http-flv-module [38].

To support the general applicability of client software, the client is implemented as an
HTML5-based web video player using FLV.js, a flash-based module written in JavaScript.
We use Three.js to fetch video streams from Flv.js and project the equirectangular frame onto
the sphere format using render(). The spherical frame is stored at the HTML5 element
<canvas> to display on webpages. The client software is embedded in a Microsoft Edge
browser. We enable hardware acceleration to support the rendering and decoding tasks.

3.3.3. Measurement Methodology

We are able to measure the time consumption of most computing tasks by inserting
timestamps in Zeus and calculating the time interval before and after certain code func-
tions are executed. The only exceptions are the camera-server transmission (CST) and
server-client transmission (SCT), where the video stream is fragmented into packets for
transmission because both the RTMP and HTTP protocols are built on top of TCP. Since
the frame ID is not visible at the packet level, we cannot measure the actual transmission
time of each frame directly and individually. Instead, we propose to approximate this
per-frame transmission delay as the average time consumption for transmitting a video
frame during the CST and SCT. For example, to derive the per-frame time consumption of
CST, we first obtain the time interval between the moment when the camera starts sending
the first frame via stream_frame() and the moment when the server stops receiving video
data in ngx_rtmp_live_av(). We then divide this time interval by the number of frames
transmitted to calculate the average time for transmitting a frame.

4. Results

We present the measurement results in this section. Specifically, we show the time
consumption of the tasks in 360° video camera sensing under different impact factors. We
also repeat the delay measurement using multiple real-world scenarios. For each system
component, we discuss how the start-up delay, event-to-eye delay, and frame rate would be
affected by system parameters. We aim to identify the potential mitigation of delay issues
to improve user experience.

4.1. Default Experiment Scenario

Our default measurement is conducted in a typical lab environment located in a
university building. The lab hosts the camera and the client. To mimic the real-world
conditions experienced by commercial 360° video systems, we deploy the server at another
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university campus over 800 miles away. Note that putting the camera and the client in
the same building does not affect the results because the video data always flows from the
camera to the server and then to the client. It is the server location that determines the
transmission distance.

We fix the camera on a table so that the video content generally contains desks, office
supplies, and researchers. By default, the capture resolution of the 2D cameras is 720p
and the stitched 360° video is encoded at 2 Mbps with the resolution ranging from 720p to
1440p (2 K). We do not choose 4 K or larger resolutions for encoding 360° videos because
our previous study shows that 4 K live 360 video streaming often leads to poor system
performance and user experiences [15]. Since nearly all computing tasks across the system
pipeline would be overwhelmed by the massive 4 K data, 4 K 360° videos are not ideal for
the goals of identifying system bottlenecks in this research. When streaming the video, we
use a constant resolution during a session and do not employ adaptive streaming since
we aim to concentrate on the most fundamental pipeline of 360° video streaming without
advanced designs. We set the frame rate as 30 frames per second (fps) and the Group of
Pictures (GOP) value of the H.264 encoder as 30. The stitched 360° video is uploaded from
the camera to the server and then downloaded from the server to the client through the
university WiFi with the upload and download bandwidth being 16 Mbps and 20 Mbps,
respectively. For each session, we continue the 360° video camera sensing for 2 min and
repeat it 20 times. The average and standard deviation of the 20 trials are reported.

4.2. 360° Camera
4.2.1. Video Capture Task

We vary the resolutions of the captured 2D videos and illustrate the video capture
time in Figure 3. Compared to the acceptable frame processing delay of a 24–30 fps video
(33.3 ms), the video capture time is generally short. Capturing six 480p video frames
takes 1.68 ms. The time becomes 2.05 ms for six 720p frames. Both capture resolutions
provide abundant details for stitching and are sufficient to generate high-quality 360°
videos ranging from 720p to 1440p that are currently supported in today’s 360° video
platforms [39,40]. It is true that it spends more time capturing 1080p and 1440p frames.
However, capturing such high resolutions of 2D frames for 360° video stitching is typically
not required in current 360° video applications.

Figure 3. Video capture time versus capture resolutions.

4.2.2. Copy-In and Copy-Out Tasks

We next measure the CPU-GPU transfer time using different types of memory. Results
in Figures 4 and 5 indicate that the CPU-GPU transfer time is non-negligible. Moving
frames from pinned memory to GPU for stitching consumes 6.28 ms for six 720p frames and
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as high as 20.51 ms for 1440p frames. The copy-out time moving the stitched frame back to
the CPU is shorter, consuming 2.33 ms for a 720p 360° frame using the pinned memory and
4.47 ms using the pageable memory. The copy-out is faster because the amount of video
data to transfer is smaller after six 2D frames have been stitched as one 360° frame. We
conclude that GPU stitching does incur additional overhead. This strategy can be justified
only if the benefits of the GPU stitching are superior. It is also clear that the pinned memory
is preferred during the CPU-GPU transfer. Pinned memory can directly communicate with
the GPU whereas pageable memory has to transfer data between the GPU and the CPU via
the pinned memory.

Figure 4. Copy-in time using different memory types.

Figure 5. Copy-out time using different memory types.

4.2.3. Stitching Task

We measure the stitching time under different stitching algorithms. To this end, we
configure different levels of stitching quality available in the VRWorks 360 Video SDK to
test different algorithms. For instance, “high stitching quality” utilizes a depth-based mono
stitching to improve the stitching quality and stability. We discover in Figure 6 that stitching
time is surprisingly not a time-sensitive task compared to the CPU-GPU transfer. It takes
as low as 1.98 ms to stitch a 720p equirectangular 360° frame in high stitching quality. The
stitching time for a 1440p frame is 6.98 ms. Our observation is in sharp contrast to prior
360° video research [41,42] that emphasized the time complexity of 360° video stitching.
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The short stitching time can be explained as follows. Thanks to the fixed positions of six
2D cameras, today’s GPUs and SDKs can extract the correspondence points between two
adjacent 2D frames. They can reuse this correspondence for stitching every frame without
having to recalculate the overlapping areas as is done in traditional stitching methods.

Figure 6. Frame stitching time versus stitching options.

4.2.4. Format Conversion Task

After the stitched 360° frame is moved back to the CPU, the video frame in RGB format
must be converted to YUV format before encoding. We show time consumption for this
format conversion in Figure 7. This task consumes 3.75 ms for a 720p video frame. The time
consumption is increased to 10.86 ms for a 1440p frame. This is because video frames with
higher resolution have more pixels to convert. We also observe that the stitching quality
has a negligible effect on format conversion time because format conversion is primarily
affected by the number of pixels to convert rather than the stitching algorithm to execute.

Figure 7. Format conversion time versus stitching options.

4.2.5. Encoding Task

We show the encoding time under different encoding bitrates and resolutions in
Figure 8. As expected, we see that the encoding is a major time-consumer in the camera. It
takes 20.74 ms on average to encode a 1440p 360° frame at 2 Mbps. When the resolution is
720p, the encoding time decreases to 15.35 ms because fewer pixels have to be processed and
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encoded. Another observation is that 1 Mbps decrease of bitrate can lead to 16.68% decrease
in the encoding time under the same encoding resolution. A lower bitrate is typically the
result of a greater quantization parameter (QP) in encoding. A greater QP results in fewer
non-zero values after the quantization, which in turn reduces the time to encode these
non-zero values. Given the impacts of encoding time on the camera processing speed, it is
critical to strike a tradeoff between the camera frame rate and the encoding quality.

Figure 8. Encoding time under different encoding bitrates.

Moreover, it is interesting to find in Figure 9 that the encoding time is affected by
the GOP value. As the length of GOP increases, the encoding time increases but then
starts decreasing once the GOP value reaches a certain threshold. A longer GOP requires
the encoder to search more frames while calculating the inter-frame residual between the
I-frame and other frames. This enlarged search space leads to a longer encoding time.
However, today’s encoders automatically insert an I-frame at scene changes if the GOP
value is set to be too large. These inserted I-frames would break the long-GOP search and
decrease the encoding time. Our measurement implies that the GOP threshold for the
automatic I-frame insertion is somewhere from 40 to 50 in modern video encoders.

Figure 9. Encoding time of a 720p frame versus GOP.
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4.2.6. Impact on Delay Metrics

Our camera is able to achieve 360° camera sensing of 720p videos at 24–30 fps, which
is consistent with the performance of state-of-the-art mid-end 360° cameras such as Ricoh
Theta S [43]. We find that the camera executes a sequence of tasks for a frame one by
one without utilizing parallel processing. Hence, the frame rate of the camera output is
simply an inverse of the total time consumption of all tasks in the camera. This can be
validated by our observation that the total time consumption for all tasks in the camera
is less than 33.3 ms for a 720p frame. More importantly, our measurement suggests that
several computing tasks can be optimized to enhance the output quality of the 360° camera.
Besides the well-known challenge in encoding, we discover that optimizing the CPU-GPU
transfer inside the camera is also important given its noticeable time consumption. On the
other hand, there is little scope to improve the stitching task further because the stitching
time in current practice is already low. Furthermore, the parameter space of the critical tasks,
such as encoding and CPU-GPU transfer, should be explored to balance the camera frame
rate and the output video quality. The optimization could potentially enable the support
of higher-quality videos that are only offered in high-end cameras or even unavailable in
today’s markets.

Note that the tens of milliseconds of camera time consumption will not realistically
affect the event-to-eye delay defined in Equation (2). The typical requirement of event-to-
eye delay for interactive applications is no more than 200 ms [44]. This requirement can
be further relaxed to 4–5 s for non-real-time applications such as event broadcasting and
scientific monitoring [45]. Finally, we reiterate that the camera does not affect the start-up
delay as defined in Equation (1).

4.3. Camera-Server Transmission

We now evaluate the time consumption of the camera-server transmission (CST). We
measure the CST time under different encoding bitrates and resolutions of the 360° video
sent by the camera. Results in Figure 10 show that the CST time is longer than the time
consumption in the camera in general. It is evident that the CST time increases as the
encoding bitrate or resolution increases. For example, transmitting a 720p 360° frame at
2 Mbps consumes 37.83 ms and the transmission time increases to as long as 73.23 ms for a
1440p frame.

Figure 10. CST time under different encoding bitrates.

In order to evaluate the impact of network conditions on the CST time, we fix the
encoding bitrate at 2 Mbps and throttle the upload bandwidth of the CST to 2, 4, and 8 Mbps
using NetLimiter. We can see from Figure 11 that the CST time dramatically increases when
the upload bandwidth is reduced to 2 Mbps. The CST now consumes 270.79 ms for a 720p
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360° frame, 286.13 ms for a 1080p frame, and 318.17 ms for a 1440p frame. When the upload
bandwidth is 8 Mbps, the CST time is similar to the case of no bandwidth throttling as in
Figure 10. This result implies that 8-Mbps upload bandwidth is enough to support the
camera to the server transmission.

Figure 11. CST time versus upload bandwidth.

Impacts on Delay Metrics

It is important to observe that the time consumption in the CST component generally
does not affect the frame rate. This is because the CST component continuously handles
video data packet by packet. As long as consecutive packets are pushed to the CST component
back to back, the output frame rate of the CST component will not change regardless of
the processing time of a packet. An exception might occur when the variance of the packet
transmission time in the CST component (jitter) is significantly high. Fortunately, we found
in Figure 12 that 90% of the packets are received within 2 ms after the reception of their
previous packets. Thus, packets flow through the CST component continuously and the
exceptionally negative effects on the frame rate are not observed.

Figure 12. Jitter of packet reception time.

As for the start-up delay, the CST component is similar to the camera and does not
affect it. Nevertheless, the CST time plays a pivotal role in the event-to-eye delay, especially
when streaming high-quality videos in live interactive applications.
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Since modern WiFi (802.11ac) has sufficient bandwidth to support a reasonable CST
time and stable delay jitter, today’s CST component is ready to support typical camera
sensing applications. Future efforts should focus on enhancing the transmission protocols
in challenging network conditions for diverse sensing environments.

4.4. Video Server
4.4.1. Connection Task

Once the 360° video frames received from the camera are sufficient, the server becomes
ready to accept a client request. To proceed, the connection task is first conducted. As
shown in Figure 13, the time consumption of server-client connection is long, which takes
approximately 900 ms. Specifically, the server first spends tens of milliseconds performing
a three-way TCP handshake with the client. Then the majority of the connection time
(hundreds of milliseconds) is used to prepare the initial HTTP response that accepts the
client’s request for the streaming session. To this end, the server must create new threads,
initializes data structures for the session management, and registers different handler
functions, e.g., ngx_http_request_handler, for accepting the client request. The server
then sends the initial HTTP response (excluding video data) to the client. As the HTTP
response is not large, we see that a higher download bandwidth does not decrease the
connection time significantly.

Figure 13. Connection time under different download bandwidths.

4.4.2. Metadata Generation and Transmission Task

After the HTTP connection is established, the server generates a metadata file and
transmits it to the client to convey application-related information. The metadata generation
and transmission time under the download bandwidth of 2, 4, and 8 Mbps are shown
in Figure 14. The metadata time is long because the server must create and transmit a
metadata file detailing the format, encoding, and projection parameters of the 360° video.
This procedure involves retrieving video information from the camera through server-
camera communication, registering functions and creating data structures on the server,
generating live video streaming threads to build the metadata file, and sending it to the
client through server-client communication. Since this is not a parallel process, it consumes
excessive time to run these processes. The shortest time is 1512.90 ms for a 720p video
stream under the download bandwidth of 8 Mbps. We also observe that reducing the
download bandwidth does not decrease the metadata time significantly. This implies that
metadata generation rather than metadata transmission dominates the time consumption
of the metadata task.
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Figure 14. Metadata gen. and tx time under different download bandwidths.

4.4.3. Packetization Task

After the connection and metadata tasks, the server is ready to stream video data to
the client continuously through the pipelined packetization and transmission. According
to our measurement, packetizing video data at the server for video streaming to the client
consumes negligible time. The received camera captured frames are packetized as soon
as possible without any additional delay. The packetization process is fast itself because
the Nginx server leverages pointers to record the locations of the received video data in
the server buffer and then directly fetches the video data using the pointers when adding
FLV headers to generate HTTP-FlV packets. No memory copy or transfer is needed for the
received video data to become a packet.

4.4.4. Impacts on Delay Metrics

As the connection and metadata tasks executed in the server happen before any video
frames are pushed into the system pipeline for camera sensing and streaming, they do not
affect the frame rate at all. Due to the negligible packetization time, the server also does
not affect the end-to-end frame rate in 360° video camera sensing.

However, the large time consumption of the connection and metadata tasks causes a
long start-up delay that may discourage users from staying in the video viewing after they
click the video URL and initialize the session. The lengthy start-up delay in turn yields an
excessive event-to-eye delay. Although the connection and metadata tasks occur only once,
video data are accumulated in the server buffer during the session initialization. The video
frames arriving at the server later cannot be sent until previous frames are sent out. These
frames have to wait for all previous frames, leading to a long event-to-eye delay. This long
event-to-eye delay would reduce the responsiveness of the camera sensing applications
and degrade the viewing experience. To mitigate the negative effects of long start-up and
event-to-eye delay, future efforts can be made to optimize and parallelize the computing
workflow and data management in the server in order to minimize the preparation time
during the server-client initialization.

4.5. Server-Client Transmission

Similar to the CST component, we measure the SCT time for streaming a 360° frame
from the server to the client. Results in Figures 15 and 16 show that the SCT time is similar
to the CST time, taking 41.07 ms for a 720p 360° frame and 74.98 ms for a 1440p frame.
The reason for the similar time consumption is that the distance between the camera and
the server is almost the same as the distance between the server and the client. Further,
both the upload and download bandwidth are sufficiently high to support stable video
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streaming. As expected, the SCT time also decreases as the video quality degrades and the
download bandwidth increases.

Figure 15. SCT time under different encoding bitrates.

Figure 16. SCT time versus download bandwidth.

Impacts on Delay Metrics

Different from the CST component, the SCT component plays a critical role in the
start-up delay since the first video frame has to be first streamed to the client before it
can be displayed on the client screen. As for the event-to-eye delay and the frame rate,
however, the impacts of the SCT are similar to the CST. In particular, the SCT time directly
influences the event-to-eye delay. If the streaming time from the server to the client is
high, users would have a laggy viewing experience. The impacts of the SCT on the frame
rate depend on whether or not packets can be continuously streamed to the client. If the
network conditions are unstable, the continuous packet reception in Figure 12 may not
hold for the SCT, which could incur a decreased frame rate.

4.6. 360° Video Client
4.6.1. Decoding Task

The 360° equirectangular frames received at the client must be first decoded into
raw video frames. We show the decoding time of a 360° frame at the client in Figure 17.
We observe that the decoding time is negligible, with an average of only 0.62 ms under
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various resolutions. Indeed, today’s computers utilize hardware-accelerated decoders for
video decoding to prevent the large decoding overhead in traditional CPU-based software
decoders that requires either longer time or multiple stronger CPUs. This strategy has
expedited the complicated decoding process significantly.

Figure 17. Decoding time versus 360° frame resolutions.

4.6.2. Rendering Task

Figure 18 shows the rendering time of the decoded 360° frame under different hard-
ware configurations. It can be seen from the figure that the rendering time is also negligible
and that the hardware acceleration speeds up the rendering. The time consumption for
the rendering task includes the time for projecting the equirectangular frame to a spheri-
cal frame and rendering the viewport. When GPU-based hardware acceleration is used,
the rendering time is only 1.29 ms for a 1440p video frame, an 89.13% decrease from the
non-acceleration mode. Such performance enhancement is accomplished by the massively
parallel architecture of the GPU processing. It is true that it takes time for video frames to
be transferred to the client’s GPU for rendering. However, we point out that this process
is much less time-consuming than the CPU-GPU frame transfer in the camera. This is
because, at the client, a video frame is fetched from the WiFi module to the GPU through
Direct Memory Access without a CPU-GPU transfer.

Figure 18. Rendering time of different hardware options.
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4.6.3. Display Task

Once the viewport of the 360° frame is rendered, the viewport data are transferred to
the display buffer at the client. Then, the client screen refreshes at a pre-defined frequency
to display the most recently buffered data. These two steps consist of the display task. We
discover that sending data to the display buffer consumes negligible time. Therefore, the
display time is actually determined by the refresh frequency. In our system, the screen
refreshes at 60 Hz, equivalent to a 16.67 ms display time.

4.6.4. Impact on Delay Metrics

The frame rate of the client output is determined by the inverse of its time consumption
because the frames are processed one by one in a non-parallel manner at the client. This
is similar to the case of the 360° camera component. Our measurement demonstrates
that even with the mandatory 360° video projection and rendering, all client tasks can be
completed within a fairly short time to meet the 24–30 fps frame rate. Given the small time
consumption at the client, the client’s contribution to the start-up delay and the event-to-eye
delay is significantly less than the contribution of the server or SCT component. Hence,
we reach a conclusion that the client has minor impacts on the user experience because of
its negligible impacts on the three delay metrics. We believe today’s 360° video clients are
already well-designed for high-requirement 360° video applications.

4.7. More Usage Scenarios

We have so far focused on the measurement result obtained from the Default scenario
defined in Section 4.1. In this section, we present the macro-benchmark results under
multiple realistic usage scenarios of the 360° video camera sensing system. We aim to
compare the measurement results in order to uncover the impacts of the time consumption
on delay metrics under different scenarios. The requested video quality for camera sensing
is set to be 720p with a bitrate of 2 Mbps. In addition to the Default scenario, we evaluate
the following additional usage scenarios of 360° video camera sensing.

• Simple: The experiment configuration of this scenario is based on the Default scenario.
The only difference is that all the lights in the lab are turned off. The captured content
is almost dark except for a laptop screen showing a timer that is used to remind us of
the experiment time.

• Lab Moving: Building on top of the Default scenario, the Lab Moving scenario involves
a moving camera. A person holds the camera rig and walks around the lab while the
camera captures content.

• Street Still: Instead of fixating the camera in the lab in the Default scenario, Street Still
places the camera in a fixed position on the sidewalk of a street in a city center. Other
settings remain the same as in the Default scenario.

• Street Moving: Based on the Street Still, we configure the Street Moving scenario by
having a person holding the camera rig while walking on the street sidewalk.

Figure 19a shows the time breakdown of the camera component under different
scenarios. We observe that motion has an impact on the time consumption of the camera.
Both the Lab Moving and Street Moving scenarios consume more time on the camera than
their counterparts in the still scenarios (Default and Street Still) respectively. We notice
that the increased time stems mainly from the encoding. For example, it takes 8.12 ms
more time for encoding in Street Moving than in Street Still. The reason is that camera
motion increases the complexity and diversity of the captured video content, making it
more difficult for the encoder to find the redundancy between frames for encoding. It
can also be seen that the time increase from Default to Lab Moving is smaller than that
from Street Still to Street Moving. This is because the relatively simple background of
the lab environment does not introduce much variance to the video content. The time
breakdown of other camera tasks in different scenarios presents a similar pattern to the
Default scenario. Regarding the impacts on the delay metrics, we find that our insight
obtained from the Default scenario still holds in all scenarios. The only difference comes
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from the camera frame rate. Specifically, the recommended 24–30 fps frame rate can be
achieved in all scenarios except for Street Moving. This identifies a possible bottleneck of
the moving camera in the wild, which opens a new door for future research in optimizing
the computing workflow of 360° camera, especially the encoding in moving scenarios.

(a) (b)

(c) (d)

Figure 19. The task-level time breakdown under five usage scenarios for all system components.
(a) 360° camera; (b) CST and SCT; (c) Video server; (d) 360° video client.

The time consumption of CST, SCT and server components is demonstrated in
Figure 19b,c. We observe that the time consumption for these three components are higher
when the camera is in motion, especially in Street Moving. In addition to the more com-
plicated video content, another reason for the increased time in these components is the
decreased bandwidth for video transmission with a moving camera. The effect is evident
in the change of the CST time in Figure 19b. It takes more time for a moving camera to
transmit data over the uplink to the server. Despite the increased time in some scenarios,
we stress how time consumption affects the three delay metrics would not change. One
potential issue that needs future research attention is to reduce the CST time in the moving
scenarios, which could ensure a low event-to-eye delay. New transmission protocols or
bandwidth prediction methods can be designed to improve the CST time.

As for the client, the task time almost remains the same across different scenarios and
thus its impacts on the delay metrics do not change. This is because the camera motion
would not significantly affect the workflow of the client.

5. Cross Validation

To confirm that the results collected by Zeus can be generalized to commercial live 360°
video streaming systems and provide insight for system optimization, we perform cross
validation by comparing Zeus to a system using commercial products. As it is infeasible
to break down the task-level time consumption of black-boxed commercial products, we
compare the component-level time consumption.
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5.1. Experiment Setup

The commercial system uses a Ricoh Theta V as the camera with an Adreno 506 GPU
for 360° video processing. An open-source plug-in [46] is installed such that the camera
can communicate through WiFi with the server. We use YouTube live streaming service
as the server. The YouTube server provides the server URL and the streaming key to the
camera. For the commercial client, we use an embedded YouTube client via IFrame APIs
and install it on the same laptop used in Zeus.

While obtaining the time breakdown of each task is infeasible on commercial products,
we can utilize high-level APIs provided by these products to measure the time consump-
tion on each component. We measure the time consumption of a frame in the Ricoh
camera by recording the timestamps when it begins to create a 360° video frame (via
scheduleStreaming.setSchedule()) and when the frame starts being transmitted (via
rtmpExtend.startSteam()). As for the YouTube server, we measure the time by moni-
toring its status change via the webpage interface used to configure the camera URL. We
utilize the timestamps when a packet is received at the YouTube server and when the
streaming starts at the server. Similarly, the time consumption on the YouTube client can
be measured by monitoring the buffering status YT.PlayerState. In terms of the frame
transmission time for the CST and SCT, we record the timestamps when the sender sends
the first packet and when the receiver stops receiving data and then divide this time interval
by the number of frames delivered during this period.

5.2. Cross-Validation Results

The comparison of the time consumption across the five system components of the two
systems is shown in Figure 20. It can be seen that the distribution of the time consumption
across system components for Zeus is similar to that for the commercial system. Specifi-
cally, the time consumption in the camera, camera-server transmission, and server-client
transmission is almost the same, and the server in both systems consumes significant time.
We quantify the similarity of component-wise time consumption between the two systems
by calculating the Pearson Correlation Coefficient (PCC) [47], the Distance Correlation
(DC) [48], and the Cosine Similarity (CS) [49] of the time distribution across the five com-
ponents. We calculate the correlation using two representative scenarios—Default and
Street Moving.

Figure 20. Comparison of component time between Zeus and a commercial system (denoted by CM).

The results in Table 2 demonstrate that the PCC and DC values are greater than 0.98 in
both scenarios, indicating that the distribution of time across the five components in the
two systems has a strong positive correlation. The high CS value further implies that the
5-element vectors of component time for both systems point in roughly the same direction,
leading to the implication that the most time-consuming component of the two systems is
the same (the server).
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Table 2. Correlation of time consumption across five components between Zeus and the commer-
cial system.

Motion Resolution PCC DC CS

Static

720p 0.989045 0.993842 0.990239

1080p 0.987980 0.994173 0.990135

1440p 0.987269 0.994539 0.990206

Moving

720p 0.990334 0.994896 0.992691

1080p 0.990994 0.995165 0.992799

1440p 0.992019 0.995811 0.993636

The strong correlation and similarity of the Zeus component-wise measurement results
with the commercial 360° video system imply that our results with Zeus are representative
of commercial live 360° video streaming systems. Our insight can thus be generalized
to minimize the adverse effects on user experience caused by different delay metrics in
today’s commercial systems.

In addition to correlation, we observe two minor differences between the two systems.
First, it can be seen that the YouTube server consumes more time. This may be because it
handles a larger number of clients than the Zeus server. We confirm this effect by running
a sensitivity study, where we vary the number of clients sending requests to the Zeus
server. The results in Figure 21 show that the Zeus server time does significantly increase
as the number of clients increases. Second, we see a longer time at the YouTube client.
By scrutinizing the workflow, we find that this is attributed to its larger player buffer
(∼1500 ms) compared to Zeus (∼40 ms).

Figure 21. The server time of Zeus increases as the number of clients increases.

6. Conclusions and Future Work

We perform the first in-depth study of delay across the computing tasks in 360° video
camera sensing in this paper. We have characterized the three important delay metrics by
the time consumption breakdown across the tasks. A prototype Zeus has been developed
to measure this relationship and examine the task-level time consumption in various
usage scenarios. We finally compare Zeus with commercial systems and validate that our
measurement results are representative.

Our findings provide critical insight for improving 360° video camera sensing. First,
the bottleneck of a higher frame rate is the 360° camera. Although the space for optimiz-
ing the stitching is limited, enhancing the encoding and CPU-GPU transfer may elevate
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the frame rate to the next level. Second, the server plays a decisive role in meeting the
requirement of start-up delay and event-to-eye delay. The existing sever workflow can be
optimized to reduce the server time.

In light of these observations, future work should focus on algorithm design in the
camera to improve frame rate as well as in the server to shorten the delays and to support
multiple clients. After optimizing Zeus in terms of camera frame rate and server delay, it is
important to compare Zeus with emerging commercial systems that support 360° video
live streaming through advanced cameras, such as Ricoh Theta Z1. A full scale research
including extensive experiments are needed to confirm the applicability of the findings
in this paper in the context of challenging 4 K 360° video systems. Moreover, since user
experience is also determined by the quality of the received 360° videos, it is critical to
understand how the delayed and missed packet delivery would affect the distortion and
quality of the video frames viewed by the users. A widely-accepted system should provide
users with both acceptable latency discussed in this paper as well as satisfactory video
quality dictated by 360° image assessment metrics [50–52].
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