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ABSTRACT
Video streaming is a prevalent mobile service that drains a
significant amount of battery power. While various efforts
have been made toward saving both video transfer and dis-
play energy, they are independently designed in an ad-hoc
way and thereby can cause some non-apparent yet critical
performance issues. To fill in this gap, this paper presents
a fundamentally new design by jointly considering the end-
to-end pipeline from the initial video encoding to the final
mobile display. In essence, we shift the classic R-D tradeoff
that has governed streaming system designs for decades to a
fresh rate-distortion-energy (R-D-E) tradeoff specifically tai-
lored for mobile devices. We present RnB, a video bitrate
and display brightness adaptation platform that is standard-
compliant, backward compatible, and device-neutral in or-
der to achieve the proposed R-D-E tradeoff. RnB is em-
powered by some new discovery about the inherent relation-
ship among bitrate, display brightness, and video quality as
well as by an control-theoretic formulation to dynamically
adapt the bitrate and scale the display brightness. Experi-
mental results based on real-time implementation show that
RnB can achieve an average of 19% energy reduction with
final video quality comparable to conventional R-D based
schemes.
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•Information systems→Mobile information process-
ing systems; Multimedia streaming;
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1. INTRODUCTION
Video streaming has been widely recognized as a killer

mobile application in this media-rich era. According to a re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiCom’16, October 03-07, 2016, New York City, NY, USA
c© 2016 ACM. ISBN 978-1-4503-4226-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2973750.2973780

cent study [1], video data will account for an impressive 75%
of global mobile traffic by 2019. However, video streaming
has also been identified as one of the most power-consuming
applications on mobile devices [2,3]. Not only does it gener-
ate substantial traffic, but it also needs to keep the mobile
display always on.

Video transfer and display are two correlated components
that impact both quality and energy of mobile video stream-
ing. Transferring a higher bitrate video brings a better video
quality, but will cause more transfer energy. On the other
hand, mobile display adaptation, such as screen brightness
scaling, can reduce display power, but may degrade video
quality. To link these two elements, the display adapta-
tion strategy is strongly dependent on video pixel values [4],
which are in turn received and decoded in the mobile device.

Although energy reduction of mobile video transfer and
display have been widely studied, these efforts have been
made in an ad-hoc way without considering the inherent
connection between transfer and display. After scrutiniz-
ing the workflow of mobile video streaming, we argue that
designing these components separately could lead to some
non-apparent yet critical pitfalls.

First, nearly all existing approaches [4–12] for reducing
mobile video display energy choose to darken the screen or
convert the pixel color under a distortion constraint. One
serious issue is that since they have no access to the origi-
nal video at the server, they will adapt the display by only
considering the distortion between the decoded video frame
received on the device and the adapted frame to be dis-
played on the screen. Thus, a received video that already
contains encoding or transmission distortion may be over-
laid with additional display distortion due to display energy
saving. Eventually, the video playback may experience un-
acceptable double distortion compared against the original
uncompressed video. Furthermore, energy-saving display al-
gorithms typically require pixel-by-pixel analysis of decoded
videos before applying the adaptation. This leads to sig-
nificant local computation power, substantially diminishing
the overall power reduction of the mobile device. Even more
sadly, such computation overhead needs to be repeated by
millions of mobile devices that request the same video con-
tent in the global streaming ecosystems.

Building on the above analysis, we conclude that the pri-
mary reason behind these problems is that mobile display
has been independently designed as a complementary scheme
on top of video transfer, guided by classic rate-distortion
(R-D) theory. The objective of this paper is to rethink the



fundamentals of mobile video streaming by jointly studying
the entire end-to-end pipeline from video encoding to mo-
bile display. The ultimate goal is to shift the R-D tradeoff
that has governed video streaming for decades to a new rate-
distortion-energy (R-D-E) tradeoff specifically designed for
mobile devices. We focus on mobile display and data trans-
fer energy due to their dominance in power dissipation [2,13].
We have also confirmed that they jointly take up 87% of the
system power in mobile video streaming (Section 2).

To achieve this ultimate goal, one key challenge is whether
it is feasible to integrate these seemingly separate compo-
nents such as transfer and display for the proposed R-D-E
tradeoff. By examining the basics of HTTP adaptive stream-
ing (or generally called DASH ), the leading video streaming
technique, we answer this question affirmatively. In current
practice, DASH divides a source video into video chunks, en-
codes them with multiple bitrate versions, and stores them
in the server such that a client dynamically picks the best
version based on its bandwidth status. Following this strat-
egy, we can encode additional video versions that are suit-
able for power-saving display adaptation to be applied at
mobile devices and accordingly prepare a source video in
multiple versions with R-D-E tradeoff. The mobile client can
then dynamically fetch the optimal video version in term of
R-D-E tradeoff and perform the display adaptation allowed
by this version. This strategy not only recognizes the total
distortion and energy incurred across the streaming pipeline,
but also alleviates the duplicated on-board display analysis
of individual devices into one-time processing in the server.
To exemplify the mobile display adaptation and energy re-
duction, we focus on the most commonly used technique,
screen brightness scaling, and validate its feasibility via mea-
surements (Section 2).

To realize this promising video adaptation, we are fac-
ing two difficult technical challenges. First, the relationship
among video bitrate, screen brightness and video quality is
unclear, which is the key to the end-to-end R-D-E tradeoff.
Second, a dynamic adaptation algorithm that dictates the
system performance will need to be deliberately designed.

To tackle these challenges, we present RnB, a Rate and
Brightness adaptation framework for HTTP adaptive stream-
ing over mobile devices. RnB is a client-driven video adapta-
tion framework, where the communication parameters and
protocols are compliant with MPEG-DASH standard [14].
To optimize the end-to-end R-D-E tradeoff in RnB, we start
with exploring the relationship among bitrate, screen bright-
ness, and video quality. We follow classic R-D analysis and
use regression analysis for a dataset of 490 videos to ob-
tain their content-dependent relationship. We then design
a receding horizon control mechanism to enforce the R-D-E
based adaptation, where we seek the video chunk version
with optimal bitrate and brightness that will minimize de-
vice energy under the bandwidth and quality constraints.

We prototype RnB in commercial mobile devices. We val-
idate RnB designs and algorithms using both trace-driven
emulations and real-world system experiments. We not only
evaluate each design component of RnB, but also carry out
system-level experiments under a variety of practical set-
tings including video content, display type, ambient light,
and wireless access interface. These results show that RnB
can save an average of 19% energy with final video quality
comparable to conventional R-D based DASH.

To summarize, the contributions of this paper include:

• A mobile video adaptation framework for end-to-end
R-D-E tradeoff that augments the traditional R-D trade-
off (Section 3).

• A mathematical model manifesting the inherent rela-
tionship among bitrate, screen brightness, and video
quality (Section 4).

• A control-theoretic formulation for video adaptation
to effectively minimize the streaming energy without
sacrificing video quality (Section 5).

• A practical demonstration of the satisfactory perfor-
mance achieved by the end-to-end R-D-E tradeoff (Sec-
tions 6-7).

2. BACKGROUND AND MOTIVATION

2.1 Background
Power breakdown of video streaming. Mobile dis-

play and network interface card are usually among the top
energy-consuming elements in a wide range of applications
[2,13]. We now study the power breakdown in mobile devices
during a streaming session. The power dissipation primarily
results from data transfer, video processing (from decoding
the data until storing them in the frame buffer), video dis-
play and other background or idle tasks. To measure the
power of each subfunction, we herein follow the methodol-
ogy adopted in [5] by comparing two power readings with
the target subfunction on and off.

Figure 1 shows the power breakdown for a 300-second
streaming session (2 Mbps video) via WiFi and LTE on a LG
Optimus G Pro smartphone. As expected, display and data
transfer cost the most significant portion (87%) of system
power. We also observe that the video processing energy
mainly from decoding is relatively low, which is consistent
with previous measurements in [3]. Furthermore, by varying
the requested bitrate from 700 Kbps to 6 Mbps for 10 trials,
we found the difference among their video processing power
is negligible with respect to the system power. Therefore,
we shall focus on reducing display and data transfer power.

DASH and transfer power. HTTP adaptive stream-
ing (or DASH) has become the dominant video delivery
method for future Internet. Both research designs [15–19],
commercial products [20–22] and industry standards such as
MPEG-DASH [14], have been actively developed. A DASH
media source is structured as an adaptation set. Within
an adaptation set, the content is split into chunks and en-
coded into multiple versions characterized by bitrate (most
commonly), resolution or other content features. The server
stores these versions and prepares a media presentation de-
scription (MPD) file that summarizes the metadata of dif-
ferent versions. After receiving the MPD, the client will
dynamically request to stream a particular version for each
chunk based on the network condition and device status.

The wireless interfaces of mobile devices typically exist
four states: idle, promotion, data transfer and tail [23, 24].
To investigate the energy profiles of different bitrates, we run
ten 300-second DASH sessions by fixing the selected bitrate
from 700 Kbps to 6 Mbps. We identified the states through
examining the variations in power trace. We found that the
energy of idle, promotion and tail states are relatively stable
among the 10 sessions whereas the energy of data transfer is
highly dependent on the selected bitrate (i.e., data amount),
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ranging from to 14.8 to 122.6 J. This implies that there exists
a large design space for balancing bandwidth, quality and
transfer energy via rate adaptation.

Mobile display and brightness scaling. Liquid crys-
tal display (LCD) and organic light-emitting diode (OLED)
are two mainstream display technologies for mobile devices.
Despite distinct display principle, one common approach
that can save energy for both displays is to uniformly dim
the screen brightness [4, 5]. This can be realized by dim-
ming the backlight of LCD [12] or scaling the supply volt-
age of OLED [11]. In order not to limit our framework
to either LCD or OLED devices, we choose this approach
for power-saving display adaptation and collectively term it
as brightness scaling. Since brightness scaling may degrade
display quality, luminance compensation is normally needed
to retain the perceptual quality. Luminance-compensated
brightness scaling has a long history and has been guiding
the designs of power-efficient displays [6–11]. We now sum-
marize the foundations of this technique.

We first consider the YUV space of videos, where Y and
U/V represent luminance and chrominance of a frame, re-
spectively. If the screen brightness is dimmed by a factor
b (0 < b ≤ 1), the perceptual luminance of the content
luminance Y reduces to Y ′ = b · Y . To mitigate such dis-
tortion, luminance compensation is typically applied before
the dimming by proportionally increasing the content lumi-
nance. As such, the perceptual luminance will be

Y ′ = b ∗min (Y/b, 255) ≈ Y (1)

Note that the above process is not a lossless conversion since
some pixel values may saturate to 255 after the compensa-
tion and thus the subsequent scaling would not perfectly
recover the desired luminance. Figure 3 (left) illustrates
the quality and display power for luminance-compensated
brightness scaling. It indicates that this technique can simul-
taneously offer satisfactory perception and promising power
reduction. By scaling the brightness for every group of video
frames using average Y , this principle can be used in video
playback.

2.2 Motivation
Pitfalls. From the above discussions, we have shown that

video transfer and display are two design keys in energy-
saving mobile streaming. However, display adaptation has
been treated as an independent and post-processing task
without joint considerations with the transfer. When saving
display energy in mobile streaming, the display distortion
can only be evaluated by comparing the brightness-scaled
frame against the received frame after decoding rather than
against the original uncompressed frame in the server. Such
an evaluation ignores the possible encoding distortion in the
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Figure 3: Brightness scaling is feasible, but needs to
be jointly considered with received video quality.

backend. Note that we assume there is no transfer distortion
since TCP-based DASH is loss-free. Thereby, if a video with
relatively high encoding distortion is transferred, the screen
should not be dimmed further. Figure 3 (right) shows that
the actual PSNR between scaled frame and the original un-
compressed frame (or the perceptual quality on the screen)
could be bad even though the computed PSNR between the
received and scaled frame is still reasonable.

Furthermore, the on-board brightness scaling would lead
to non-optimal power reduction from a streaming system
perspective. This is due to the fact that the pixel-by-pixel
analysis and distortion computation in brightness scaling
shall consume extra non-negligible power on mobile devices
and will compromise the overall energy savings. We have
tested a baseline implementation, in which scaling factor b is
decreased from 1.0 in a step of 0.2 until the peak signal noise
ratio (PSNR) between Y and Y ′ reaches 35 dB and then the
optimal b is utilized for local compensation and scaling on
the device. This procedure is operated once for a 2-second
video chunk and thereby PSNR and luminance is averaged
over the frames in a chunk. Figure 2 compares the power
breakdown for streaming a 720p video with and without the
local display adaptation. It shows that the energy saving is
dropped significantly from 383.70 mW to 209.86 mW (45%
less).

Insights. First, to avoid the aforementioned limitations,
it is desirable to jointly design mobile display and transfer
for saving video streaming energy. Second, it is also feasible
to implement such an end-to-end R-D-E streaming on the
basis of DASH. The bitrate version adaptability in DASH
consolidates the feasibility. In particular, we can encode a
video into additional versions that are well-suited to bright-
ness scaling (i.e., luminance-compensated versions), and al-
low the client to dynamically pick the optimal version and
to scale the screen brightness. Such a mechanism also elimi-
nates the localized display analysis on a device and prevents
the same repeated computation at massive number of de-
vices that request the same video.

3. RnB ARCHITECTURE
In this section, we introduce the architecture of RnB as

shown in Figure 4, which shall empower the system to ac-
complish end-to-end R-D-E optimization.

RnB servers. In the backend RnB servers, the distinct
design is that we prepare a family of R-D-E based video
versions for a given source video. To this end, we insert
a new module, Luminance Compensator (LC), to pre-offset
the potential distortion from brightness scaling in the mobile
device. For a set of scaling factors b ∈ B, LC compensates
the original video luminance using (1) and creates a set of
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Figure 4: Modular architecture of RnB.

new videos. The U/V components of the videos remain un-
changed. When scaling factor b = 1.0, the screen will be kept
at full brightness and thereby no compensation is actually
performed. Furthermore, LC also collects the intermediate
frame statistics during the compensation and outputs cer-
tain content features for each video chunk. These motion
or luminance features, e.g., average pixel luminance over all
frames in a chunk, and the scaling factor set, will be sent
along with the chunks and instruct the content-related R-
D-E tradeoff in the client.

These luminance-compensated videos are then distributed
to the Video Encoder (VE) for data compression. For a
given luminance-compensated video, VE generates multiple
versions with a set of different bitrates r ∈ R. After looping
through all the luminance-compensated videos, VE produces
a family of DASH videos with R-D-E tradeoff.

Finally, the family of video versions flows to a DASH For-
matter (DF) together with the scaling factor set B, bitrate
setR, and the content features. DF then generates a DASH-
compatible MPD file. In addition to the video adaptation set
that expresses bitrate information, the MPD in RnB also
records the information of brightness scaling factors and
content features as the metadata adaptation set, which is
supported by MPEG standard [25,26]. These metadata are
stored in text files and are associated with the available ver-
sions for each video chunk. This way, the client will be aware
of the existence of such content features and can fetch them
with the video chunks when needed.

RnB client. Similar to DASH, RnB client initially ob-
tains the MPD and learns the version information of video
chunks and the presence of metadata adaptation set. Dur-
ing the streaming process, it dynamically requests a version
for each video chunk based on the bitrate, brightness scaling
factor and content features of this chunk. The decision also
relates to the predicted upcoming bandwidth from Band-
width Estimator which leverages existing estimation scheme
(Section 6). When the video chunk is received, the mobile
device will scale the screen brightness accordingly using the
scaling factor associated with this received version.

The principal intelligence of RnB client lies in two adap-
tation modules that optimize the dynamic decisions, i.e.,
Quality Analyzer (QA) and Video Adaptor (VA). First, QA
models the relationship among video bitrate, screen bright-
ness, video content, and video quality for encoded videos
(Section 4). Given the content features, bitrate, and scaling
brightness of a video chunk, QA will estimate the quality of
this chunk considering both encoding and display distortion.
Second, VA adaptively picks the optimal version for every
chunk (Section 5). It will utilize QA as an internal function
and minimize session energy. Thanks to such a joint bitrate
and brightness adaptation, the double distortion and local
overhead of existing schemes can be addressed.

Although RnB introduces some overhead such as extra
video versions, the negative effects is limited. We will discuss
practical issues in details in Section 9.

4. QUALITY ANALYZER
To allow end-to-end R-D-E optimization, RnB prepares

multiple versions of videos by varying the bitrate and bright-
ness scaling factor. Thus it is important to first understand
and characterize the relationship among video quality and
these two adaptation variables.

4.1 Methodology and Data Visualization
In classic rate-distortion analysis, there are generally two

types of methods to model the correlation between video
quality and bitrate [27, 28]. Analytic R-D analysis is to de-
velop a mathematical formula for the R-D relationship by
assuming known statistical models for the video source and
individual components of the video encoder. The R-D for-
mula is notoriously known for the mismatch between analyt-
ical bounds and practical performance. On the other hand,
operational R-D analysis constructs R-D relationship by fit-
ting the observed data from real video source and encoder.
It can provide an effective guideline for streaming system
designs [27]. For example, modern encoding algorithms will
use this fitted model to conduct rate control, where a quan-
tization step is assigned to each frame in order to achieve a
target bitrate [29]. Hence, we proceed with the operational
analysis for rate, screen brightness and quality.

It is well-known that motion features, e.g., the complexity
of a scene, have strong effects on video bitrate and quality.
Similarly, we envision that the luminance statistics of a video
will also have substantial impacts on the performance of
luminance compensation and subsequent encoding. Hence,
we expect that the trained model is also impacted by content
features.

Data collection. We gathered a dataset of 490 uncom-
pressed video clips in a wide range of content categories
including news, sports, movie, cartoon, music, etc. Since
different chunks of a video may have different content fea-
tures and the trained model should be able to estimate the
quality of each chunk, we fix the content features for each
training clips by manually ensuring that these clips have no
scene change. The length of clips lasts from 2 to 10 sec-
onds, which is consistent with the typical setting of DASH
chunks [14]. As described in Section 3, we first compen-
sate the luminance of source clips by a set of scaling fac-
tors B = {0.1, 0.2, · · · , 1.0}. By employing FFmpeg tool,
we encode all clips identically at 1280x720 resolution, 25
frames/second, and H.264/AVC high profile with 10 bitrates
R = {700, 900, 1200, 1500, 2000, 2500, 3000, 4000, 5000, 6000}
(Kbps). We configure this setting since such encoding pro-
files could be broadly supported in most modern mid-end
and high-end mobile devices.

We next assess the video quality, i.e., the perceptual dis-
tortion between the displayed video and original uncom-
pressed video, by mimicking the operation in RnB client.
We decode all encoded clips via FFmpeg and scale them by
brightness factors to obtain the perceptual Y values. With
perceptual and original Y values, we are ready to compute
the video quality. We choose PSNR as the quality measure
because it has been ubiquitously used. Although PSNR may
not perfectly manifest the user experience in every case, it
is still a general option to guide video streaming designs.
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We eventually collect a total of 34000 PSNR values (340
contents x 10 brightness x 10 bitrates) for model training.

Example result. We can identify the general relation-
ship among video quality, bitrate, and brightness scaling
factor because these source clips exhibit similar behaviors
(Figure 5), i.e., larger bitrate and scaling factor generate
better quality. However, the exact positions and slopes of
the curves are somewhat different when their contents differ.
This is expected since a complex scene with large motion will
demand a high bitrate to guarantee the quality. Similarly,
if a content has a brighter scene, more pixels may saturate
after luminance compensation, in which case their original
values cannot be completely recovered and thus will increase
the overall distortion.

4.2 Regression Analysis
Based on the asymptotic trend of the curves, we propose

to harness a logistic function, an effective choice for video
quality modeling suggested by ITU-T [30], in order to model
PSNR versus bitrate, brightness factor and content features.
A general logistic function can be written as:

F (~x) = α1 +
α2

1 + exp−(α3+α4x1+α5x2+α6x3+··· )
(2)

where ~α = (α1, α2, · · · ) are the coefficients and ~x = (x1, x2, · · · )
are the predictors. In this research, the predictors are bi-
trate, brightness scaling factor and content features. To sig-
nify the content complexity and motion, we adopt the ITU-T
standardized spatial information (SI) and temporal informa-
tion (TI) as motion features [31]. These features manifest
the spatial difference of an average video frame and the tem-
poral difference between successive frames. Furthermore, we
test multiple luminance statistics to identify how bright or
dark a content is as no standard metric is available. We
calculate the mean, 25 percentile (25pY), median and 75
percentile (75pY) of the Y component in every frame and
average them over all frames in the clip to acquire the 4
luminance features. These features can capture the lumi-
nance distribution of a video and thus impact the results of
luminance compensation directly.

We use least-squares nonlinear regression to fit the data.
We have tested a sequence of 8 potential models by adding
each predictor one by one. The modeling results show that
all predictors are statistically significant by passing the t
test in each model. However, the error between fitted data
and ground truth is diverse among these models. Figure 6
plots the errors of three example models that use bitrate
and scaling factor, along with all content features, only mo-
tion features or only luminance features. It turns out that

Table 1: Model Coefficients and Evaluations
α1 α2 α3 bitrate b SI

6.472 40.937 -0.816 0.023 5.455 -0.008
TI mean Y median Y 75pY 25pY

-0.045 -0.094 0.016 -0.015 0.033

RMSE: 1.47, PCC: 0.9846, rho: 0.9840

the model with all features achieves the least fitting errors
among all 8 models with > 90% samples having < 2dB er-
ror, which is marginal in terms of user experience [32]. We
show the regression results in Table 1.

After model selection, we evaluate the goodness of model
fit in Table 1. The proposed model obtains a small root-
mean-square error (RMSE) with respect to the range of
PSNR and close-to-one values for Pearson correlation (PCC)
and Spearman rank correlation (rho). This implies that the
model captures the training data accurately and reasonably.
We will validate the model against new testing data in Sec-
tion 7.

Finally, we can obtain the Quality Analyzer in RnB by
replacing ~x and ~α in (2) with the terms and coefficients
in Table 1. Note that the model training is not needed
separately for every video content because content features
are already included as predictors in the model. Besides,
the model is not client specific because no energy term is
included. Hence, the training only needs to be done offline
once on the server. This model can be embedded in the client
software and the smartphone can obtain it after installation.
Then given the content features, scaling factor, and bitrate,
RnB would be able to estimate the PSNR of any arbitrary
chunk.

5. VIDEO ADAPTER
In this section, we formulate and solve the end-to-end R-

D-E adaptation executed in Video Adapter (VA) by utilizing
Quality Analyzer.

5.1 Formulation of R-D-E Optimization
We first develop a mathematical model for RnB. A stored

video sequence is chopped into N chunks, each of which
is indexed by n(n = 1, 2, · · · ). Each chunk lasts T sec-
onds and is pre-encoded into multiple versions using a set of
brightness scaling factors B and bitratesR. Upon download-
ing each chunk n, RnB client selects a video version tuple
(r(n), b(n)) ∈ R× B.

Constraints. Given the content features of nth chunk
embedded in metadata adaptation set, the PSNR of the
chunk can be estimated by Quality Analyzer, i.e., Q(r(n), b(n)).
To provide high-quality video chunks and playback, the first
constraint of VA is to ensure Q(r(n), b(n)) for each chunk
to be reasonably high.

The video chunks are then fetched into a video buffer in
RnB client before playback. The buffer size, i.e., the dura-
tion of the downloaded-yet-unplayed video, evolves dynami-
cally as video chunks being downloaded and played. At the
nth step, the client downloads the whole chunk n and the
downloading time depends on the chunk size and network
bandwidth. Simultaneously, the video is being played and
the buffer size is being reduced. After downloading chunk



n, the buffer size B(n) becomes

B(n) = B(n− 1) + T − T · r(n)

W (n)
(3)

where T ·r(n) is the size of chunk n and W (n) is the average
bandwidth when downloading chunk n.

To derive W (n), we assume the client finishes the down-
loading of chunk n − 1 at time t(n − 1). Once chunk n − 1
is completely downloaded, the client immediately starts to
load chunk n at time t(n). Note that the scheduling of chunk
requests can impact the performance of a video client and is
an active research topic in networking and multimedia com-
munities [17, 18]. In this paper, we focus on exploring the
fundamental R-D-E tradeoff without auxiliary designs and
thereby consider the most general case of chunk schedul-
ing, i.e., continuously loading the chunks without time gaps.
Accordingly, average bandwidth W (n) can be derived as,

W (n) =

∫ t(n)
t(n−1)

Wt dt

t(n)− t(n− 1)
(4)

where Wt is the bandwidth at time moment t.
In addition to fetch high-quality chunks, another essential

goal for video streaming is to avoid video rebuffer, where the
display freezes at a still image when the buffer is empty. To
prevent this annoying effect, the second constraint of VA is
to bound the buffer size at every step as follows,

0 < B(n) ≤ Bmax (5)

where Bmax is the maximum buffer size determined by the
storage capacity of the player. In a rare case that the buffer
becomes full, the client will wait for a while before fetching
new chunks.

Objective. We aim to minimize the sum of display en-
ergy and transfer energy in streaming. The data transfer
energy for chunk n can be written as,

Etran(n) = Ptran
T · r(n)

W (n)
(6)

where Ptran is the constant data transfer power of the mobile
device that is differed by devices and wireless access modes
[23,33]. To download different bitrate r(n), Etran may differ
as measured in Section 2.1.

Similarly, the display energy of chunk n becomes,

Edisp(n) = Pdisp(b(n)) · T (7)

where Pdisp(b(n)) is the display power when playing chunk n
and is a non-decreasing concave function of screen brightness
factor b(n). Note that this is a simplified model for OLED
since OLED energy is decided by both the screen brightness
(as controlled by Android Settings) and the content color.

We can now summarize the objective of the R-D-E opti-
mization as minimizing the total energy during the entire
DASH session (totally N chunks), i.e.,

min

N∑
n=1

Etran(n) + Edisp(n) (8)

Optimization. Hence, we can formally define the R-D-E

optimization problem as follows,

min{~r,~b}
∑N
n=1Etran(n) + Edisp(n)

s. t. Q(r(n), b(n)) ≥ θ
0 < B(n) ≤ Bmax
B(0) = Bstart
r(n) ∈ R, b(n) ∈ B
Eq. (3), (4), (6), (7), ∀n = 1, · · ·N

(9)

where θ is the threshold of chunk PSNR and Bstart is the
startup buffer size after which the playback starts.

The intuition of (9) is to optimize the resource allocation
across all N video chunks such that minimal energy can be
achieved while still satisfying requirements of video quality.
Note that RnB is generically designed and it is straightfor-
ward to formulate other types of R-D-E tradeoff. We revisit
this issue in Section 9.

5.2 A Receding Horizon Control Solution
Ideally, if the future bandwidth for downloading each chunks

W (1), · · · ,W (N) is known, one can solve the problem in (9)
by a one-time offline computation and obtain the optimal

version trace (~r,~b) for chunk 1 to n. However, it is impossi-
ble in practice to acquire such perfect knowledge. Instead,
an online decision-making strategy needs to be developed
for the adaptation.

Online solution framework. In essence, the combina-
tional optimization problem in (9) can be recognized as a
dynamic stochastic control process. There are widely ac-
cepted treatments for this type of non-trivial problem: (a)
Proportional-integral-derivative [34] control is a feedback
control system that adjusts the adaptation variables based
on the departure of observed utility from the desired util-
ity. It is computationally simple, but it does not explicitly
produce the optimal decision. (b) Various types of heuris-
tic algorithms have been designed [19, 33]. For example,
the most common heuristic is greedy algorithms, where the
video version optimizing current utility would be selected.
Heuristic algorithms are generally intuitive, but have no
guarantee on the performance. (c) Markov Decision Pro-
cess (MDP) [35, 36] assumes that the system states, e.g.,
bandwidth, evolves as a Markov process. It then proba-
bilistically derive the future bandwidths and compute the
expected utilities for all possible adaptation choices at every
chunk offline. A table-lookup will be used to adapt the video
online for maximum utility. Nevertheless, MDP relies on the
strong assumption of Markov model for bandwidth dynam-
ics. This has not been proved in real-world environment and
how to obtain a general model for different wireless networks
is not known (e.g., number of states, transition parameters).

Finally, as network conditions are generally stable and do
not change dramatically over a short period, it is possible to
estimate the future bandwidth within a short horizons with
reasonable accuracy. Receding horizon control (RHC) [37,
38] that optimizes utility over a finite horizons H becomes
a promising option. Therefore, we choose RHC as the basis
of our online solution. Figure 7a shows the following steps
for each chunk n.

1. Obtain current buffer B(n − 1) and the metadata for
chunk n to n+H − 1

2. Predict bandwidth W (n), · · · ,W (n+H − 1)
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Figure 7: Illustrating the proposed algorithms.

3. Solve problem (9) over H horizons and obtain ~r =

r(n), · · · , r(n+H − 1), ~b = b(n), · · · , b(n+H − 1)

4. Download video chunk n with (r(n), b(n)) and the meta-
data for chunk n+H

5. Move horizon forward (n = n+ 1), go to step 1

For initialization, the metadata for firstH chunks is fetched
during buffer startup such that the client would always know
the content features of H chunks in advance. One attrac-
tive advantage of the proposed algorithm is its capacity to
smooth out prediction error by optimizing the video adapta-
tion over several chunks period. Thus large estimation error
of one specific chunk will have reduced impacts on the over-
all performance. Furthermore, we can formally and flexibly
optimize the system rather than relying on heuristic rules or
bandwidth model assumptions.

Solving (9) over H horizons. To efficiently solve the
R-D-E optimization for every chunk n (step 3 above), we
propose a dynamic programming (DP) algorithm. Figure 7b
shows the intuition. The algorithm simulates the download
of future H chunks, where each horizon h corresponds to a
chunk index within [n, n+H − 1]. At horizon h, the buffer
size before download can be in several states B(h − 1) =
k1, k2, · · · , kK . For each buffer state B(h− 1) ∈ [k1, kK ], we
denote the minimum cumulative energy leading to this buffer
from the starting buffer by U∗(h−1, B(h−1)). By selecting a
video version with (r(h), b(h)) at horizon h, an energy utility
of E(r(h), b(h)) is consumed. The buffer will also evolve to
a new state B(h) ∈ [k1, kK ] (the arrows in the Figure). Due
to multiple video versions, there are multiple paths between
two buffer states, forming an arbitrary bipartite graph. For
each new buffer state B(h), there is at most one path achiev-
ing minimum energy U∗(h,B(h)) = U∗(h − 1, B(h − 1)) +
E(r∗(h), b∗(h)) by picking version (r∗(h), b∗(h)). If we it-
erate this process for H rounds, we will obtain the optimal
utility for each possible buffer state after H horizons, B(H).
Then we can find the minimum cumulative energy among
possible buffer, U∗(H,B∗(H)), and backtrace a sequence of
optimal versions {(r∗(H), b∗(H)), · · · , r∗(1), b∗(1))}, where
(r∗(1), b∗(1)) is used toward chunk n. The DP algorithm is
summarized in Algorithm 1.

The complexity of DP algorithm is O(HK|R|). By tuning
the horizon length H and buffer discretization level K, we
can carefully balance the performance and complexity. We
will show that H = 8 and K = Bmax can achieve a desired
performance with negligible computation overhead (Section
7).

Algorithm 1 Dynamic Programming Algorithm for (9)

1: For 2-D table U , U∗(0, k)← 0
2: for horizon h = 1 to H do
3: for buffer B(h− 1) = k1 to kK do
4: for bitrate r ∈ R do
5: · Find minimum feasible b for r that

satisfies (9). If no feasible b, break.
6: · Compute U = U∗(h− 1, B(h− 1)) + E(r, b)

and the new buffer B(h)
7: · If U∗(h,B(h)) = ∅ or U∗(h,B(h)) > U ,

U∗(h,B(h))← U , store side info
8: end for
9: end for

10: end for
11: Backtrace to obtain optimal version (r∗(h), b∗(h)),

where h = 1, · · · , H that yields U∗(H,B(H))

6. IMPLEMENTATION
Server. We implement RnB server in a Ubuntu 12.04 ma-

chine using Apache 2. We realize Luminance Compensator
via MATLAB in order to easily manipulate high-resolution
matrix by calling standard functions, e.g., prctile, to ob-
tain content features. We have tested different number of
brightness scaling versions to strike a tradeoff between per-
formance and storage. We have found that B = 0.4, 0.6, 0.8, 1
is sufficient to secure the performance gains and herein adopt
this setting. We employ FFmpeg to encode the luminance-
compensated videos into bitrates R described in Section 4.
For DASH Formatter, we use another popular tool MP4Box
from GPAC [39]. One minor modification is to enable MP4Box
to index video metadata within the output MPD file. We as-
sociate metadata with each video chunk by @associationId
and @associationType in MPD file, as suggested by MPEG
[25,26]. We eventually batch these steps and prepare source
contents with typical 2-second chunks.

Client. Further, we have implemented RnB client by ex-
tending ExoPlayer from Google [40]. We replace the adapta-
tion class AdaptiveEvaluator by our implementation of
R-D-E optimization. As our goal is not a specific band-
width estimation design, we inherit ExoPlayer’s method,
where predicted bandwidth is the median over a sliding
window of weighted bandwidths of past chunks. We will
evaluate the impacts of bandwidth prediction in Section
7.1.2. The default startup buffer Bstart = 1 and maxi-
mum buffer Bmax = 30 are also kept. The power pro-
file Ptran and Pdisp(·) is obtained by measurements simi-
lar in Section 2.1. We achieve brightness scaling through
Android’s WindowManager API. A Handler is created to
control brightness change and guarantee that it is synchro-
nized with the video and audio codec to support pause, fast
forward, etc.

Handling ambient light. Ambient light is an impor-
tant issue related to screen brightness control. In general,
it is visually desired to decrease the brightness in a dark
room while increase the brightness in a bright environment.
To handle this issue, RnB utilizes the light sensor in mo-
bile devices to detect the lighting condition. We categorized
ambient light into dark (<400 lux), normal (≥ 401,≤ 1000
lux) and bright (>1000 lux) for indoor conditions based on
sensor reading [41]. Upon a session starts, RnB decides the
light category and change the brightness set to stream ac-



cordingly. The brightness in dark and bright condition is set
to {0.4, 0.6, 0.8} and {0.6, 0.8, 1.0}, respectively.

7. EVALUATION
In this section, we start with component-wise evaluation

of RnB for Quality Analyzer and Video Adapter (VA). We
then present extensive system-level experiments and user
studies under various practical situations. All experiments
are carried out in real-world environment, except the sensi-
tivity analysis of Video Adapter by controllable emulation.

Since there is no existing DASH algorithms with end-to-
end R-D-E tradeoff, we compare RnB with common R-D
based DASH solutions to show the promising energy reduc-
tion with comparable video quality. We also evaluate the
myopic R-D-E optimization to verify the advantages of pro-
posed control algorithms. These benchmark implementa-
tions are only differentiated by their video adaptation logic
and are summarized as follows: (a) RBA: Rate based algo-
rithm represents a large body of works that pick the max-
imum bitrate bounded by the estimated upcoming band-
width, e.g., default implementations in [14, 39]. (b) BBA:
Buffer based algorithm is another typical type of algorithms
that maps buffer status to the selected bitrate. We adopt
the piecewise linear function suggested in [42] with reser-
voir 5s and cushion 20s. (c) Exo: Google’s ExoPlayer re-
quires not only the bitrate to be lower than the estimated
bandwidth, but also the buffer should be large/small enough
for bitrate increase/decrease. (d) Myopic: The R-D-E op-
timization in (9) is solved by greedily considering only the
upcoming chunk, i.e., horizon H = 1.

We evaluate RnB using three performance metrics indi-
cating both energy and video quality. (a) Session energy
measures total energy consumption of the device to stream
and play a video session. All the sessions lasts 300 seconds.
(b) Average PSNR represents the video clarity/details of the
played video. It is the average PSNR over all the streamed
video frames. (3) Rebuffer rate manifests playback consis-
tency and stall which are defined by the total duration of
rebuffer over the session duration. We use Monsoon power
meter to obtain metric (1) and analyze the chunk statistics
dumped by Android logcat to derive metric (2) and (3).

By default, all the evaluations is repeated for 10 runs on
LG G Pro phone with a new test content (Tear of Steel) that
has both stable scenes, e.g., talking, and moving scenes, e.g.,
fighting. Thereby, the run-averaged result is reported in this
section.

7.1 Component-wise Evaluations

7.1.1 Quality Analyzer (QA)
Recall that in (9), our goal of using QA is to estimate

whether a given video version is unsatisfactory (PSNR< θ)
or satisfactory (PSNR≥ θ). Hence, QA can be virtually
viewed as a binary classifier. We essentially need to evalu-
ate the accuracy of classification. We pull a set of 150 test
contents not used in training from the dataset described in
Section 4. We calculate the ground truth PSNRs (totally
15000 values) after compensation and encoding and compare
them against different thresholds θ to decide whether each
video is unsatisfactory. By passing the bitrate, brightness,
and content features of each video to QA, we also derive the
estimated PSNR and satisfiability.

Figure 8 shows the good classification performance of QA
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versus varying θ. With θ = 35 in RnB implementation, QA
achieves 96.25% accuracy in estimating whether or not a
video has satisfactory quality. More importantly, the per-
formance is stable under a set of realistic PSNR thresholds.
This demonstrates that QA can be generally applied for
different contents and user requirements. Furthermore, we
compute multiple metrics by comparing the estimated and
real PSNR. The RMSE, Pearson correlation and Spearman
correlation are 2.1187, 0.9845, 0.9851, respectively. This in-
dicates a close match between the estimated and true PSNR.

7.1.2 Video Adapter (VA)
We now present the sensitivity analysis for the proposed

algorithms in VA. To guarantee the same network environ-
ment under different algorithm parameter settings, we use
controlled emulation. For each emulation, we verify the last-
hop wireless link is the bandwidth bottleneck by iPerf. We
collect 10 traces of per-second available bandwidth in a rea-
sonable WiFi network via iPerf, i.e., we avoid the case where
the maximum bitrate is always selected due to the extremely
high bandwidth. We then move to a fast WiFi network and
use Linux tc tool to throttle the bandwidth between the
server and the phone according to the traces.

Horizon length and buffer granularity. These are
two critical parameters in the dynamic programming algo-
rithm. Horizon length H denotes how far we look ahead into
the future chunks and bandwidths. The buffer granularity
K decides how many possible buffer levels we can search.
A large K will reduce computation but may degrade per-
formance. Figure 9 shows that session energy decreases and
becomes stable as H increases since more future chunks and
bandwidth information is considered. Nevertheless, band-
width estimation error will propagate as a new estimation
is based on previous estimations. Thus session energy can
even increase when H keeps growing.

When the buffer granularity is coarse, less buffer levels
are searched. This allows less space for RnB to allocate the
resources across chunks. Therefore, performance of energy
minimization degrades. We also mark the energy of other
two algorithms for benchmark purpose. When H = 1, RnB
reduces to Myopic algorithm. RnB can achieve 11% - 35%
less energy than Exo.

Regarding video quality (not plotted), we notice that av-
erage PSNR of RnB is stable across all cases (mean:41.14,
max:41.77, min:40.72). This result is comparable with other
solutions, where Myopic reaches a mean of 41.21 and Exo
obtains 43.07. Furthermore, no rebuffer is found for all al-
gorithms using all parameters.

Overhead. Due to the real-time requirement of video
adaptation, we need to investigate the overhead of RnB.
Table 2 lists the execution time of the adaptation module in



Table 2: Adaptation Execution Time (ms)
ExoPlayer RnB buf. gran. RnB horizon = 2, 4, 6, 8

1.13
1 second 2.96 6.89 10.16 12.54
2 seconds 3.46 6.07 8.52 10.60
4 seconds 2.13 5.26 7.82 9.04

several parameter settings. With a finer granularity and a
larger horizon, the computation time of RnB becomes larger.
However, the overhead is minimal and should be acceptable
for real-time adaptation even when H = 8 and buffer granu-
larity is 1s. Moreover, we detect that the memory and CPU
load of all algorithms are almost identical at 30 MB and
5%, respectively. One reason for the relative low overhead
may be because we use HashMap instead of regular Array
to implement the dynamic programming search. This over-
head is expected to be further reduced if implemented on
newer smartphone models. In summary, considering the ac-
ceptable overhead and significant energy saving, we choose
horizon H = 8 and buffer granularity 1s in the subsequent
evaluations.

Bandwidth estimation. Since our focus is to improve
energy efficiency for various practical scenarios rather than
designing a bandwidth estimator with maximal accuracy,
we choose not to validate a particular estimation algorithm.
Instead, we evaluate the impacts of estimation errors from
a black box of general estimators. We added a random
noise to the real bandwidth as the estimated bandwidth (at
every horizon). Figure 10 shows that as prediction error
grows from negative (underestimation) to positive (overesti-
mation), session energy of RnB drops whereas rebuffer rate
increases. Overestimation allows RnB to pick a version of
higher bitrate and lower brightness in some chunks, com-
pared to underestimation. As the energy reduction from low
brightness can compensate the extra energy from download-
ing high bitrate, the total energy decreases. Average PSNR
remains stable since RnB aims to just secures the threshold
even though the estimated bandwidth is high. But fetching a
higher bitrate than the true bandwidth may cause annoying
rebuffer. In contrast, RBA makes aggressive bitrate choices,
which brings high-quality chunks but unsmooth playback.

7.2 System-level Evaluations
We first perform the system-level evaluation in an office

WiFi network with multiple competing users and refer it
as the baseline case. Through iPerf tests, we confirm that
there is no bottleneck between the server to the WiFi access
point and that the WiFi bandwidth is not trivially large
than the maximum bitrate option. Figure 11a shows that
RnB substantially reduces streaming energy while achieving
comparable video quality to existing DASH schemes. On av-
erage, RnB consumes 20% less energy than Exo, 21% than
RBA, 24% than BBA, and 11% than Myopic. The perfor-
mance gain of RnB can be attributed to R-D-E streaming
framework, where a luminance-compensated version can be
requested and the screen brightness can be dimmed. RnB
also avoids pushing the bitrate to the bandwidth limit, but
rather choosing a sufficiently good version to meet quality
constraint. Finally, these bitrate and scaled brightness se-
lections are optimized over a future horizon to accommodate
the bandwidth dynamics.

Myopic algorithm can save some energy due to the same
R-D-E framework as RnB. As both bitrate and brightness
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versus bandwidth estimation error

contribute to energy and quality, there is a delicate trade-
off between these two variables. Without considering future
bandwidth, however, greedy choice of Myopic will lead to
a degraded resource allocations among video chunks. On
the other hand, existing approaches cause more energy be-
cause they fail to include energy into the request decisions.
They all attempt to maximize the bitrate. However, user
experience may not improve after video quality reaches a
threshold, which is referred as just noticeable distortion the-
ory. Therefore, the 1∼2 dB PSNR improvement over RnB is
negligible and we will confirm this via user studies. Among
three conventional R-D schemes, ExoPlayer spends the least
energy due to its conservative bitrate choice. Only when
buffer and estimated bandwidth are both large enough, a
higher bitrate will be picked.

Impacts of content. We then evaluate RnB by replac-
ing the source video in baseline case to a new content, Big
Buck Bunny. Figure 11b shows that RnB again saves a
large amount of energy, i.e., 13%, 15%, 16% and 10% over
Exo, RBA, BBA, and Myopic, respectively, without sacri-
ficing video quality. By looking into the content features
of both videos, we observe the energy difference of RnB is
resulted from the general luminance level of the content.
As a cartoon video, Bunny has extremely bright scenes and
background while the Sci-Fi movie Steel mostly presents a
normal or dark frame. Hence, more pixels in Bunny satu-
rate after luminance compensation and cannot be recovered,
which increases the overall distortion of encoded versions.
To guarantee PSNR, a higher bitrate or brightness scaling
version is needed and thereby cost more energy.

Impacts of display type. Instead of the LCD-based LG
phone in baseline case, we further use a Google Nexus 6 with
OLED display to run the evaluation. Figure 11c demon-
strates the results. First, all the schemes achieve a lower
energy compared to Figure 11a. This is due to the different
efficiency between the devices in hardware and system ker-
nel. It is also interesting to observe that the energy saving
of RnB is somewhat reduced (8% less than R-D schemes on
average). The energy cost of OLED is not only decided by
the circuit supply voltage that regulates the overall display
illuminance and screen brightness, but also by the luminance
efficacy of individual pixel cell. Even though brightness scal-
ing reduces the voltage, the compensated pixels are typically
less energy-efficient and need higher current to drive, which
reduces the advantage of RnB. However, for tablets with
larger screen, RnB is expected to save more energy for both
LCD and OLED devices.

Impacts of ambient light. We repeat the baseline case
in both dark and bright environment and verify the ambient
light sensor reading before evaluations. We observe that
RnB consumes > 4% less energy than that under normal
light since it excludes the versions with b = 1.0. Conversely,
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Figure 11: RnB achieves promising energy saving and comparable video quality in various settings.
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Figure 12: RnB in LTE.

RnB’s energy is comparable (< 1% difference) in bright and
normal conditions. This results from the fact that video
chunks with low brightness (e.g., 0.4) can hardly meet the
PSNR threshold and were seldom picked in the normal case.
Even though they are not allowed under bright light, this
fact does not make noticeable contribution.

User study. We assess the subjective perception of RnB
by a user study. We have recruited 15 participants and asked
them to rate the video streaming experience in terms of clar-
ity/bitrate and brightness. We follow single-stimulus proto-
col by ITU [43] to compare the user experience of RnB under
different ambient light conditions. We also evaluate tradi-
tional R-D based Exo when the screen brightness is simply
scaled by different levels in normal ambient light. Figure
11d plots the mean opinion score (MOS) with 95% confi-
dence interval (CI). In general, RnB provides a satisfactory
experience and is comparable with Exo using 100% bright-
ness because RnB compensates the video luminance before
scaling the screen. The major reason of the MOS drop (4.4
to 4.0) is that the inter-chunk brightness variation can be
occasionally unsmooth (or flickering effect). This limitation
can be overcome by adding a new constraint of inter-chunk
brightness variation into the optimization formulation and
can be considered as an important future work. On the other
hand, the user experience of Exo quickly degrades when us-
ing 80% and 60% screen brightness because the perceptual
luminance of videos is simply dark. In dark condition, even
though the average selected brightness of RnB drops, the
user experience still improves. This could be explained by
the reduced variation range of brightness under dark case,
which brings less video quality fluctuation.

Handling LTE. We move the baseline evaluation to a
commercial LTE network in a department building with
many coexistent users. Figure 12 shows that RnB can sat-
isfactorily adapt to LTE networks by achieving an average
20% energy saving and comparable video quality to R-D
based DASH. Since the LTE interface of mobile devices is
more power-consuming than that of WiFi, the energy of
all schemes are increased. Due to the higher percentage
of transfer energy, the contribution of display energy sav-
ing also diminishes. Besides, the PSNR level are generally
decreased and rebuffer has been observed for all the ap-

proaches. The quality degradation is due to the frequently
varying LTE channel that is difficult to track. Such fluc-
tuated bandwidth increases the bandwidth prediction error.
RBA suffers the most in LTE since it is purely dependent
on bandwidth estimation whereas other algorithms consider
buffer occupancy and thereby can enjoy one more signal for
more appropriate adaptation.

8. RELATED WORK
Mobile energy dilemma. Many energy measurement

and profiling studies have been done on mobile devices [44–
46]. Unfortunately, the most power-hungry mobile applica-
tions are usually those popular applications with multimedia
data, e.g., video streaming, web loading, and gaming. Ad-
dressing the energy issue of these applications become ex-
tremely urgent. Bui et al. [47] reduced web loading energy
by revising the current browser design with only a small in-
crease of loading time. He et al. [48] dynamically scale dis-
play resolution for high-end smartphones to save the GPU
power in gaming. However, there is a lack of systematic
treatment for mobile video streaming energy. In this paper,
we fill this gap by designing and implementing a end-to-end
R-D-E optimized video adaptation framework.

Display energy reduction. Display has been an active
target in mobile energy research. Many schemes [6–10, 12]
aim to dim LCD backlight, e.g., Lin et al. [9] optimize dy-
namic video backlight scaling under user experience con-
straints. For OLED, dynamic voltage scaling [11] and color
transform [4] attract the most attention. Chameleon [4] is
the first per-pixel color transform scheme to reduce OLED
power. All these schemes may work well for offline video
playback. For streaming video, however, they lack the orig-
inal video as the benchmark for adaptation, which makes
the distortion intractable. In contrast, RnB fundamentally
solves this problem based on an adaptation framework with
end-to-end joint design, which offers a promising alternative
to the prevailing mobile streaming applications.

Video transfer energy reduction. Several network
protocols [24, 33, 49, 50] have been proposed to minimize
the radio activity or duration of tail state in mobile video
streaming. For example, eSchedule [33] uses crowd-sourced
statistics to balance energy waste of user leaving session and
tail state. However, these complementary schemes do not
explicitly consider display energy. In fact, they are orthog-
onal to RnB framework and can be used to further improve
RnB performance.

9. DISCUSSION
Incentives. There are strong incentives for different par-

ties involved in RnB to adopt the R-D-E tradeoff in DASH.
Mobile users have a natural incentive as they can maximize
the lifetime of their devices and view the videos with sat-



isfactory quality. Content providers can enhance customer
experience by extending their mobile viewing time, which
can be marketed as an advantage over their competitors.
Content providers can also obtain more video consumption
since users are allowed to spend more time with the same
battery, which could bring more advertising income.

Overhead. Although R-D-E tradeoff introduces addi-
tional video versions in RnB server, we believe the over-
head is tolerable. First, only a small number of versions
are practically needed to ensure the performance gains, e.g.,
three extra brightness scaling versions in our implementa-
tion (B = {0.4, 0.6, 0.8, 1.0}). Overly aggressive brightness
scaling would lead to unrecoverable display distortion. Sec-
ond, storage cost is becoming more affordable in this cloud-
computing age. That is probably why traditional DASH
with multiple bitrate versions has been and is still popular.

Furthermore, although RnB necessitates the transmission
of additional metadata to aid the video adaptation, each
video chunk only adds several floating-point numbers for
metadata and thereby the extra cost for bandwidth and en-
ergy is negligible.

Compatibility and user preference. RnB is a standard-
compliant framework. The media adaptation set, metadata
adaptation set, MPD file all strictly follow MPEG stan-
dard [14, 25]. Furthermore, RnB is backward compatible
in a sense that if energy saving is not preferred by users,
the framework can be reduced to conventional DASH. Upon
user input, RnB client simply requests video versions with
brightness factor b = 1.0 via the regular R-D tradeoff.

More importantly, RnB provide the user-defined PSNR
threshold such that users can flexibly strike a tradeoff be-
tween user experience and energy saving. By increasing the
threshold via a simple UI, users can have a better experience
if energy saving is an inferior factor.

10. CONCLUSION
In this paper, we address the fundamental limitation of

conventional R-D DASH systems in mobile energy reduc-
tion. The key observation is that independently designed
video transfer and on-board display energy adaptation cause
intractable distortion and repeated computation overhead.
We present RnB, a radically new designed video bitrate and
screen brightness adaptation to jointly explore transfer and
display in order to balance mobile R-D-E tradeoff. RnB is
characterized by encoding multiple versions of R-D-E based
video versions, as well as by leveraging a content-dependent
rate-brightness-quality relationship we have discovered and
a receding horizon control based algorithm we have pro-
posed. Both system-level and component-wise evaluations
shows that RnB shall achieve substantial (an average of
19%) energy reduction with comparable quality to existing
R-D schemes. We believe RnB can enable a suite of future
R-D-E based explorations in mobile video streaming and
display adaptation, including video requests scheduling and
metadata assisted display adaptation.
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