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ABSTRACT

Different from traditional HTTP adaptive streaming (HAS)

in which only one client is considered, HAS over multi-client

wireless networks faces new challenges. The Quality of Ex-

perience (QoE) of users becomes unstable due to users’ com-

petition for shared bandwidth. It is thus important to accu-

rately estimate the perceived experience of users and then

adapt the streaming process accordingly. Furthermore, the

QoE fairness among multiple clients subscribing to the same

services shall also be addressed. In this research, we pro-

pose a QoE continuum driven HAS adaptation algorithm to

address these challenges. We model the QoE continuum as an

integrated consideration of cumulative playback quality and

playback smoothness. Based on this model, we jointly opti-

mize the quality adaptation of multiple users by considering

both QoE history and channel status. Moreover, we propose

to use quantization parameter and segment size to represent

the video files in a fine-grained fashion, in order to more ef-

fectively capture the bandwidth fluctuation. The results from

extensive simulations show that the proposed scheme can pro-

vide balanced and satisfactory QoE among multiple clients.

Index Terms— QoE continuum, QoE fairness, HTTP

adaptive streaming, multi-client, wireless networks

1. INTRODUCTION

With the development of powerful smart phones and tablets,

and the growing demand of watching videos from anywhere

and at anytime, video streaming over wireless networks has

been rapidly booming in the past few years. It is predicted that

video traffic will account for over two-thirds of total mobile

traffic by the end of 2017. Lately, HTTP adaptive streaming

(HAS) has been widely studied to address the bandwidth in-

efficiency in traditional streaming systems. The video source

is pre-encoded in several quality levels and is split into small

segments. The client dynamically requests the video segment

with different quality at each switching point based on its net-

work and device status. That way, the user is able to watch
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the video with the highest possible quality while the band-

width can also be efficiently utilized.

One key objective of HAS is to improve the Quality of

Experience (QoE) of users under highly complicated wire-

less environment. One major challenge is how to precisely

measure users’ QoE, which is a subjective perception of the

entire viewing experience. Users’ QoE at a certain moment is

impacted by the playback quality of both currently displayed

frame and previously displayed frames, as well as the con-

sistency in playback quality [1]. Conventional modeling of

QoE simply based on current viewing experience makes HAS

adaptation non-optimal. Therefore, QoE measurement shall

consider users’ viewing experience in a temporally continu-

ous manner. Furthermore, the QoE fairness among different

HAS users who have the same service priority should also be

guaranteed. According to [2], the time-varying and shared

wireless networks lead to unpredictable QoE for every user.

Consequently, users may have very different viewing experi-

ence due to their different channel status even though they

pay for the same service. Another important issue in cur-

rent HAS systems is the inaccurate representation of the pre-

encoded video files. Currently, different video quality lev-

els are usually indicated by video bit-rate. However, since

modern videos are all encoded in a variable-bit-rate (VBR)

fashion, the real bit-rate of different video segments is sig-

nificantly different and cannot be accurately represented by

an average bit-rate. To overcome all these adversaries, it is

imperative to develop a new quality adaptation scheme that

incorporates proper QoE modeling and adaptation measures.

1.1. Existing General HAS

Recently, both 3GPP and MPEG have made tremendous ef-

forts towards the standardization of HAS [3]. However, spe-

cific adaptation strategies are not part of the standard and are

left to future designs. The overview of standardized HAS

QoE metrics and QoE-driven adaptation is presented in [3].

Although several commercial HAS solutions, such as Mi-

crosoft Smooth Streaming and Apple Live Streaming, have

been deployed, experimental results showed that the user ex-

perience is negatively impacted when multiple clients com-

pete for the shared wireless bandwidth [4]. Research com-



munities have also proposed several HAS rate adaptation al-

gorithms [5–7]. However, these algorithms are targeted at

single-user and client-side adaptation. They cannot be di-

rectly applied to the multi-client wireless networks since they

are unaware of QoE fairness. The proposed framework, in-

stead, shifts the adaptation to the base station that can jointly

adapt the video quality and optimize the QoE of multiple

clients without modifying the standard HAS framework.

Only few work has been focused on HAS for multi-client

wireless networks. In [4], the authors first identified the is-

sues in multi-client wireless networks and proposed a simple

traffic shaping mechanism to improve the experience of two

competing users. In [8], the authors enhanced the QoE by

maximizing the overall mean opinion score (MOS) that is de-

cided by the selected bit-rate and content of the video. Never-

theless, the QoE model is not accurate enough since only the

viewing experience at the adaptation moment is considered.

1.2. Existing QoE-driven HAS

QoE has been studied in the design of several HAS systems.

QDASH [1] improved the HAS adaptation by incorporating

a intermediate level into the switching process. However, no

explicit model is provided for QoE measurement, which lim-

its its application to different HAS systems. In [9], an adap-

tation proxy located at the edge of the wired network was

proposed to maximize user average data rate and minimize

the rate variation and delay jitter. However, the algorithm

is essentially QoS-driven and the standard HAS framework

is modified due to the use of split-TCP. Although the work

in [10] revealed the importance of temporal factors for QoE

by studying the jitter and local content, the necessity of hu-

man intervention makes it difficult to be generally deployed.

1.3. Summary and Contributions

In summary, although aforementioned works have made con-

tributions to the HAS development, none of them thoroughly

studies the impacts of QoE continuum (namely previous play-

back quality, current playback quality, and playback quality

variation) on HAS quality adaptation, and the QoE fairness

among multiple clients in wireless environment. The ma-

jor contribution of this research is that we propose a quality

adaptation algorithm that can guarantee both QoE and fair-

ness in one shared cell with multiple clients by exploiting

the nature of human perception and video source. Specif-

ically, we model the QoE continuum by considering both

cumulative playback quality and playback smoothness. By

exploiting the proposed model, the base station can jointly

optimize the video quality levels of multiple HAS users un-

der bandwidth-limited cellular networks, in order to fairly

maximize all users’ QoE. Moreover, we propose to adopt

fine-grained video representations that characterize the video

quality levels by a tuple of file size and quantization parame-

ter (QP), in order to capture video source characteristics and

then execute more efficient quality adaptation. More impor-

tantly, the proposed algorithm is standard-friendly since the
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Fig. 1. System Architecture

base station only need to modify the clients’ requests to ac-

commodate the QoE and fairness driven adaptation.

The rest of this paper is organized as follows. In Section

2, we describe the system models. In Section 3, the proposed

quality adaptation algorithm is introduced. We then evaluate

the performance of proposed algorithm and present the results

in Section 4. Finally we conclude this paper in Section 5.

2. SYSTEM MODEL

2.1. System Architecture

In this research, we consider the system architecture as shown

in Fig. 1. The HAS server stores several VBR videos that all

have M levels of quality. Each level of video is split into

multiple video segments with the same segment length and

each segment is characterized by the QP and segment file size,

i.e., a tuple (QP, S).

The proposed algorithm is designed for cellular networks,

where the base station jointly optimizes the quality adapta-

tion to ensure QoE continuum and fairness. Here we consider

3G High-Speed Downlink Packet Access (HSDPA) network

as the underlying cellular network. However, the design prin-

ciples are generic and the algorithm can be easily extended to

other cellular networks such as LTE. We focus on the HAS

within one cell, where N users in the cell are managed by

Node-B and each user is indexed by i, i = 1, 2 · · ·N . We

assume that one user can only establish one flow with the

HAS server. The proposed algorithm is operated by Node-B

and implemented on top of underlying scheduling algorithms.

Hence, it is practical to apply it to the modern cellular net-

works without modifying lower-layer scheduling strategies.

The quality adaptation is proceeded as follows. Initially,

the HAS server sends out the media presentation description

so that Node-B and clients will have the knowledge of avail-

able video representations. At each adaptation period whose

length equals to segment length, clients request a specific

video segment at a certain quality level based on a simple

throughput calculation, which requires very low complexity.

Such operation is only used to be compatible with current

DASH standards. Hence, no local hardware or operating sys-

tem optimization is needed. Rather than directly forwarding

the requests, however, Node-B in the proposed system will in-

tercept the requests and modify the adaptation decisions based

on the proposed algorithm, where both low-layer link status

(such as channel quality indicator (CQI)) and high-layer QoE

and encoding information (such as current cumulative play-

back quality) are utilized to guarantee balanced QoE contin-



uum for all users. Such information are embedded in the pe-

riodic feedback from clients. Note that this is feasible since

3GPP DASH standard has standardized the quality metrics

reporting process for clients. It uses a HTTP POST as the re-

porting protocol. Thus users are able to enjoy the video with

optimized QoE while neither the client nor the HAS server is

aware of the adaptation done by Node-B. Therefore, the pro-

posed algorithm can be friendly implemented in current HAS

standard framework.

2.2. QoE Continuum Model

We have identified that the QoE of HAS shall be measured in

a timely continuous fashion. In this section, we introduce two

factors that impacts QoE continuum, i.e., cumulative play-

back quality (CPQ) and playback smoothness.

2.2.1. Cumulative Playback Quality

It has been discovered by psychological research that human

memory demonstrates an exponential decay with respect to

time, which is called as forgetting curve effect. Such effect

has been suggested by ITU standard [11] to be applied in

continuous quality evaluation. Hence, we exploit this effect

to model the CPQ. In [12], we have derived Qk, the CPQ at

frame k, as the summation of instantaneous playback quality

over all displaying moments until the measure moment, i.e.,

Qk = γQk−1 + (1− γ)qk (1)

where Qk−1 is the CPQ at the previous frame, qk is the in-

stantaneous playback quality at frame k, and γ is the char-

acterization constant of the memory strength. Qk, qk and γ
all belong to (0,1]. That way, we can capture the QoE from

previous displaying moments until the current moment.

At a particular displaying moment of HAS systems, the

video player can either playback one frame normally or freeze

at a certain previous frame. Note that transmission distortion

is disregarded in this research since HAS is virtually loss free

due to the underlying TCP mechanisms. For the moment with

normal playback, the instantaneous playback quality is dic-

tated by the image quality of that frame. Thus we can predict

image quality from QP using a linear model and estimate the

instantaneous playback quality qk,play as

qk,play = aQPk + b (2)

where a and b are content-specific parameters.

When the bit-rate of the streamed video for a user ex-

ceeds the user’s available bandwidth and the selected video

has not been downshifted to a lower quality, playback inter-

ruption may occur due to the client’s re-buffering. In this

case, the video player’s screen will stall at the most recent dis-

played image and consequently the user will undergo certain

loss of expected visual information. Thereby, we can reliably

model and validate the instantaneous playback quality for an

interruption moment qk,stall as the visual information loss L
scaled by the instantaneous user expectation E [12], i.e.,

qk,stall = LkEk. (3)

where Ek is signified by the playback quality of the last dis-

played frame j, i.e., Ek = qj,play . Besides, Lk represents the

residual norm between expected frame and frame j in pixel

domain, which is linearly approximated by
rj,play

η
, where

rj,play is the bit count of the last displayed frame j and η
is the compression ratio. To further describe the logarithmic

relation in rate distortion theory, we apply a logarithmic op-

eration and then bound Lk in (0,1] as follows,

Lk|j = −
log(min(rj,play, rQP )) + c

log(rQP ) + c
(4)

where rQP is the upper bound of frame size with the specific

QP, and c = log(η)/2 is a model constant. The value of rQP

can be calculated online based on previous streaming infor-

mation of decoded bits assuming that the size of frames with

a fixed QP is governed by a Laplace distribution. This as-

sumption is reasonable given the independent identically dis-

tributed property of compressed frames.

2.2.2. Playback Smoothness

Subjective tests have shown that users prefer consistently

low-quality video over the video that fluctuates between high

quality and low quality [1]. By using the cumulative play-

back quality model in (1), the playback smoothness can be

effectively characterized in this research. Suppose one has

been enjoying the video with decent quality for a while (e.g.,

Qk−1 = 0.9), the sudden quality degradation of the current

frame (e.g., qk = 0.6) could lead to a decreased current CPQ

Qk. Such degradation would be accumulated and eventually

cause annoy experience after the playback of an entire seg-

ment. The larger difference between the previous CPQ and

the instantaneous playback quality, the worse the current CPQ

would be. That way, the proposed algorithm places a con-

straint on the quality adaptation so that abrupt quality change

is avoided and QoE continuum is improved. More impor-

tantly, due to the smooth quality variation of some users, re-

sources can be saved for the other users who need them.

3. PROPOSED QUALITY ADAPTATION

In this section, we introduce the novel framework to exploit

the nature of QoE continuum and fine-grained video repre-

sentations in order to fairly enhance the perceived experience

of users. We formulate the adaptation optimization problem

and propose an effective solution to achieve improved QoE

continuum and QoE fairness.

3.1. Formulation of the Optimization

The QoE of HAS systems is critically decided by whether or

not the data volume of the streamed segment is larger than the

currently available bandwidth. It is necessary to incorporate

the channel condition into quality adaptation process, espe-

cially considering the time-varying nature of wireless chan-

nel. In typical HSDPA implementations, wireless resources

are divided into Transmission Time Intervals during which

one user can receive its data packets. The maximum number



of data bits that can be received by user i per second, denoted

as Ri,max, is essentially determined by the CQI of link i. At a

given switching point, we employ the mean CQI of link i dur-

ing the last adaptation period to estimate Ri,max during the

next period by using the look-up table in 3GPP standard [13].

Note that the mean CQI shall not be calculated based on a

time interval that is too brief since it may not reflect the av-

erage channel status in the next updating period. Similarly,

conservative mean CQI calculation using a long time interval

may lead to slow adaptation to channel variation. Thus the

resource sharing of user i, denoted by ϕi, is given by

ϕi =
Si

TRi,max

(5)

where we approximate the bit-rate of the selected video seg-

ment as the ratio between the file size and the segment length.

Hence, the available channel resource constraint for the pro-

posed HAS system is
∑

i∈N ϕi ≤ 1, where N is set of

HAS users. Such joint consideration of shared bandwidth will

make the quality selection fair and reliable, and thus enhance

QoE continuum. This definitely cannot be accomplished by

individually blind client-side adaptation.

According to the estimated maximum data rate, Node-B

is able to estimate the CPQ at the next switching point Qi,t+T

when a video quality level li,t+T is considered. Node-B first

analyzes the adaptation-related information, such as current

CPQ Qi,t and buffer status, as feedback received from clients.

Then Qi,t+T can be recursively calculated according to (1) by

predicting whether the player is playing or stalling at each dis-

play moment from t to t + T . If user i is not re-buffering at

t, Qi,t+T will be estimated from Qi,t by first considering the

normal playback of the remaining frames (quality level li,t)
in the buffer and then considering the normal playback of the

selected level li,t+T for the rest of the period. If the user is

re-buffering, Qi,t+T will be first calculated by assuming that

the player is frozen until the buffer size reaches the playback

threshold. The interruption time is decided by the estimated

Ri,max. Then Qi,t+T will be further updated by assuming

the normal playback of video with level li,t+T . That way,

we can accurately estimate the cumulative user experience at

next switching point and assign the most satisfactory and fair

adaptation decision to users accordingly. Note that interrup-

tion may happen in reality during the playback of level li,t+T

due to the channel estimation error.

Based on the above analysis, we now can formulate an op-

timization to find the optimal level of video segment, which is

indicated by a tuple (QP, S), for each user at switching point

t. We model the QoE continuum as a joint consideration of

the playback quality and playback smoothness, i.e., the CPQ

model in (1). The objective of the optimization is to maximize

the average QoE continuum of all users at the next switching

point t+ T , subject to the wireless resources constraint. i.e.,

max(QP,S)
1
N

∑

i∈N Qi,t+T

s. t.
∑

i∈N ϕi ≤ 1
(6)

The wisdom of adaptation behind (6) is that higher quality

level is generally given to those users who currently possess

a lower QoE continuum value and a better channel condition,

while significant quality variation shall also be avoided. For

example, when users are currently enjoying the same level

of video and the same channel condition, higher quality is

assigned to the user with a lower current QoE continuum

because such adaptation will attain a maximum increase of

the average QoE continuum. In other words, when a user

enjoys good experience for a long time, his/her satisfaction

will rise less than the one with bad previous experience if the

video quality is raised. Consequently, we can enhance not

only the QoE but also the fairness of users. Additionally, the

penalty on playback variations avoids the sudden big change

and keeps the playback smooth. This shall also inherently im-

prove fairness since one’s potential resources for big quality

upgrading can be conserved for the others who need them.

3.2. Greedy Optimization

The objective of (6) is nonlinear due to the involved loga-

rithmic and minimum operation, as well as the recursive cal-

culation process of Qi,t+T . Therefore, finding the optimal

solution is complicated and time-consuming. We propose a

greedy algorithm, shown in Algorithm 1, to efficiently solve

the optimization and approximate the optimal solution. When

the algorithm initiates, Node-B collects users’ CPQ at t and

starts the greedy search at users’ current levels lt. At each

subsequent step, if
∑

i∈N ϕi < 1, a small amount of re-

sources that gain one-level quality improvement are assigned

to the user who can accomplish maximum ∆i,in, the increase

of average QoE continuum per unit data. If
∑

i∈N ϕi > 1, the

user having the lowest decrease of average QoE continuum

per unit data (∆i,de) will be degraded one level. This pro-

cess repeats until all the resources are allocated or no further

change can be seen in average QoE continuum. The formu-

lated problem is a generalization of bounded knapsack prob-

lem, which is NP-hard. The greedy heuristic is adopted to

solve the problem in polynomial time with O(MNlogN).

Algorithm 1 Greedy Quality Adaptation Algorithm

1: procedure ADAPT(Q,B, lt) ⊲ B:buffer status

2: li,opt ← li,t, ∀i ∈ N
3: if

∑

i ϕi < 1 then ⊲ quality upgrading

4: while
∑

i ϕi < 1 & objective in (6) changed do

5: for i ∈ N do

6: Update ∆i,in,∆max,maxue

7: lmaxue,opt = min(lmaxue,opt + 1,M)

8: else ⊲ quality degradation

9: while
∑

i ϕi ≥ 1 & objective in (6) changed do

10: for i ∈ N do

11: Update ∆i,de,∆min,minue

12: lminue,opt = max(lminue,opt − 1, 1)

13: return lopt ⊲ i.e., li,t+T , i ∈ N



Table 1. Simulation Parameters
l1 l2 l3 l4 l5

Seg 1 bytes 13644 26952 52778 104951 141714

Seg 2 bytes 13534 27166 53250 108734 148416

Seg 3 bytes 11066 53250 46748 43365 133706

Seg 4 bytes 16027 31211 59114 3028 151288

Seg 5 bytes 25156 50353 98568 3284 253683

qplay 0.85 0.88 0.92 0.94 0.95

4. PERFORMANCE EVALUATIONS

In this section, we compare the performance of the proposed

algorithm with reference algorithms through simulations. We

first implement the algorithm in [4] (referred as Baseline) be-

cause it is the first HAS adaptation scheme for multi-client

wireless networks. We also implement a typical algorithm

(referred as InstRate) that covers the logic behind many ex-

isting works, in which the adaptation maximizes the utility

function dictated by selected instantaneous bit-rate, subject to

the channel constraint. One example of InstRate-like algo-

rithms is [8], where utility is the MOS mapped from bit-rate.

We focus on the architecture shown in Fig. 1. The HAS

server provides the test sequence “Stefan” with 5 levels of

video whose QP is 47, 42, 37, 32, and 30 respectively. The

segment length T is 2 seconds and the frame rate is 30 fps.

The sequence has 300 frames and these 5 segments are re-

peatedly streamed. The file size of each segment for each

level l is shown in Table 1. We use EURANE for ns-2 [14] to

implement the underlying HSDPA network. We consider two

users subscribing the same services but having different chan-

nel status as in [4]. The typical wired and wireless network

parameters shown in [14] are used. Regarding the parame-

ters of cumulative playback quality model, we inherit them

from [12], wherein the accuracy of the model is validated by

both objective and subjective tests. The memory strength γ is

set to be 0.71. To show the impacts of a and b, we directly

present the instantaneous playback quality qplay of different

levels in Table 1. Since the initial buffering can be regarded

as a special case of playback stalling, the instantaneous play-

back quality during initial buffering is calculated using (3)

with constant Lini = −0.5. The initially selected quality

level are level 3 for all users. The playback threshold of buffer

size is 4 seconds. The simulation runs 200 seconds.

4.1. Playback Smoothness

We employ the number of quality level changes (NoC) and

the playback smoothness (PS), a metric inherited from [7], to

evaluate the video consistency. PS is defined as the expected

length of one playback round without level change, i.e., PS =
√

∑P

p=1(n
2
p)/P . Here the continuous playback of one level

is defined as one round and it consists of np frames. There are

P rounds in total. Level 0 represents the playback stalling.

From Table 2, we can see that the proposed algorithm

demonstrates the least NoC and highest PS. Besides, both

users enjoy smooth playback. However, for the reference

Table 2. Playback Smoothness

Metrics
UE1/UE2

Baseline InstRate Proposed

NoC 41/43 44/36 30/32

PS 251.82/149.87 171.96/247.23 289.06/273.98

Table 3. Playback Quality

Metrics
UE1/UE2

Baseline InstRate Proposed

APQ 4.09/3.84 4.03/4.39 4.35/4.26

CPQ 0.94/0.81 0.89/0.93 0.93/0.93

PoI 0/2.23 0/4.30 0/0

NoI 0/1 0/2 0/0

algorithms, video playback of one user is usually unfairly

smoother than the other user.

In order to demonstrate the quality adaptation wisdom be-

hind the proposed algorithm, we show the trend of channel

variation and quality level variation in Fig. 2. It is clear that

the proposed algorithm outperforms the reference algorithms

with smoother quality change. Besides, the proposed scheme

does not simply capture the channel variation as is the case in

InstRate algorithm. Instead, the proposed algorithm is regu-

lated by the smoothness penalty constraint and is less aggres-

sive than reference algorithms, in which the highest possible

quality video is always assigned to users.

4.2. Playback Quality

We use CPQ after simulation ends and the average playback

quality (APQ) inherited from [7] to evaluate playback qual-

ity viewed by users. APQ is defined as the weighted sum of

the level index, i.e., APQ =
∑P

p=1(np × l)/
∑P

p=1 np. We

also evaluate the playback quality by exploring the interrup-

tion history, i.e., number of interruption (NoI) and percentage

of interruption (PoI) that is defined as the interruption time

divided by total time.

We show the evaluation results in Table 3. It can be

seen that the proposed algorithm generally has better play-

back quality than the reference algorithms. This is because

the proposed algorithm attempts to enhance the QoE contin-

uum of all users by assigning reasonably higher quality video

to those users who suffered from the previously bad experi-

ence. Thus those users can quickly recover from the bad ex-

perience while keeping smooth playback, as shown in Fig. 2d.

Nevertheless, the aggressiveness in reference algorithms may

result in interruption due to the estimation error of transmis-

sion rate. We present the buffer status of UE2 as an example

in Fig. 3. The proposed algorithm can quickly respond to

the channel variation. For example, at around the 160th sec-

ond, the channel status of UE2 is suddenly becoming bad (as

shown in Fig. 2a). The proposed scheme can appropriately

choose the level to match such channel variation since we use

a fine-grained representation of the video files. However, the

reference algorithms fail to respond to this change and finally
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Fig. 2. (a) Channel CQI versus segment index; (b-d) The video quality level variation versus time.
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Table 4. Normalized Difference Between Users

Metrics
UE1 and UE2

Baseline InstRate Proposed

APQ 6.14% 8.24% 2.04%

PS 40.48% 30.44% 5.22%

undergo stalling at around the 165th second.

4.3. QoE fairness

We have implicitly shown the QoE fairness in the results pre-

sented earlier. Now we evaluate the QoE fairness using the

normalized difference of a certain metric between the two

users, i.e., the difference of two values divided by the larger

value. The normalized difference of APQ and PS is shown in

Table 4. We observe that the proposed algorithm shows the

least QoE difference between two users and thus guarantee

the QoE fairness. This is because higher priority is given to

users with previously bad experience and that resources can

be saved from one user when the variation penalty is adopted.

5. CONCLUSION

In this paper, we propose a QoE continuum driven quality

adaptation algorithm to overcome the challenges resulting

from imprecise QoE monitoring, unfair QoE, and inaccurate

video representation in multi-client wireless HAS. By em-

ploying the unaggressive, fair, and fast-responding adaptation

logic, the proposed algorithm outperforms existing works and

achieves satisfactory QoE and fairness. Future work shall be

focused on extending the algorithm to larger-scale systems,

wherein downlink scheduling can also be incorporated. Be-

sides, the framework parameters need to be optimized in order

to further enhance the overall system performance.
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