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ABSTRACT
Head movement prediction is the key enabler for the emerging
360-degree videos since it can enhance both streaming and ren-
dering efficiency. To achieve accurate head movement prediction,
it becomes imperative to understand user’s visual attention on
360-degree videos under head-mounted display (HMD). Despite
the rich history of saliency detection research, we observe that
traditional models are designed for regular images/videos fixed at a
single viewport and would introduce problems such as central bias
and multi-object confusion when applied to the multi-viewport
360-degree videos switched by user interaction. To fill in this gap,
this paper shifts the traditional single-viewport saliency models
that have been extensively studied for decades to a fresh panoramic
saliency detection specifically tailored for 360-degree videos, and
thus maximally enhances the head movement prediction perfor-
mance. The proposed head movement prediction framework is em-
powered by a newly created dataset for 360-degree video saliency, a
panoramic saliency detection model and an integration of saliency
and head tracking history for the ultimate head movement predic-
tion. Experimental results demonstrate the measurable gain of both
the proposed panoramic saliency detection and head movement
prediction over traditional models for regular images/videos.
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1 INTRODUCTION
With the annual growth rate of head-mounted display (HMD) and
360-degree cameras reaching an impressive 56% [8] and 35% [33],
respectively, 360-degree videos are becoming more popular than
ever before. Major video websites such as YouTube, Facebook, and
Vimeo, have all been promoting their 360-degree video services
aggressively. Although basic 360-degree video service of mediocre
quality is currently available, streaming and rendering the ultra-
high-resolution (up to 16K) panoramic videos with a negligible
delay for real-life immersive and interactive experience is still an
open problem that is yet to be resolved.

Among various research efforts towards the desired experience,
head movement prediction is one essential yet daunting task that
needs to be addressed urgently. Accurate head movement predic-
tion can enable bandwidth-efficient 360-degree video streaming
[9, 22, 28], where the client only downloads the video portions that
the user is likely to view in high quality while the remaining por-
tions are ignored [38, 39] or fetched in low quality [5]. Furthermore,
predicting head movement accurately can significantly reduce the
motion-to-photon delay [35] since it would be possible to render ex-
actly one viewport from the downloaded video portions in advance
before the head moves.

It is well known that understanding users’ visual attention in
HMD is the key to head movement prediction since users are more
likely to stay on regions of interest. Proper video saliency detec-
tion can thus strongly benefit the head movement prediction. By
combining saliency-based head movement prediction with head
orientation history [10], an even more accurate head movement
prediction can be achieved.

Despite this general consensus, we observe that our understand-
ing of saliency detection for 360-degree videos is still limited. The
reason behind this observation is that 360-degree videos introduce
new effects on the visual attention of HMD users while little is
known regarding the true saliency under this new context. First,
prior saliency detection models are customized for regular videos
with central bias [23, 32] that places important details on video
frame center. They cannot be directly applied to 360-degree videos
where user attention may spread out the entire equator. Second,
for a typical multi-object 360-degree video, traditional saliency de-
tection schemes would treat the video as a single viewport and
identify front objects as more salient objects. However, there is
no such preference during a user’s multi-viewport viewing since
objects in the front and back of an equirectangular frame can be
in separate viewports and the user can focus on whichever objects
that fit into her actual viewport.

In this paper, we bridge the aforementioned gap by detecting
panoramic saliency that captures user’s unique visual attention on
360-degree videos, which shifts traditional saliency detection that
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has been studied for decades to a new saliency detection specifically
tailored for 360-degree videos. By leveraging true 360-degree video
saliency, we aim at ultimately enabling far more accurate head
movement prediction in HMD. To achieve this objective, we are
facing several research challenges.

• Building a dataset for panoramic saliency. There is no public
dataset that labels the saliency of 360-degree videos. With
the limited head tracking data available publicly, it is non-
trivial to construct an appropriate dataset for panoramic
saliency.

• Training a saliency detection model for 360-degree videos. The
relationship between the content features and saliency in
360-degree videos is not yet clear. Inappropriate feature ex-
traction and model prediction would lead to unacceptable
saliency detection performance.

• Consolidating a head movement prediction model for 360-
degree videos. Head movement in HMD is not purely de-
termined by saliency. How to combine detected 360-degree
video saliency with other types of data, e.g., motion data, to
ensure the overall performance is critically important.

To tackle these challenges, we start with constructing a com-
pletely new dataset for panoramic saliency from two existing head
tracking datasets. By mapping head orientation logs into user fixa-
tion, we derive the panoramic saliency of 360-degree videos based
on inter-agreement among all users’ fixation. Furthermore, consid-
ering the lack of huge amount of data for training from scratch, we
employ transfer learning on a traditional saliency model to obtain
PanoSalNet, the proposed panoramic saliency detection model that
leverages the benefit of deep neural networks to extract novel fea-
tures for 360-degree videos automatically. Finally, we integrate the
saliency map and head orientation log, and utilize Long Short-Term
Memory (LSTM) model to exploit the interplay between head ori-
entation and panoramic saliency at different time moments in the
past to predict future head orientation. We validate the proposed
datasets and models by extensive evaluations. Results show that
PanoSalNet and the proposed head movement prediction signifi-
cantly outperform traditional models for regular images/videos.

To summarize, the contributions of this paper include:

• A public dataset of panoramic saliency for 360-degree video
studies (Section 3).

• An accurate panoramic saliency detection model to identify
the visual attention in 360-degree videos (Section 4).

• A promising head movement prediction model to allow vari-
ous system designs in 360-degree videos (Section 5).

2 RELATEDWORK AND MOTIVATION
2.1 Saliency Detection
Saliency detection has long been an important area for predicting
visual attention in image/video viewing. Early works focused on
studying various hand-crafted features to improve the detection
accuracy [11, 13, 23]. Others add a preprocessing step based on low
level features to improve performance [26] or reduce distortion
[24, 25]. With the superior performance of Convolutional Neural
Network (CNN), extensive efforts have been made towards CNN-
based saliency models. DeepGaze [19] adapted a CNN for image

classification to saliency prediction using transfer learning. Pan et al.
trained a shallow network for saliency detection from scratch and
applied transfer learning to generate a deep network [27]. Zhang et
al. used shallow learning to predict saliency specifically for videos
with crowd scenes [40]. These models that are designed for regular
images and videos under smartphone/computer viewing build the
foundation of saliency detection, but they are not directly applicable
to 360-degree videos under HMD viewing.

Saliency detection for 360-degree images has been recently intro-
duced in limited studies. In general, saliency maps for 360-degree
images are first collected when the users freely interact with the
images under HMD. Then the 360-degree image saliency is utilized
to translate traditional image saliency by linear weighting [1, 31]
or to adapt a traditional saliency model to a new model for 360-
degree images by transfer learning [21]. These 360-degree image
solutions provide insights for saliency study in HMD. However,
during saliency collection, image content is static and users are al-
lowed to go back and forth along the 360-degree image for as many
times as possible to “find” the salient objects. Such a viewing is in
sharp contrast to 360-degree video viewing where the content is
dynamic and users may easily miss objects when moving the head
around. Therefore, 360-degree image saliency cannot accurately
reflect the saliency in 360-degree video viewing.

Unlike the aforementioned models, we instead probe into the
new space of panoramic saliency for dynamic video content by
exploring the unique visual attention in 360-degree videos. We aim
at accurately pinpointing the salient regions of 360-degree videos.

2.2 Head Movement Prediction
Head movement prediction has been an indispensable component
in 360-degree video streaming systems. Most existing systems con-
ducted a basic processing of head movement history to predict
the future movement, such as simple average [5], linear regression
[9, 39], and weighted linear regression [22, 28].

Research efforts dedicated to head movement prediction algo-
rithms for 360-degree videos are limited. Aladagli et al. predicted
head movement based on a pre-trained saliency model [2]. Fan et al.
integrated saliency and prior head orientation to further improve
the prediction accuracy [10]. However, both schemes rely on tradi-
tional saliency models for regular videos and may not capture the
unique visual attention in 360-degree videos. Scan path prediction
for 360-degree images was investigated in [3]. Unfortunately, due to
the distinct viewing behavior for dynamic video content, scan path
of a static image is unlikely to match the head movement under
360-degree videos.

In this paper, we remedy these issues to take a step further. We
exploit the proposed panoramic saliency crafted for dynamic 360-
degree videos along with user’s head movement history, as well
as the interplay between them, to maximize the head movement
prediction performance.

2.3 Motivation
In this section, we elaborate on the necessity of a customized
saliency model for head movement prediction in 360-degree videos
by identifying two intrinsic problems of traditional saliency models
for regular images/videos.
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Figure 1: Saliency detected by traditional models does not
match true user fixation. a) and b): sample frame; c) and d):
true user fixation. e) and f): salient prediction result from a
traditional model [27].

Central Bias. In regular videos with a single viewport, salient
objects are normally found at the frame center. As a result, trained
models from these saliency datasets of regular videos tend to have
a central bias [23, 32], where the level of saliency is reduced as the
content moves from frame center to the four edges. However, the
central bias would not reflect the saliency of 360-degree videos. In
a typical equirectangular frame, although objects at the two poles
(top and bottom) are rarely viewed by users, all objects along the
equator may attract user attention. In other words, edge objects can
also be the salient objects in some 360-degree videos. As shown in
the example of the left column in Figure 1, users are more interested
in the small animal at the edge of equator while the central biased
saliency detected by a traditional model [27] is completely different
from the true user fixation.

Multi-object Confusion. During the saliency data collection
for regular videos, users are able to quickly scan through all objects
in the single viewport with a limited field of view and are generally
more interested in front objects than objects in the back. The result-
ing saliency model adapts to this behavior and detects the saliency
accordingly. Unfortunately, such models may generate saliency
significantly deviating from true user fixation when applied to an
equirectangular frame. For multi-viewport 360-degree videos, a
front object and a back object in an equirectangular frame can lie in
two separate viewports in the 3D viewing space. A user may focus
on any of them as long as the object is within her actual viewport,
indicating that the front object in the equirectangular frame does
not necessarily obtain more attention. The right column of Figure 1
illustrates this phenomenon. The persons in the equirectangular
frame are 90-degree apart from each other in two viewports. The
majority of users pay attention to the person further away since

the closer man is holding the 360-degree camera and the viewport
including him is occupied by his body without interesting views.
Unfortunately, the traditional model is ignorant of this and still
assigns a higher saliency to the front person.

Building from the above analysis, we conclude that it is impera-
tive to develop a unique saliency detection model for 360-degree
videos, which will consider all objects along the equator and pin-
point themost interesting object amongmultiple objects in equirect-
angular frames. Such accurate saliency detection would naturally
benefit the head movement prediction.

3 DATASET
Since there is no existing saliency dataset specifically for 360-degree
videos, we have created a new dataset. In this section, we start with
describing the steps to generate our dataset. We then carefully
examine the dataset to demonstrate that the created panoramic
saliency data is highly consistent with human viewing fixation.

3.1 Collection of Panoramic Saliency
To collect the saliency maps of 360-degree videos, it is essential
to extract user fixation. The fixation points imply the region that
users pay special attention. In regular image/video saliency dataset,
eye gaze points are obtained by specialized eye-tracking devices
to derive fixation. Due to the absence of eye tracker in HMD, we
adopt a similar method as in [1, 34] to represent eye gaze point by
head orientation. This methodology is supported by the fact that
the head tends to follow eye movement to preserve the eye-resting
position (i.e., eyes looking straight ahead) [17]. We now follow
the similar procedure in prior saliency collection works [15, 34] to
extract fixation and generate the panoramic saliency dataset.

Deriving Head Orientation. To collect head orientation data,
we explore two public head movement datasets for 360-degree
videos [6, 37]. The first dataset [37] has 18 videos viewed by 48
users in 2 experiments. We select the 9 videos in the first experiment
where the head orientation is obtained during free viewing with-
out any particular viewing task. The second dataset [6] includes
five videos freely viewed by 59 users. We choose two videos from
the dataset because the fixation points of the other three videos
are noisy, implying no region of interest. Both datasets record
timestamped head orientation and the corresponding frame under
viewing. A head orientation sample is stored as a quaternion, a
four-tuple mathematical representation of head orientation with
respect to a fixed reference point. We convert the quaternion to a
regular 3D unit vector v (|v | = 1) to represent the head orientation
[18]. Coupled with the timestamps, we are able to derive where the
user is looking at on the 3D sphere for any given moment.

Extracting Fixation. We then process the head orientation (or
equivalently gaze point) to extract the fixation. Fixation occurs
when user head orientation fixates at a specific region for a short
period of time. Note that fixation would not be found at every time
step since there are cases called saccade where the head quickly
moves from one interesting region to another. We derive fixation
by first removing saccade (fast head orientation change) from the
data. Based on head movement velocity and acceleration derived
from timestamped head orientation, the saccade can be identified
using the threshold-based method suggested by [12]. In particular,



Table 1: Panoramic Saliency Dataset Evaluation
Model sAUC NSS CC

Dataset Saliency 0.7966 1.9864 0.2521
Equator Bar 0.5012 0.8086 0.1078

Circle at Center 0.4462 0.3424 0.0487

all head movement with velocity over 20◦/s and acceleration over
50◦/s2 is considered as a saccade. We then associate the filtered
head orientation logs with the video frame under viewing, and map
a head orientation v in the 3D sphere to a fixation point (a pixel) in
an equirectangular frame by

a =
ϕ

360
∗W (1)

b = (1 − sin(θ )
2

) ∗ H (2)

wherea andb are the longitude and latitude positions in the equirect-
angular frame, ϕ and θ are the vertical and horizontal angles of
v in 3D space, andW andH are the width and height of the tar-
get equirectangular frame. We herein focus on the equirectangular
planar frame as it is the most common format of 360-degree videos.

Creating Fixation Maps. After the fixation points on corre-
sponding equirectangular frames are identified, we produce the
fixation map, which is a collection of fixation from multiple users
for a frame. To remove noisy points far away from the fixation,
we further apply Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm over equirectangular fixation map.
This method has been used when processing fixation on 360-degree
images [1]. DBSCAN enjoys the advantage that it does not require a
predefined number of groups like K-means and does not introduce
new points into the dataset.

Outputting SaliencyMaps. Fixation points frommultiple users
in a specific region are usually insufficient to depict a salient region.
This is because fixation points are discrete and thus the fixation
of different users are unlikely to match exactly. We therefore ap-
ply Gaussian Filter to generalize and smooth these scattered user
fixation points to a statistical region [15, 34]. This classic method
eventually generates the panoramic saliency map.

We repeat the aforementioned procedure to the selected 11
videos and generate 7,000 equirectangular frames with a fixation
map and a saliency map.Wewill use this new dataset for 360-degree
videos to train and validate the panoramic saliency detection.

3.2 Dataset Evaluation
To justify the proposed saliency dataset for 360-degree videos, it
is important to evaluate whether or not the generated saliency is
consistent with the human fixation.

We compute multiple correspondence measures [4] between
the saliency generated in the proposed dataset and the user fixa-
tion, i.e., shuffle Area Under Curve (sAUC), Normalized Scanpath
Saliency (NSS), and Pearson’s Correlation Coefficient (CC). These
are popular metrics that have been used and discussed extensively
in previous works [4, 7, 20, 23]. We also compute the correlation be-
tween user fixation and two baselines that simulate equator-biased
and central-biased saliency, respectively. Equator Bar is a model
where the saliency is linearly decreased from 1.0 to zero when
the latitude is varied from 0◦ (equator line) to ±90◦ (two poles).

Figure 2: Deep neural network architecture of PanoSalNet.

Due to the projection to equirectangular format, the saliency will
nonlinearly decrease from equator line to top and bottom line in
a frame. Similarly, the second baseline, denoted by Circle at Cen-
ter, labels the frame center point as the highest saliency (1.0) and
gradually decreases the saliency by expanding a circle around the
center point.

The dataset evaluation results are shown in Table 1. The pro-
posed dataset achieves significantly higher values for all metrics
(higher correlation to fixation) than two heuristic baselines. This
level of dataset performance is consistent with state-of-art saliency
dataset in [27], indicating that we have created a reasonable dataset.
Furthermore, we can conclude that panoramic saliency cannot be
easily obtained by simple central-biased or equator-biased predic-
tion. Instead, a more sophisticatedmodel is certainly needed. Finally,
since Equator Bar outperforms Circle at Center, we confirm that
users prefer the equator more than the center of equirectangular
frames during 360-degree video viewing.

4 360-DEGREE VIDEO SALIENCY DETECTION
In this section, we propose PanoSalNet, the panoramic saliency
detection model for 360-degree videos using Deep Convolutional
Neural Network (DCNN). In the following, we introduce the net-
work architecture and model training in details.

4.1 Network Architecture
In general, a larger amount of data is needed to avoid over-fitted
DCNN model and to produce a better DCNN performance. Unfor-
tunately, since head movement prediction is still at its infant stage,
there is only a limited number of head tracking datasets can be
used for creating panoramic saliency. Considering the nature of
subjective tests, it is even unlikely in the future, if not impossible,
to collect millions of saliency maps as in image classification. To ad-
dress this issue, we propose to employ transfer learning to adapt an
existingmodel to the target DCNN for panoramic saliency detection.
Transfer learning is a popular technique to bring pre-trained deep
learning models into other expert domains that significantly re-
duces the amount of required training data. This technique has been
successfully applied to problems with very small domain datasets
[20, 36]. A similar strategy has also been adopted in the training of
saliency detection for 360-degree images [3, 21].

The network architecture of PanoSalNet is illustrated in Figure 2.
The proposed network architecture with nine (de)convolution lay-
ers is inspired by Deep Convnet, a state-of-art DCNN for saliency
detection of regular images. The first three layers enjoy the same
structure of VGGNet[30], which allows us to initialize the param-
eters of these layers by a popular deep learning network that has



shown outstanding performance on image classification task. The
next five layers are initialized and trained from scratch on SALICON
[14], a saliency map dataset for regular images. To apply transfer
learning on such a network, the last few fully connected layers,
which contain most of the network parameters, are usually removed
and replaced by layers suitable for the requirement of the new ap-
plication domain [27]. However, since this architecture from Deep
Convnet has no fully connected layer, we conduct transfer learn-
ing over all layers after the initial parameters of these layers are
obtained as mentioned above. This way, we adapt this traditional
model to the proposed PanoSalNet.

The predicted saliency will be enhanced one more time as the
final output by a prior filter [7], which lowers the saliency in areas
based on a priori knowledge, such as four corners of an equirectan-
gular frame.

4.2 Model Training
Investigation on our saliency dataset shows that fixation points
tightly cluster around the region of interest when they appear ini-
tially. Then they will scatter around the original clustering point
when some users move their head away. We have found that such
scattered fixation points would prevent the model learning mean-
ingful patterns and significantly degrade detection performance.
Thus, to increase the quality of input saliency maps for model train-
ing, we select 400 pairs of video frames and saliency maps from our
panoramic saliency dataset. This training data is selected such that
fixation points concentrated. We also guarantee that there is not
too many similar frames for the same video scene, which avoids
over-fitting on a few video scenes having a large number of frames.
Note that the amount of data is sufficient and is consistent with
previous models using transfer learning that have 40-1000 frames
of domain data [3, 20, 36].

To expedite the model learning, the frame resolution is down-
scaled to 512×288. The data are also normalized to (-1, 1) so that
data samples center around the zero point. Since predicting saliency
map is a regression problem, we use Euclidean distance to mea-
sure the difference between ground truth saliency maps and the
predicted results. The loss function is defined as follows,

L =
1
N

∑
i
Li (f (Xi ,W ),yi ) + λR(W ) (3)

where the batch size N is set at 3,W is a model parameter to be
learned, Li is the Euclidean distance between the output saliency
and the ground truth saliency yi , and R(W ) is the regularization
expression. PanoSalNet uses standard l2 for regularization to control
over-fitting with weight decay multiplier λ = 5e−4. The f function
calculates the output saliency map based on the input image Xi .
The proposed model is trained using Stochastic Gradient Descent
(SGD) with momentum. SGD is a popular method to update model
parameters to reduce the value of loss function L. For each iteration,
model parameters are updated using the following rules,

ut+1 = ρut + α∇L(Wt )
Wt+1 =Wt − ut+1

(4)

The momentum ut+1 accumulates gradient values to speed up the
learning. It is controlled by parameter ρ = 0.9. The network is
trained with fixed learning rate α = 5e − 9. PanoSalNet is tested

Figure 3: The proposed LSTM architecture.

every 100 iterations to check training progress. We stop the training
at 800 iterations to prevent over-fitting.

After model training, the proposed PanoSalNet is then able to
predict a saliency map of panoramic saliency based on the input
360-degree video.

5 HEAD MOVEMENT PREDICTION IN HMD
One key challenge of head movement prediction is when the user
takes a fast head movement, during which the prediction accuracy
has been observed to drop significantly [28]. This type of fast head
movement can occur when a new object is presented. Since a user
typically moves her head to the most salient region of the video
scene, a more accurate saliency detection can potentially address
the fast movement prediction and improve the accuracy of head
movement prediction. To this end, we integrate the panoramic
saliency maps generated from PanoSalNet with user head orienta-
tion history for head movement prediction. We exploit both factors
and their interplay to maximize the prediction accuracy.

5.1 Model Architecture
In order to learn the pattern of head tracking logs of multiple
users and to capture the interplay between temporal user behavior
and multiple saliency maps from the past video frames, a highly
nonlinear learning model is required. We propose to utilize Long
Short-Term Memory (LSTM) model since LSTM is proven to be able
to handle a large amount of temporal data and outperform other
similar algorithms [29].

In particular, the proposed LSTM model is a Recurrent Neural
Network (RNN) that works on the temporal domain. Since stacking
multiple layers of LSTM on top of each other can handle more com-
plex data [29], we adopt an LSTM network with the model hyperpa-
rameters of α layers and β neurons per layer for the model training
and validation. The network architecture of the head movement
prediction is shown in Figure 3. The head movement prediction
network receives input features from a given number of previous
time steps, and provides the prediction of head orientation in the
next k time steps (prediction window). The input features of the
LSTM network include both the panoramic saliency map detected
by the proposed PanoSalNet (indicating regions of interest) and the
head orientation feature (recording head movement history).

To better correlate head orientation with requested/viewed video
tiles in 360-degree video streaming, we follow a similar method



Table 2: Panoramic Saliency Detection Performance
Model sAUC NSS CC

Dataset Saliency 0.7966 2.4806 0.2885
Deep Convnet 0.6320 1.3256 0.1982
PanoSalNet 0.7112 1.9864 0.2521

in [10] and represent the head orientation feature by head orien-
tation map, a spatial data structure similar to saliency map. Head
orientation map highlights the viewport within a frame that would
be viewed under current head orientation. We generate the head
orientation map by first identifying the tile pointed by current head
orientation vector and set its likelihood to be viewed as 1.0. Using
this tile as the center, we then apply a Gaussian kernel to gradually
select other tiles with a lower likelihood to be viewed around the
center tile until the selected tiles can cover a viewport.

5.2 Model Training
We use 5 videos from our dataset for model training and another 4
videos for model validation. For each video, we select one segment
with a length of 20-45 seconds. The video segment is selected such
that there are one or more events in the video that introduce new
salient regions (usually when new video scene is shown) and lead to
fast head movement of users. We extract the timestamped saliency
maps and head orientation maps from these videos, generating a
total of 300,000 data samples from 432 time series using viewing
logs of 48 users.

Before the model training, we normalize the values in saliency
maps and head orientation maps to (-1, 1). The loss function is
calculated based on the Euclidean distance between predicted head
orientation map and ground truth head orientation map. Our model
parameters are updated with Root Mean Square Propagation (RM-
Sprop) method. RMSprop can dynamically adjust the learning rate
during training time. It is a preferred method for RNN as suggested
by [16].

6 EVALUATIONS
In this section, we evaluate the performance of the proposed saliency
detection model PanoSalNet and the head movement prediction
model by comparing them with existing models. We implement
both models using Intel AI DevCloud that has pre-installed popular
machine learning frameworks. Specifically, PanoSalNet is imple-
mented under the provided Caffe framework while the head move-
ment prediction model is implemented on Keras using Tensorflow
as the backend. Both experiments are written in Python language.
The code is submitted to Intel AI DevCloud as batch jobs. We choose
one Intel Xeon processor with 24 cores for both experiments.

6.1 Saliency Detection Evaluation
We evaluate the saliency detection performance by comparing
the proposed PanoSalNet with Deep Convnet [27], a state-of-art
saliency model for regular images/videos. It achieves competitive
results on popular saliency dataset such as iSUN and MIT300. Its
weaker variant, the ShallowNet, is the winner of the 2015 LSUN
challenge[23]. Therefore, Deep ConvNet is a strong and timely base-
line to evaluate our panoramic saliency dataset. We randomly select

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4: User fixation and saliency detection results of vari-
ousmodels for example videos. a)-c) original frame; d)-f) fix-
ation map; g)-i) saliency map of Deep Convnet; j)-l) saliency
map of ML-Net; m)-o) saliency of PanoSalNet.

1000 frames from the dataset in Section 3 and pass each equirect-
angular frame into PanoSalNet and Deep Convnet to produce the
predicted saliency. We also use the ground truth saliency collected
in the dataset to obtain performance upper bound (denoted by
Dataset Saliency).

6.1.1 Saliency Performance Metrics. We first evaluate the saliency
detection performance using the three metrics mentioned in Sec-
tion 3 (the higher the better), which measure the correlation be-
tween the generated saliency map and true user fixation. As shown
in Table 2, PanoSalNet performs reasonably well compared to the
upper bound of Dataset Saliency and significantly outperforms
Deep Convnet in all metrics. PanoSalNet learns the unique visual
attention of 360-degree viewing and largely boosts the correlation
between predicted saliency and true user fixation. On the other
hand, Deep Convnet is designed for regular images/videos and suf-
fers the problems of central bias and multi-object confusion, and
hence introduces unsuitable saliency for equirectangular frames.

6.1.2 Illustrative Examples. We show the saliency detection results
of some example video frames for different saliency detection mod-
els. The benchmark models include Deep Convnet [27] and the
saliency model in [7] (denoted by ML-Net).

Figure 4 shows three original video frames and their true user fix-
ation, as well as the predicted saliency obtained by the saliencymod-
els for comparison. The results show that PanoSalNet has learned
some intrinsic patterns from 360-degree videos. For example, it does
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Figure 5: The accuracy of the proposed head movement pre-
diction model outperforms the benchmarks under different
training settings.

not incur central bias and can address the multi-object confusion
in equirectangular frames effectively.

In particular, in the first frame, user fixation is on the small
animal in the corridor. PanoSalNet predicts the corridor correctly
and places a less weight on the policeman. Deep Convnet also
includes the animal but since it covers a lot of regions, leading
to a lower precision score. ML-Net labels the policeman with the
highest saliency without the small animal. In the second frame,
PanoSalNet learns the region at the slope, which is typically the
target in moving videos. Unfortunately, Deep Convnet and ML-Net
ignore the equator bias, thus mark all visible areas around the frame
center, including the twisted person at the top edge. This does not
match 360-degree video viewing behavior because users in HMD
environment have to actually look all the way up to see this person
and they would rarely move the head as this [1]. The third image
is a difficult case for saliency detection since users are split into
two groups. Some users concentrate on the men at the frame center
while some other users choose to focus on the group at the right
edge. PanoSalNet accurately identifies the center group and assigns
a lower saliency to the group at the right edge. On the other hand,
ML-Net and Deep Convnet both mark more objects than desired,
including the house on the left back and the open region between
these objects.

6.2 Head Movement Prediction Evaluation
We now evaluate the proposed LSTM head movement prediction
using both head orientation map and the saliency map detected
by PanoSalNet as the input features. We compare its performance
against several benchmarks by varying the input features of the
LSTM model, i.e., (a) using Deep Convnet predicted saliency maps
only (denoted byDeep), (b) using PanoSalNet saliency only (denoted
by PanoSalNet), and (c) using both Deep Convnet saliency maps
and head orientation maps (denoted by Deep+Head).

The evaluation metric is the accuracy of head movement predic-
tion. Accuracy [10] is calculated based on the ratio of the number
of overlapping tiles between predicted and ground truth head ori-
entation map over the total number of predicted and viewed tiles.
The model is trained on Keras framework for over 40,000 iterations.
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Figure 6: The impacts of prediction window on the accuracy
of the head movement prediction models.

For every 4,000 iterations, the average accuracy over all frames of
the validation set is recorded. We identify the best accuracy that a
model can get through increasing iterations and report the result
for each model.

Note that the validation set used in this evaluation was never
used to train the LSTM model. This can evaluate if it is feasible for
the proposed LSTM model to adapt to novel data. We use the input
feature from the past one second to predict the head orientation in
the future. The equirectangular frame is spatially configured into
16×9 tiles. We also vary the number of layers α and the number of
neurons β and represent different cases by LSTM α-β . The default
prediction window k is set to be 0.5 seconds.

6.2.1 Accuracy. The prediction accuracy of the various models un-
der a different number of layers and neurons is shown in Figure 5.
It can be seen from the figure that the proposed head movement
prediction significantly outperforms the benchmarks. On average,
the proposed model achieves an accuracy that is 1.9 times over
PanoSalNet, 2.6 times over Deep, and 9% higher than Deep+Head.
The enhanced performance is attributed to the fact that the pro-
posed prediction model leverages the unique panoramic saliency
during 360-degree video viewing as well as absorbing the interplay
between panoramic saliency and the head orientation history. On
the other hand, Deep+Head only treats the 360-degree video as
regular video and thus the predicted visual attention is not accu-
rate. Furthermore, from the degraded performance of PanoSalNet
and Deep, we can also infer that head orientation and its temporal
interplay with saliency is as important as panoramic saliency in
predicting head movement. Finally, since a significant accuracy
improvement is not observed when increasing the number of layer
and neurons in the prediction models, we conclude that a com-
plicated and deeper model may not be needed, especially under
resource-constrained condition.

6.2.2 Impacts of Prediction Window. To explore the effect of pre-
diction window k on the accuracy of the proposed model and other
three benchmarks, we vary k from 0.5 seconds to 2.5 seconds.

The results are shown in Figure 6. Thanks to the advantages
of identifying panoramic saliency and integrating head orienta-
tion, the proposed model achieves a higher accuracy consistently.
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Figure 7: The accuracy of the proposed head movement pre-
diction model under different videos.

Furthermore, we observe that the accuracy of the proposed model
and Deep+Head drops at a similar rate as the prediction window
enlarges and begins to converge at 2.5 second window size. This is
because the head orientation history becomes less relevant when
predicting the further future. At 2.5 second, prediction becomes
difficult even with the combination of head position and saliency.
However, an interesting observation is that models using saliency
maps as input features, i.e., PanoSalnet and Deep, show a relatively
stable accuracy as k increases. In fact, we verify that the accuracy of
PanoSalnet and Deep remains at a similar level at 0.34 and 0.29 even
when the prediction window increases to 6.3 seconds. This may
be because the temporal correlation between consecutive saliency
maps is much less than that between consecutive head orientation
maps. Without connecting and interplaying with head orientation
history, temporal information provided by consecutive saliency
maps drops to a minimal, approximating saliency map as a timely
independent feature. Based on the resilience of saliency map to
prediction window size, we believe that saliency map may play an
important role in predicting head movement in the far future.

6.2.3 Impacts of Video Content. To understand how the proposed
model would adapt to different video content for head movement
prediction, we use the proposed model to predict head movement
on 9 videos from [37]. The nine videos can be divided into three
categories: static scenes with a few scene switches (conan1, conan2,
war, football, cooking, rhinos), fast-moving scenes (skiing, surfing)
and slow-moving scenes (alien). We re-train the proposed model
using the data of 40 users and the rest data of 8 users is used as
novel data for validation.

We show the accuracy of each video in Figure 7. It can be seen
that the proposed model achieves the best performance on static
videos, e.g., reaching an accuracy of 85% on “cooking” that has one
static scene. On the other hand, a decreased accuracy is observed
for fast moving videos such as skiing. This result could be due to the
fact that content trajectory is not considered in the model, making
it slow or difficult to capture the visual attention change. We will
discuss this issue and potential future work in Section 7.

7 DISCUSSION AND FUTUREWORK
Panoramic Saliency Dataset. Although PanoSalNet effectively
learns important viewing pattern for 360-degree videos, there might

be other inherent attention that is not yet discovered. As the first
attempt, the created dataset for panoramic saliency may not include
all unique viewing patterns in 360-degree videos. However, with
the emergence of 360-degree video research, a larger dataset for
panoramic saliency can be collected based on the methodology in
Section 3 to improve the performance of saliency detection model.

Content Trajectory Feature. Our experiments and previous
studies [10] have shown that content trajectory of moving objects
impacts head movement prediction in 360-degree videos. However,
projection from the sphere to the equirectangular frame would
cause the distortion of content trajectory, e.g., a tiny content motion
can be stretched out to a long trajectory. A separate study to address
the distortion and the modeling of content trajectory in 360-degree
videos is definitely needed to replace traditional content trajectory
basedmodel. Once this feature space is better understood, we expect
to achieve an even higher prediction accuracy.

System Integration. Integrating the proposed head movement
prediction framework into 360-degree video systems requires fur-
ther treatment of two issues. First, we point out that the time over-
head of running the head movement prediction is minimal since
the training of LSTM is done offline. The millisecond-level time
overhead is negligible considering that the video segment request
and head movement prediction are only performed every several
seconds. Second, as prediction errors are always possible in head
movement prediction, it is beneficial to stream a larger area than
the predicted region based on the prediction accuracy in order to
accommodate the errors. Alternatively, image-based rendering can
be exploited to compensate the missing tiles. Since these strategies
sacrifice either bandwidth efficiency or local computation efficiency,
a careful tradeoff is necessary before the real-world deployment.

8 CONCLUSION
In this paper, we take an important step in exploring head move-
ment prediction for 360-degree videos by leveraging the unique
panoramic saliency. Motivated by the issues of central bias and
multi-object confusion in traditional saliency models, we present
PanoSalNet to detect panoramic saliency using the new self-built
dataset. Then the proposed head movement prediction framework
is trained based on the combination of panoramic saliency and
head orientation history. With the accurate prediction at 0.5-1.0 sec-
ond, it can potentially improve the performance of VR systems, e.g.,
providing a smooth playback by prefetching predicted views and ex-
pediting the rendering of users’ viewport from the equirectangular
format by caching previous computations.

We would like to emphasize that this research represents a sig-
nificant attempt to address traditional vision problems on a new
media content – 360-degree video. This work not only enriches
computer vision research, but also boosts the performance of mul-
timedia systems. We believe the success of this research can enable
a suite of future works studying other interdisciplinary problems
involving computer vision and multimedia systems.
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