
Event-driven Stitching for Tile-based Live 360 Video Streaming
Bo Chen

University of Illinois at Urbana-Champaign
Urbana, Illinois

boc2@illinois.edu

Zhisheng Yan
Georgia State University

Atlanta, Georgia
zyan@gsu.edu

Haiming Jin
Shanghai Jiao Tong University

Shanghai
zyan@gsu.edu

Klara Nahrstedt
University of Illinois at Urbana-Champaign

Urbana, Illinois
Klara@illinois.edu

ABSTRACT
360 video streaming is gaining popularity because of the new type
of experience it creates. Tile-based approaches have been widely
used in VoD 360 video streaming to save the network bandwidth.
However, they cannot be extended to the case of live streaming
because they assume the 360 videos stitched offline before stream-
ing. Instead, stitching has to be done in real-time in live 360 video
streaming. More importantly, the stitching speed as shown in our
experiments is one order of magnitude lower than the network
transmission speed, making stitching more of a deciding factor of
the overall frame rate than the network transmission speed. In this
paper, we design a stitching algorithm for tile-based live 360 video
streaming that adapts stitching quality to make the best use of the
timing budget. There are two main challenges. First, existing tile-
based approaches do not consider various semantic information in
different scenarios. Second, the decision of tiling schemes for tile-
based stitching is non-trivial. To solve the above two challenges, we
present an event-driven stitching algorithm for tile-based 360 video
live streaming, which consists of such an event-driven model to
abstract various semantic information as events and a tile actuator
to make tiling scheme decisions. We implement a streaming system
based on event-driven stitching called LiveTexture. To evaluate the
proposed algorithm, we compare LiveTexture with other baseline
systems and show that LiveTexture adapts well to various timing
budgets by meeting 89.4% of the timing constraints. We also demon-
strate that LiveTexture utilizes the timing budget more efficiently
than others.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Human-
centered computing→Virtual reality; • Theory of computa-
tion → Scheduling algorithms; • Computing methodologies →
Optimization algorithms;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’19, June 18–21, 2019, Amherst, MA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6297-9/19/06. . . $15.00
https://doi.org/10.1145/3304109.3306234

KEYWORDS
Live streaming, tile-based stitching, 360 video

ACM Reference Format:
Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt. 2019. Event-
driven Stitching for Tile-based Live 360 Video Streaming. InMMSys ’19: 10th
ACM Multimedia Systems Conference, June 18–21, 2019, Amherst, MA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3304109.3306234

1 INTRODUCTION
360 video streaming is becoming more and more popular because
of the new type of immersive environment it brings. 360 video
streaming can be categorized into on-demand 360 video streaming
and live 360 video streaming. For the on-demand case, web services
like YouTube have already been able to provide on-demand 360
video streaming, where the viewer can watch a 360 video with a
head mounted display (HMD) like the Google Cardboard [4] and
virtually experience the feeling of being at a historical site or riding
a roller coaster. The live case is also useful in scenarios like sports
broadcasting to let remote viewers watch a game in a real-time and
immersive manner.

Despite the extensive studies on the on-demand 360 video stream-
ing systems, they cannot be directly extended to the live case. Many
tile-based streaming techniques [3, 16, 21, 23] have been proposed
as the default architecture in on-demand 360 video streaming sys-
tem. In these systems, a 360 video is divided into chunks of the same
duration and each chunk is further spatially divided into many tiles.
Each of these tiles will be encoded into segments with different
bitrate levels and stored at the server. When a client requests the
video, the segments will be fetched and sent to the client based on
the network condition using DASH protocol [15]. However, these
approaches all make the assumption that the 360 video has been
already prepared in an offline setting and cannot be scaled to the
live case.

Across the system pipeline, the key difference between on-demand
and live 360 video streaming systems is the need for real-time stitch-
ing. Unfortunately, we observe that, in a single-hop streaming link,
stitching consumes much more time than other system components
such as camera feeding, network transmission and video rendering
(Section 2). This provides a unique opportunity to address stitch-
ing in the system design to achieve the vision of live 360 video
streaming.

The objective of this paper is to design a stitching algorithm for
tile-based live 360 video streaming systems that can logically divide

https://doi.org/10.1145/3304109.3306234
https://doi.org/10.1145/3304109.3306234

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt

a panoramic frame into tiles for stitching and adjust the number of
pixels to be processed in tiles in real-time. This stitching algorithm
considers the semantic information indicating the region of interest
where the viewer would be looking, and the stitching quality of
each tile is chosen such that the tile which is of more interest to
the viewer is stitched at a higher quality while the stitching time is
restrained by the timing budget per frame 1 (timing constraint).

To achieve this goal, we are facing two challenges. First, the
semantic information in live 360 video streaming is diverse de-
pending on the scenarios, e.g., in the broadcasting of a basketball
game, the viewer would be more interested in the players and the
ball. Even though the existing architecture for the on-demand 360
video streaming has adopted a few general techniques to charac-
terize the viewer’s interests, e.g., maximizing the sum of quality
in the saliency region [9] or maximize the quality in the region
where the viewer will watch [3], they are not versatile enough to
be generalized to various scenarios.

Second, given the semantic information, it is non-trivial to de-
cide on an optimal tiling scheme 2. Our experiment (Section 5)
shows that the stitching time of a tile is a complex function of the
tiling scheme that cannot be explicitly expressed, which makes it
hard to model this decision as an optimization problem. A naive
approach is to run the stitching module over every possible combi-
nation of the tiling scheme and semantic information to measure
the stitching time and the objective (defined over the semantic in-
formation) under every possible setting. Thus, for any semantic
information, we can pick an optimal tiling scheme that both sat-
isfies the timing constraint as well as achieves the highest value
of the objective. However, the number of combinations to explore
would be countless.

To solve the first challenge, this paper presents a versatile event-
driven model for tile-based 360 video live streaming. In this model,
an event detector detects various types of semantic information
and models them as events. The event is a 2D coordinate on the
panoramic frame indicating the region where the viewer might be
interested in. With this model, we can handle various scenarios by
modeling useful semantic information as events. For example, in
the broadcasting of a basketball game, the events can be defined as
the location of the players’ faces and the ball. We further define an
objective function based on the events in a frame. By optimizing
this objective function, we can decide on a tiling scheme for a frame.

For the second challenge, we design a stitching module com-
prised of a tile actuator and a basic stitcher. The tile actuator chooses
the optimal tiling scheme via an offline profiling phase and an on-
line greedy search phase. The basic stitcher uses the chosen tiling
scheme to perform tile-based stitching.

Based on the proposed event-driven model and the stitching
module, we implement an event-driven tile-based live 360 video
streaming system named LiveTexture. To evaluate the proposed
stitching algorithm, we compare several baseline live 360 streaming
systems with LiveTexture over multiple combinations of events and
timing budgets. The results show that LiveTexture is reliable, i.e.,
capable of meeting 89.4% of the timing constraints, which implies

1The timing budget is a value determined by the required frame rate of a specific
application, i.e., timing budget = 1/ frame rate.
2The tiling scheme describes how a panoramic frame is divided and how the stitching
quality of each tile is assigned.

that the proposed algorithm can adapt well to various timing bud-
gets. LiveTexture is also capable of providing a mean normalized
score that is better than most baseline systems and shows that it
can use the available timing budget more efficiently.

In summary, there are three main contributions of this paper.
• We propose a versatile event-driven model for tile-based live
360 video streaming that can handle different scenarios by
modeling semantic information as events.
• We design a stitching module comprised of a basic stitcher
and a tile actuator. The tile actuator finds the optimal tiling
scheme via the offline profiling phase and the online greedy
search phase.
• In the evaluation, we compare LiveTexture with various
baseline systems over multiple combinations of sets of events
and timing budgets. LiveTexture achieves a high reliability
of 89.4% and a mean normalized score that is better than
most of other baseline systems.

In the remainder of this paper, we first show the motivation of
this paper by presenting a prototype for the live 360 video stream-
ing and performing the latency analysis in Section 2. Based on the
event-driven model and the tile-based 360 video stitching model, we
present the event-driven tile-based live 360 video streaming frame-
work in Section 3. In Section 4, we present the problem formulation
for the stitching module of the proposed framework and identify
the challenge. In Section 5, we design a tile actuator to tackle the
aforementioned challenge. In Section 6, we present implementation
details of the system, LiveTexture, built on top of the event-driven
tile-based live 360 video streaming framework. The evaluation is
conducted in Section 7. The related work is presented in Section 8.
Finally, we conclude this paper in Section 9.

2 MOTIVATION

Figure 1: Live 360 video streaming prototype

Our motivation study shows that stitching is a primary compo-
nent of bottleneck in the pipeline of live 360 video streaming and
it is necessary to improve its performance. To study the latency
performance of live 360 video streaming, we build a prototype as
shown in Figure 1 to perform latency analysis. This system consists
of a camera module (6 GoPro [6] cameras, 30 fps @ 960×720pixels),
a stitching module (implemented on a laptop with a 8-core CPU),
a streaming module (implemented on both the laptop and the An-
droid phone), and a rendering module (implemented on the Android

Event-driven Stitching for Tile-based Live 360 Video Streaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

phone). We measure the processing latency required to render one
panoramic frame in a single-hop setup including the camera feeding
latency (CamFeed), the stitching latency (Stitching), the network
transmission latency 3 (Net) and the rendering latency (Render),
respectively. The stitched panoramic frame is of 2048 × 1024 pixels.
The result is shown in Figure 2.

Figure 2: Time analysis of the prototype

It can be seen that the stitching latency is one order of magnitude
higher than the latency of other modules. In other words, the rate
of the stitching module to produce panoramic frames is too slow to
catch up with that of the other modules to perform feeding of raw
frames, network transmission of panoramic frames, or rendering of
panoramic frames. This does not happen to on-demand 360 video
streaming systems because, in their cases, all the video contents
are stitched before requested and no real-time stitching is required
as in live 360 video streaming. The condition may vary across
different platforms with different processing power, e.g., replacing
a quad-core Intel i7-3770 CPU@ 3.40 GHz with a GTX 980 GPU can
improve the average frame rate to stitch a 2160 × 1080 panoramic
frame from 7.30 fps to 23.76 fps [9]. However, it is unrealistic to
embed GPUs into a 360-degree camera, e.g., GoPro Omni [6] and
Ricoh Theta S [17], due to the large size, power consumption and the
overheat problem of GPUs. For CPU-based 360 video live streaming
systems, the stitching speed is crucial for the real-time performance
of the whole live streaming system, whose latency requirement
ranges from milliseconds (interactive applications such as remote
medical assistance) to minutes (e.g., NFL broadcasting). Optimizing
the stitching speed can help meet the latency requirement and
make the system resilient to network jitters. Hence, we decide to
focus on improving the stitching speed of 360 videos in this paper.
Since tile-based approaches [20, 21] have been widely adopted
for on-demand 360 streaming to save bandwidth in recent works,
it is natural to consider tile-based approaches for live 360 video
streaming. Motivated by this situation, the rest of this paper will
answer the following three questions.

• How can we conduct tile-based live 360 video streaming
(Section 3)?
• What are the new challenges in doing live 360 video stitching
(Section 4) and how to solve it (Section 5) ?
• Is tile-based stitching good for live 360 video streaming (Sec-
tion 7)?

3 EVENT-DRIVEN TILE-BASED LIVE 360
VIDEO STREAMING FRAMEWORK

In this section, we first introduce the event-driven model and the
stitching model. Based on these two models, we propose the event-
driven tile-based live 360 video streaming framework.

3Note that the network transmission latency depending on the network bandwidth is
different from the propagation latency depending on the medium.

3.1 Event-driven model
In this subsection, we will first define the event in a tile-based 360
video streaming context and discuss how tile-based streaming is
driven by the event.

3.1.1 Event. The event is a 2D point in the panoramic frame that
carries semantic information. The semantic information indicates
what region in the panoramic frame the viewer might be inter-
ested in, which can be extracted by image processing algorithms
or recorded by sensors while the viewer is using a head-mounted
display to view the video. Hence, the event can take many forms,
e.g., the center of the viewer’s viewport, the saliency point, or a
point touched by the viewer on the screen (when the application is
interactive).

3.1.2 Event-driven tile-based streaming. In event-driven tile-based
streaming, the scaling ratios of tiles are selected such that tiles
containing more events will have higher stitching quality with the
constraints that the required resource does not exceed its limit.

The event-driven model for tile-based streaming can be gener-
alized to many existing works. In 360 Video Foveated Stitching
[9], the saliency information and the foveated region are used as
events to reduce the data rate. In viewport-adaptive streaming [3],
the viewport is used as the event. This model is also versatile to
be applied to a specific scenario. For example, in a sport scenario
where a basketball game is streamed in real-time, the event can
be defined as locations where the players’ face and the ball are
detected. We show the example in Figure 3, where the location of
players’ faces and the ball, i.e., events, are marked by circles. In this
way, the viewer can get more detailed image information of the
players’ face and the ball.

Figure 3: Events in a sport scenario (location of players’ faces
and the basketball are treated as events)

3.2 Stitching model
The stitching model we adopt is the tile-based 360 video stitching
model. The panoramic frame is logically divided intoN tiles indexed
in raster-scan order. The stitching model is shown in Figure 4. For
each tile to be stitched, the image content is first fetched from
the corresponding camera(s) at its original size. Then, the fetched
content will be down-sampled (scaled down) by a scaling ratio
selected fromM possible scaling ratios, i.e., the ratio of the size of
a tile after scaling to that before scaling (scaling). Next, the scaled
image content will be projected (warping) and blended (blending)

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt

onto a tile on a scaled panoramic frame 4. After all tiles are blended,
one or multiple scaled panoramic frame will be created depending
on the number of used scaling ratios (3 in the example of Figure 4).
Finally, all scaled panoramic frames are up-sampled to the size of
the output panoramic frame and then added together to create the
output panoramic frame (stacking).

3.3 System Architecture
Based on the event-driven model and the stitching model, we pro-
pose an event-driven tile-based live 360 video streaming framework,
which is shown in Figure 5. This architecture is comprised of a cam-
era module, a stitching module, a streaming module, a rendering
module and an event detector. The event detector detects seman-
tic information and delivers the events to the stitching module 5.
The stitching module consists of a basic stitcher and a tile actuator.
The basic stitcher fetches image contents from the camera module
and the tiling scheme from the tile actuator, and create the out-
put panoramic frame. Details on how the basic stitcher works are
illustrated in Figure 4 The tile actuator makes tiling scheme deci-
sions, i.e., decides on how a panoramic frame should be divided into
tiles and how each tile should be scaled, based on events produced
by the event detector. The streaming module sends the stitched
panoramic frames over the Internet, which will then be rendered
by the rendering module at the client side.

The key module for the proposed framework to adapt to various
types of semantic information is the stitching module, where the
tile actuator is the most important part. Next, we will present the
problem formulation for the tile actuator and the challenge in Sec-
tion 4. After that, we will present our design of the tile actuator in
Section 5.

4 TILE ACTUATOR PROBLEM AND
CHALLENGES

In this section, we first formulate the problem of making tiling
scheme decisions based on the event-driven model. Then, we iden-
tify the challenge in solving this problem.

4.1 Problem formulation
We assume that a tile actuator has K division schemes indexed by
k ∈ {1, ...,K}, where the k-th division scheme divides a panoramic
frame into Nk equal-sized grids (tiles). Each tile is indexed by i ∈
{1, ...,Nk }. For clarity, in the rest of this paper, we will assume all
notations are made under the k-th division scheme unless we point
out otherwise, and omit the subscript of k . For example, we will
use N to replace Nk .

We also defineM different scaling ratios sj , j ∈ {1, ...,M}, where
sj ∈ (0, 1] is the ratio of number of pixels in a scaled tile to that in
the corresponding original tile 6. We can obtain a scaling scheme

4All tiles with the same scaling ratio share one scaled panoramic frame.
5This paper does not discuss in detail how the semantic information are extracted
which is beyond the scope of this paper. In fact, some events can be generated by
performing computer vision (CV) algorithms, e.g., face detection, on the video. Some
other events can be extracted by analyzing the sensor data while the viewer is watching,
e.g., the gyrometer and the "touch" event of a touch screen. At the implementation
level, we just simulate the behavior of the event detector by generating a random
number of points at random positions on a panoramic frame.
6We sort the scaling ratios such that the smaller scaling ratio gets a larger index value.

by assigning the scaling ratio to every tile in a panoramic frame.
The set of all possible scaling schemes is denoted by {Xl }, where
each scaling scheme Xl is indexed by l ∈ {1, ...,MN } and MN

is the number of combinations of scaling schemes. In the scaling
scheme Xl = {xi, j } (the subscript l is omitted for clarity), xi, j = 1
denotes that the i-th tile selects the j-th scaling ratio for stitching
and xi, j = 0 otherwise. (k,Xl) is defined as a tiling scheme. We
further introduce the concept of the event e , which indicates the
location in a panoramic frame that might be interesting to the
viewer and is represented by (ex , ey), the x- and y- coordinates of
e . The set of events is denoted by E = {(ex , ey)}.

In this problem, the tile actuator needs to find the optimal tiling
scheme (k∗,Xl ∗), i.e., thek∗-th division scheme and the l∗-th scaling
scheme under this division scheme, for a specific set of events E.

We define the event score u = Φ(k,Xl ,E) to represent the overall
quality achieved for an event set E with the tiling scheme (k,Xl).
By using ni to denote the number of events within the i-th tile, the
event score can be defined as shown in Equation 1.

Φ(k,Xl ,E) =
N∑
i=1

ni

M∑
j=1

xi, jsj . (1)

The objective to maximize the event score Φ(k,Xl ,E) can be
done in two steps.

In the first step, we fix k and find the optimal l∗ for every division
scheme indexed by k as shown in Equation 2.

l∗ = argmax
l

Φ(k,Xl ,E)

s .t .
N∑
i=1

M∑
j=1

τi, jxi, j ≤ T ,

M∑
j=1

xi, j = 1,∀i .

(2)

The first constraint restricts the total time consumption of stitching
a frame, where τi, j denotes the stitching latency of the i-th tile at the
j-th scaling ratio, and T is the timing budget, which is determined
by the required frame rate of the system. The second constraint
restricts that there is only one scaling ratio for each tile.

In the second step, we find the index of the division scheme k∗
producing the highest event score as shown in Equation 3:

k∗ = argmax
k

Φ(k,Xl ∗ ,E), (3)

where l∗ is obtained in the previous step. After this two-step opti-
mization, we can obtain the optimal tiling scheme (k∗,Xl ∗). How-
ever, we cannot directly solve the above optimization problem.
The reason is that the modeling of τi, j is difficult, which will be
discussed in the next subsection.

4.2 Challenges
To illustrate why modeling τi, j is difficult, we run the stitching
module under different division schemes of a panoramic frame of
2048 × 1024 pixels, i.e., 1 × 1, 2 × 1, 2 × 2, 4 × 2, 4 × 4, and 8 × 4,
where a × b means a panoramic frame is divided into equal-sized
grids of a columns and b rows. Under each division scheme, we fix
the scaling ratio of all tiles to the same value and measure the total
stitching latency of a panoramic frame for different values of the

Event-driven Stitching for Tile-based Live 360 Video Streaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

Figure 4: Stitching model (basic stitcher in Figure 5)

Figure 5: Event-driven tile-based live 360 video streaming framework

scaling ratio, i.e., 0.2, 0.25,...,1. The average stitching latency per
tile for different scaling ratios is calculated by dividing the total
stitching latency for different scaling ratios over the number of tiles
and plotted in Figure 6. The x-axis in each figure represents the
scaling ratio while the y-axis represents the processing latency for
stitching. Obviously, the processing latency is neither linear to the
scaling ratio nor monotonic!

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

(a) 1 × 1
0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

(b) 2 × 1
0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

(c) 2 × 2

0 0.2 0.4 0.6 0.8 1

4

8
10

-3

(d) 4 × 2
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8
10

-3

(e) 4 × 4
0 0.2 0.4 0.6 0.8 1

0

2

4

6
10

-3

(f) 8 × 4

Figure 6: Average processing latency for stitching a tile (a×b
means a 2048 × 1024 frame is divided into equal-sized grids
of a columns and b rows). The x-axis represents the scaling
ratio while the y-axis represents the processing latency (s).

In these figures, the higher scaling ratio leads to the higher
processing latency in most cases, which is reasonable because more
pixels are being processed. However, when the number of tiles in a
division scheme increases, the latency is not linear to the scaling
ratio. What is even more counter-intuitive is that at some scaling
ratios, the processing latency for stitching a tile is even larger than
that without scaling. For example, in Figure 6(e), the processing

latency for stitching of a tile when the scaling ratio is 0.65 is larger
than that when the scaling ratio is 1, i.e., no scaling.

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

(a) 1 × 1
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8
10

-3

(b) 2 × 1
0 0.2 0.4 0.6 0.8 1

0

2

4

6
10

-3

(c) 2 × 2

0 0.2 0.4 0.6 0.8 1

0

2

4
10

-3

(d) 4 × 2
0 0.2 0.4 0.6 0.8 1

0

2

4
10

-3

(e) 4 × 4
0 0.2 0.4 0.6 0.8 1

0

2

4
10

-3

(f) 8 × 4

Figure 7: Average processing latency for different operations
(a × b means a 2048 × 1024 frame is divided into equal-sized
grids of a columns and b rows). The x-axis represents the
scaling ratio while the y-axis represents the processing la-
tency (s). The red, green and blue lines represent the latency
for scaling, feeding and warping, respectively.

To investigate the cause of this, we further conduct a thorough
analysis of the total stitching latency of one panoramic frame where
we analyze the latency of scaling, warping and blending operations
performed on the image content from one camera to a tile 7. The
result is shown in Figure 7, where we can find that
i) the latency of warping and blending is nearly linear to the

scaling ratio,
ii) the latency of scaling differs from the other two by first in-

creasing then decreasing as the scaling ratio increases,
7We do not include the stacking time in Figure 7 since its effect is negligible in the
pattern we observed

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt

iii) when the size of divided tiles is large, e.g., 1 × 1 and 2 × 1, the
latency of scaling is negligible compared with that of warping
or blending, and

iv) when the size of divided tiles is small, e.g., 4 × 4 and 8 × 4, the
latency of scaling is comparable to that of warping or blending.

These findings indicate that when the size of divided tiles is
large, the latency of warping and blending dominates in each tile,
thus the stitching latency appears to be nearly linear to the scaling
ratio. However, when the size of divided tiles is small, the latency
of scaling dominates in each tile, thus the stitching latency appears
to be first increasing then decreasing as the scaling ratio increases.

We also find that the processing latency for warping differs from
each other because of different positions of a tile in a panoramic
frame, and the stacking time during stitching can be as high as 0.1s
if we are stacking over 10 scaled panoramic frames together.

All these findings contribute to the unpredictability of the stitch-
ing latency. Confronted with this challenge, we propose a design
of the tile actuator to derive the optimal tiling scheme based on an
offline profiling phase and an online greedy search phase.

5 TILE ACTUATOR DESIGN
In this section, we present our design of the tile actuator to derive
the optimal tiling scheme. This design consists of an offline profiling
phase and an online greedy search phase. The offline profiling
explore tiling schemes in an efficient way to find out the quasi-
optimal tiling scheme for a given set of events in an offline manner.
The quasi-optimal tiling scheme will be selected for different sets
of events and further optimized by the online greedy search phase
in real-time to obtain the final tiling scheme decision.

5.1 Offline Profiling
To find the quasi-optimal tiling scheme, we introduces the concept
of the Pareto Boundary [24]. The Pareto Boundary in this paper is a
small set of tiling schemes such that any tiling scheme not on the
Pareto Boundary cannot outperform tiling schemes on the Pareto
Boundary in terms of both the event score and processing latency
for stitching at the same time. We find the Pareto Boundary for
different set of events. In this way, when a set of events comes,
the tile actuator can use the Pareto Boundary and select the tiling
scheme that can maximize the event score with available CPU
resources. However, there are two main problems
i) in contrast to the limited types of video queries, the number

of different sets of events is countless and requires unlimited
memory to hold the profile for every set of events, and

ii) in contrast to the limited selection of "knobs" while processing
video queries, the complexity to explore different tiling schemes
is about O(MNmax) where M denotes the number of scaling
ratios and Nmax denotes the maximum number of tiles among
all possible division schemes.

These two problems are fundamentally the "large state space" 8
problem. For the rest of this section, we will 1) present techniques
to reduce the state space (Section 5.1.1), 2) explain how to explore
the state space with aforementioned techniques (Section 5.1.2),

8The state space represents the combinations of tiling schemes and events in this
paper.

and 3) describe how to find the Pareto Boundary for each set of
events within the explored state space and use it to decide a quasi-
optimal tiling scheme to be used in the online greedy search phase
(Section 5.1.3).

5.1.1 State Space Reduction. We present four techniques named
Quantization, Hashing, Elimination and Offloading to reduce the
state space.

Quantization. The tile actuator needs to respond to different num-
bers of events in a tile differently, but instead of considering the
actual number of events, we only consider the quantization level
of events in a tile, denoted by qi , where i is the index of a tile.
Each of the quantization levels qi is an integer, which can be
linearly quantized from the number of events in a tile with a
pre-defined total quantization levels. For example, suppose the
number of events in four tiles are 0, 5, 9, 10 and the total quan-
tization levels is 4, the quantization level of each tile is deter-
mined by finding out what range among [0, 2.5), [2.5, 5), [5, 7.5)
and (7.5, 10] the number of events of a tile is in. Hence, the quanti-
zation level of the four tiles are 0, 2, 3, 3. The set of quantization
levels of tiles in a panoramic frame is defined as the quantization
scheme. Them-th set of quantization scheme is denoted by Qm =

{qi |qi is the quantization level of the i-th tile, i ∈ {1, ...,N }}. As a
result, the event score defined in Equation 1 can be modified to
Equation 4.

Φ(k,Xl ,Qm) =
N∑
i=1

qi

M∑
j=1

xi, jsj , (4)

Hashing. Since the objective function in Equation 1 does not con-
sider the spatial information of tiles, if we exchange the quantiza-
tion levels of any two different tiles to produce a new quantization
scheme (QS), we can easily obtain the corresponding optimal tiling
scheme (OTS) by exchanging the scaling ratios in the original op-
timal tiling scheme at the positions previously exchanged in the
quantization levels. For example, in Figure 8, QS #1 and QS #2 repre-
sent two quantization schemes while OTS #1 and OTS #2 represent
the optimal tiling schemes for QS #1 and QS #2, respectively. Com-
pared with QS #1, QS #2 only exchanges the quantization levels
of two tiles, i.e., "1" and "3" in the figure. As a result, the optimal
tiling scheme OTS #2 can be easily derived by exchanging the
corresponding scaling ratios, i.e., "0.9" and "0.7", in OTS #1.

In other words, for any two quantization schemes with the same
number of tiles for every quantization level, the optimal tiling
scheme for them should be only considered once. We implement
this technique by using a hash functionH (·) that produces the same
hash key for any two such quantization schemes, and quantization
schemes with the same hash key will be only explored once.

Elimination. In Figure 6we can find that for some division schemes,
e.g., Figure 6(f), there exists a critical scaling ratio sc ∈ (0, 1) such
that the stitching latency resulted from the scaling ratio s ∈ [sc , 1)
is no better than that resulted from the scaling ratio s = 1, i.e., no
scaling. Illustration of the critical scaling ratio is shown in Figure 9.

The critical scaling ratio implies that any tiling scheme con-
taining a scaling ratio s ∈ [sc , 1) is no better than another tiling
scheme with only that scaling ratio being replaced by 1. We term
any scaling ratio s ∈ [sc , 1) as the useless scaling ratio. Any tiling

Event-driven Stitching for Tile-based Live 360 Video Streaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

Figure 8: Optimal tiling
schemes for quantization
schemes with same hash

Figure 9: Critical scaling ra-
tio

schemes having useless scaling ratios are eliminated and will not
be explored in the offline profiling phase.

Offloading. For every quantization scheme, we enforce the scaling
ratio of tiles with the same quantization level to be the same and
let the offline profiling phase to do the fine-grained adjustment of
the scaling ratio of tiles.

5.1.2 State Space Exploration. We explore the entire state space
by exploring each division scheme sequentially. The pseudocode
for the state space exploration of the k-th division scheme with
aforementioned state space reduction techniques is shown in Algo-
rithm 1.

We require all possible scaling schemes Ω = {Xl }, all quanti-
zation schemes Ψ = {Qm }, and the critical scaling ratio sc . The
outputs are all explored score-latency pairs {(u, t)}, where u and t
are the event score and the latency, respectively. When the explo-
ration starts, a hashmap will be first initialized to empty (line 1).
Then, for each quantization scheme Qm ∈ Ψ (line 2), we obtain the
hash key key = H (Qm) (line 3). If key exists in the hashmap, the
exploration continues with the next scaling scheme. Otherwise, key
will be inserted into the hashmap (line 4-7). After that, we iterate
over all scaling schemes Xl ∈ Ω (line 8). We use the Elimination
technique to check whether there exists a tile in the scaling scheme
containing the useless scaling ratio and we continue with the next
scaling scheme if it does (line 9-10). If we find two tiles, e.g., the i-th
tile and the i′-th tile, having the same quantization level qi = qi′

but with different scaling ratios, the exploration continues with
the next scaling scheme (Offloading) (line 11-12). After all above
checks to reduce the state space, based on the scaling scheme Xl ,
we finally run the basic stitcher to stitch 6 images of 960 × 720
pixels into one panoramic frame of 2048 × 1024 pixels, measure the
latency, calculate the event score defined in Equation 4 and save
the score-latency pair into a file (line 13-16).

By using the above techniques, the size of the explored state
space is 643, 635 while that is over 6832 if none of the state reduction
techniques is applied, which saves both profiling time, storage space
and the hashing time for our system.

5.1.3 Quasi-optimal tiling scheme. After obtaining all the explored
score-latency pairs Γ = {(u, t)}, we can determine the Pareto Bound-
ary Γp by inserting {(u, t)} ∈ Γ into Γp if the condition, ∀(u, t) ∈
Γ, (u −u′) · (t ′ − t) ≤ 0, is satisfied, which means none of the score-
latency pairs in Γ is strictly better than any score-latency pair in Γp
by achieving both higher event score and lower latency. Since the

Algorithm 1 State Space Exploration (k-th division scheme)
Require: Scaling schemes: Ω; quantization schemes: Ψ; critical

scaling ratio: sc
Ensure: Explored score-latency pairs {(u, t)}
1: hashmap ← {}
2: for Qm in Ψ do
3: h ← H (Qm)
4: if h exists in hashmap then
5: continue
6: else
7: hashmap.insert(h)
8: for Xl in Ω do
9: if ∃xi, j ∈ Xl , s.t., xi, j = 1, sj ∈ [sc , 1) then
10: continue
11: if ∃i, i′ ,qi = qi′ , i , i

′ , s.t., xi, j = 1,xi′, j′ = 1, j , j
′

then
12: continue
13: Run the basic stitcher based on Xl
14: Measure latency t
15: Calculate event score u = Φ(k,Xl ,Qm)
16: Save (u, t) pair into a file

state space for a quantization scheme is not large, we implement
the derivation of the Pareto Boundary in a brute-force way that
compares every pair of explored score-latency pairs.

Now that we have the Pareto Boundary, we can follow the proce-
dure illustrated in Figure 10 to find the quasi-optimal tiling scheme
for a given set of events E. First, we will divide the panoramic frame
as instructed by different division schemes, e.g., 1×1, 2×1, and 2×2.
Then, we quantize the given set of events E into the quantization
scheme based on different division schemes. The hash key of the
quantization scheme will be computed by the hash function and
used to query the corresponding Pareto Boundary in the memory.
In the graph to the right of "Hashing", the x-axis represent the
processing latency while the y-axis represent the event score. The
red triangles represent score-latency pairs generated by different
tiling schemes in a division scheme. Among these red triangles,
those on the Pareto Boundary are marked by blue dots. On the
Pareto Boundary, all scaling schemes with their processing latency
greater than the timing budget (T = 0.15s in this example) will
be discarded. Next, the tiling scheme with the highest latency is
selected from the remaining scaling schemes, which is defined as
the Constrained Pareto Optimal scaling scheme denoted by Xlcpo
(the subscript of k is omitted for clarity). Since this scaling scheme
is chosen from the Pareto Boundary, there will not be any scaling
scheme achieving higher event score without violating the timing
constraint. The corresponding tiling scheme (k,Xlcpo) is defined
as the Constrained Pareto Optimal tiling scheme (referred to as the
CPO tiling scheme). After obtaining the CPO tiling schemes for all
division schemes, we can determine the quasi-optimal tiling scheme
by selecting the CPO tiling scheme producing the highest event
score (as defined in Equation 1) and denoting that tiling scheme by
(kqo ,Xlcpo). The latency associated with it will also be saved for
the online greedy search phase.

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt

Figure 10: Find the quasi-optimal tiling scheme for a set of events, timing budget T = 0.15s

5.2 Online Greedy Search
In the offline profiling phase, we obtain a quasi-optimal tiling
scheme for a given set of events. The online greedy search phasewill
fix the division scheme and fine-tune the scaling scheme through a
greedy search approach to derive the optimal tiling scheme (k∗,Xl ∗).
The online greedy search phase proceeds in steps. Intuitively, in
each step, it selects the tile that can maximize the gained event score
per unit of incurred processing latency of the stitching module, and
increases the scaling ratio in that tile. To achieve this, we need to
solve two problems: 1) estimation of time consumption incurred by
the increased scaling ratio, and 2) selection of a tile in each step.

5.2.1 Time consumption estimation. When the scaling ratio of a
tile changes, the time consumption is mainly affected in two ways:
i) the sum of time for scaling, warping and feeding of that tile
which changes as the number of pixels changes with the scaling
ratio, and

ii) the time to stack scaled panoramic frames of different scaling
ratios, which is increased when the scaling ratio of a tile is
increased to a value not used in the previous step.

By denoting the scaling ratio of the i-th tile and the increment of
the scaling ratio as si and δs , the total incremented time cost of the
tile can be expressed as ∆τ (si ,δs) = ∆τ1(si ,δs)+∆τ2(si ,δs), where
∆τ1(si ,δs) is the incremented time cost due to scaling, warping and
blending, and ∆τ2(si ,δs) is the incremented time due to stacking
(see Figure 4).

To find ∆τ1(si ,δs), we run the basic stitcher for different division
schemes with the same scaling ratio in one panoramic frame. The
sum of latency for scaling, warping and blending (SWB latency) of
a panoramic frame is measured and divided by the number of tiles
to calculate the average SWB latency for a tile. The average SWB
latency of a tile is thusmodeled as a linear piece-wise function of the
scaling ratio si denoted by t(s). Thus, we have ∆τ1 = t(si+δs)−t(si).

To measure ∆τ2(si ,δs), we run the stitching module on differ-
ent numbers of different scaled panoramic frames and find that
∆τ2(si ,δs) is nearly linear to the number of panoramic frames to be
stacked together. The average time to stack one panoramic frame
is measured to be 0.0042s 9. By using S to represent the set of used
scaling ratios, we have

∆t2(si ,δs) =
{

0.0042 si + δs ∈ S
0 otherwise (5)

9This value is dependent on the size of the output panoramic frame (2048×1024 pixels
in our case) and the processing platform which is described in Section 7.

5.2.2 Tile selection. We denote the index of each step up to the step
F of tile selection by f = 1, 2, ..., F . At each step, a tile indexed by i
is selected whose scaling ratio, denoted by si will be incremented
to si + δs , where δs is a constant. The quantization level of the i-th
tile is denoted by qi and the estimated increased latency due to
selecting the i-th tile is denoted by ∆τi = ∆τ (si ,δs). The selection
of the tile in each step can be modeled as a following optimization
problem:

i∗ = argmax
i

qiδs

∆τi

s .t .τ F = ∆τi + τ
F−1 ≤ T ,

(6)

where we select the tile i∗ that maximizes the gained event score
per unit of incurred processing latency. The constraint restricts
the total latency of stitching after F steps below the timing budget,
where τ F denotes the estimated processing latency after F greedy
search steps and τ 0 is the estimated stitching time by applying
quasi-optimal tiling scheme. This greedy search terminates when a
step cannot be proceeded without violating the timing constraint.

6 IMPLEMENTATION
Based on the proposed framework, we implement a system named
LiveTexture. The stitching module is implemented on Dell Preci-
sion Workstation 5510 with the processor of Xeon E3-1505M v5 @
2.80GHz×8 andmemory of 32GB.We employ off-the-shelf solutions
for the other modules. Specifically, the camera module is comprised
of 6 GoPro cameras (30 fps @ 960 × 720), which are connected
to the workstation via a USB 3.0 hub. The size of the panoramic
frame is 2048 × 1024 pixels. The event detector is implemented on
the workstation and emulated by generating a random number of
events at random locations on the panoramic frame. The streaming
module is implemented on the workstation and the Google Nexus 5
with GStreamer [7]. The codec and protocol for streaming are x264
and UDP. The rendering module is realized with Google VR SDK
[5] on the Google Nexus 5, which can produce 360 videos ready to
be viewed by a Google Cardboard.

7 EVALUATION
In this section, we evaluate LiveTexture by comparing it with several
baseline systems. We also investigate the performance of LiveTex-
ture across different division schemes.

Event-driven Stitching for Tile-based Live 360 Video Streaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

7.1 Evaluation Methodology
Evaluation settings.We consider 6 division schemes, i.e., 1×1(#1),
2 × 1(#2), 2 × 2(#3), 4 × 2(#4), 4 × 4(#5), and 8 × 4(#6), 17 scaling
ratios, i.e. 0.2, 0.25, ...,1, and 4 quantization levels.

Definitions and Notations. We use each system to process
frames from 6 Gopro Cameras with each camera generating Ce =
100 frames and the 6 frames generated at the same time are associ-
ated with a randomly generated set of events. In each set of events,
a random number of events are generated at random positions on
the panoramic frame, which emulates the behavior of the event
detector. We repeat the above process for Ct = 21 different timing
budgets, i.e., 0.05s, 0.06s,...,0.25s 10, resulting in Ce ×Ct = 2100 dif-
ferent combinations of events and timing budgets. The experiment
for each combination of events and timing budgets are repeated for
Cr = 5 times.

We use i ∈ {1, ...,Ce } to denote the index of the events, and
j ∈ {1, ...,Ct } to denote the index of the timing budget. The esti-
mated tiling scheme for the i-th set of events and the j-th timing
budget is denoted byTSi, j . The corresponding estimated processing
latency and event score are denoted by τi, j and ui, j , respectively.
The maximal achievable event score for the i-th event is denoted by
Ui , which is the event score of the i-th event when the scaling ratios
of all tiles are set to the highest value. The real processing latency
for TSi, j denoted by τ̂i, j is calculated by running the basic stitcher
under this tiling scheme for Cr times and taking the average of the
time measured during each repeated experiment. For the i-th event
and the j-th timing budget, we use an indicator function to denote
whether the timing budget is violated as shown in Equation 7.

1i, j =

{
1 τ̂i, j ≤ τi, j
0 otherwise (7)

7.2 Baselines
We implemented LiveTexture and 5 types of baseline systems with
different implementations of the tile actuator.

1. LiveTexture. This is the proposed approach that runs on 6
division schemes defined earlier. We denote this approach as "LT".

2. Thresholding. The approach is used in [9] to assign stitching
quality based on the KLT [18] feature density of tiles. Since we used
randomly generated events instead of doing events detection, we
simply perform thresholding on the density of events. Each tile
will be assigned the highest or lowest stitching quality based on
whether the density of events of it is above or below the threshold.
We denote this approach as "Thresh".

3. LiveTexture without the online greedy search. This ap-
proach will use the quasi-optimal tiling scheme of LT as the final
optimal tiling scheme without doing the online greedy search. We
denote this approach as "LTW/OGS".

4. Greedy Search. This set of approaches employs the online
greedy search phase described in Section 5.2. The difference is that
its optimization starts the tiling scheme with all tiles the lowest
scaling ratio. We implement 6 versions of this approach for different
division schemes denoted as "GS #1, GS #2, ..., GS #6".

5.All high/low stitching quality.This set of approachesmakes
the stitching quality of all tiles to be the highest/lowest regardless of
10 By choosing this range, we can observe the behavior of the system when it does
not or does have enough timing budgets.

the events and timing budgets. It models the behavior of 360 video
live streaming systems that do not change the stitching quality of
different tiles. We implement 6 versions of all high stitching quali-
ties and all low stitching qualities, respectively. They are denoted
as "High #1, High #2,..., High #6" and "Low #1, Low #2,..., Low #6".

6. LiveTexture running on different division schemes. In
contrast to LT, running with 6 division schemes, we also implement
6 variants of LT, each running a single division scheme denoted as
"Div #1, Div #2,...,Div #6".

7.3 Macro Analysis
In this section, we compare the performance of LiveTexture with
baseline systems.

7.3.1 Decision Time. Decision Time (DT) is the time of an approach
to produce an optimization result, which measures how fast an
approach can make a tiling scheme decision. The mean decision
time for LT and LTW/OGS is around 0.0065s , which is higher than
that of other approaches (approximately 0.0002s), but negligible for
live 360 video streaming.

7.3.2 Estimation Error. Estimation Error (EE) evaluates the error of
an approach to estimate the real processing latency of the stitching
module. Estimation Error is measured as shown in Equation 8.

EE =
1

Ce ×Ct

Ce∑
i=1

Ct∑
j=1
(
|τi, j − τ̂i, j |

τ̂i, j
)2. (8)

The result is shown in Figure 11(a). LTW/OGS has the lowest es-
timation error. The estimation error of LT and GS #6 are a little
higher than LTW/OGS but within 0.1. The other baseline systems
are not included since they do not estimate the stitching latency
resulted from the tiling scheme.

L
T

T
h
re

sh
L

T
W

/O
G

S
G

S
 #

1
G

S
 #

2
G

S
 #

3
G

S
 #

4
G

S
 #

5

0

0.2

0.4

0.6

E
st

im
a

ti
o

n
 E

r
r
o

r
 (

s
2

)

(a) Different strategies

D
iv

 #
1

D
iv

 #
2

D
iv

 #
3

D
iv

 #
4

D
iv

 #
5

D
iv

 #
6

0

0.2

0.4

0.6

E
st

im
a

ti
o

n
 E

r
r
o

r
 (

s
2

)

(b) Different division schemes

Figure 11: Estimation Error

7.3.3 Reliability. Reliability (R) evaluates the capability of an opti-
mization algorithm to provide a "valid" tiling scheme that enables
the stitching module to meet various timing budgets. The calculated
metric is shown in Equation 9. The result is shown in Figure 12.

R =
1

Ce ×Ct

Ce∑
i=1

Ct∑
j=1

1i, j × 100%. (9)

We find that LT, LTW/OGS, and GS #1, 2, 3 can achieve high
reliability of over 80% with that of LT being 89.4%. In addition, the
reliability of the greedy search approaches, GS #1...6, decreases as
the number tiles increases. The reliability of Thresh is bad (below
50%) because this approach cannot adapt the tiling scheme towards

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt

L
T

T
h
re

s
h

L
T
W

/O
G

S
G

S
 #

1
G

S
 #

2
G

S
 #

3
G

S
 #

4
G

S
 #

5
G

S
 #

6
H

ig
h
 #

1
H

ig
h
 #

2
H

ig
h
 #

3
H

ig
h
 #

4
H

ig
h
 #

5
H

ig
h
 #

6
L
o
w

 #
1

L
o
w

 #
2

L
o
w

 #
3

L
o
w

 #
4

L
o
w

 #
5

L
o
w

 #
6

0

20

40

60

80

100

R
e

li
a

b
il

it
y

 (
%

)

Figure 12: Reliability of different strategies
different timing budgets and fails to meet the timing constraint for
more than half of the time. For High #1...6, the reliability is also
bad because the stitching module violates the timing constraint for
most of the time by adopting the highest stitching quality for all
tiles. In contrast, the reliability for Low #1...6 is better than High
#1...6 because the former are being more conservative by adopting
the lowest stitching quality in all tiles.

7.3.4 Good-case Normalized Score (GNS). GNS evaluates how an
approach maximizes the normalized event score (the ratio of the
event score of an approach to the maximal achievable event score
for a set of events) when the timing constraint is not violated, i.e.,
"good" cases. GNS is calculated via Equation 10. Figure 13 shows
the result of GNS .

GNS =

∑Ce
i=1

∑Ct
j=1 1i, jui, j/Ui∑Ce

i=1
∑Ct
j=1 1i, j

. (10)

L
T

T
h
re

sh
L

T
W

/O
G

S
G

S
 #

1
G

S
 #

2
G

S
 #

3
G

S
 #

4
G

S
 #

5
G

S
 #

6
H

ig
h
 #

1
H

ig
h
 #

2
H

ig
h
 #

3
H

ig
h
 #

4
H

ig
h
 #

5
H

ig
h
 #

6
L

ow
 #

1
L

ow
 #

2
L

ow
 #

3
L

ow
 #

4
L

ow
 #

5
L

ow
 #

6

0

0.2

0.4

0.6

0.8

1

G
N

S

Figure 13: Good-case Normalized Score

High #1...6 achieve the highestGNS because they set the scaling
ratio of all tiles to be the highest 11. On the contrary, Low #1...6
achieve the lowest GNS because they set the scaling ratio of all
tiles to be the lowest. LT achieves aGNS = 0.572, and LTW/OGS is
close to LT in terms of GNS . Note that this value is dependent on
both the platform the algorithm is running on and the range of the
timing budget chosen for evaluation. These two approaches make
conservative tiling scheme decisions to meet the timing constraints,
11Note that GNS = 1 is sometimes not achievable because some sets of events is
empty, making its event factor to be 0.

making itsGNS to be dragged down.GNS of Thresh is high because
the chosen threshold value makes it tend to choose higher stitching
quality than it should.We can also find that GS #1...6 do not perform
well in terms ofGNS implying that the online greedy search phase
alone is not enough to make good use of the timing budget to
achieve high event score.

7.3.5 Mean Normalized Score (MNS). GNS does not consider the
cases where an approach violates the timing constraint, as a result
of which, we useMNS to measure the event score of "good" cases
under all cases regardless of whether the timing constraint is vio-
lated. MNS is calculated via Equation 11. The result is shown in
Figure 14.

MNS =
1

Ce ×Ct

Ce∑
i=1

Ct∑
j=1

1i, j
ui, j

Ui
. (11)

L
T

T
h
re

sh
L

T
W

/O
G

S
G

S
 #

1
G

S
 #

2
G

S
 #

3
G

S
 #

4
G

S
 #

5
G

S
 #

6
H

ig
h
 #

1
H

ig
h
 #

2
H

ig
h
 #

3
H

ig
h
 #

4
H

ig
h
 #

5
H

ig
h
 #

6
L

ow
 #

1
L

ow
 #

2
L

ow
 #

3
L

ow
 #

4
L

ow
 #

5
L

ow
 #

6

0

0.2

0.4

0.6

M
N

S

Figure 14: Mean Normalized Score

We can find thatMNS is smaller than GNS for all approaches,
but the reduction is not much for LT, LTW/OGS, and GS #1...6
because their reliability is high. LT achieves aMNS = 0.511, which
is better than that of LTW/OGS and Thresh. The reason why using
High #1...6 is comparable to our approach in terms of MNS is
because the setup of our experiment range includes many timing
budget that can be met by High #1...6 with the highest scaling ratios
while our approach is conservative in these cases, which affects
MNS of our approach. However, in real world, with the sameMNS ,
it is better to meet 100% of the timing constraints with a moderate
GNS (LT) than only meet 50% of the timing constraints with a high
GNS (High #1...6).

7.3.6 Influence of the timing budget. To investigate how different
approaches are affected by the timing budget, we plot the real pro-
cessing latency as a function of the timing budget for LT, LTW/OGS,
and GS #1...6 as shown in Figure 15(a). The real processing latency
of LT, LTW/OGS and GS #1...6 gradually increases as the timing
budget increases. The difference is that the real processing latency
for each one of GS #1...6 can only be changed within a short range
while LT and LTW/OGS can adapt the real processing latency in a
wider range.

7.4 Micro Analysis
In this section we investigate how the division scheme affects the
performance of LiveTexture.

Event-driven Stitching for Tile-based Live 360 Video Streaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

0.05 0.1 0.15 0.2 0.25

Timing Budget (s)

0.05

0.1

0.15

0.2

0.25

P
r
o
ce

ss
in

g
 L

a
te

n
cy

 (
s)

LT

Thresh

LTW/OGS

GS #1

GS #2

GS #3

GS #4

GS #5

(a) Different strategies

0.05 0.1 0.15 0.2 0.25

Timing Budget (s)

0.05

0.1

0.15

0.2

0.25

P
ro

c
es

si
n

g
 L

a
te

n
cy

 (
s)

Div #1

Div #2

Div #3

Div #4

Div #5

Div #6

(b) Different division schemes

Figure 15: Real Processing Latency vs. Timing Budget
7.4.1 Estimation Error. We show the Estimation Error in Figure 11(b).
The approaches of Div #1 and Div #2 perform better than the rest
with less than 0.1 estimation error.

7.4.2 Reliability. The reliability for different division schemes is
shown in Figure 16(a). In general, division schemes with fewer tiles
are more reliable than those with more tiles. The main reason is
that fewer tiles means less computation overhead of scaling and
hence less mean processing latency, which enables the algorithm
with fewer tiles to meet some timing constraints that cannot be
met by those with with more tiles.

We also plot the reliability of different division schemes as a
function of the timing budget in Figure 16(b). The reliability of
division schemes with fewer tiles, e.g., Div #1, first increases as the
timing budget increases, and then stabilizes at reliability 1. However,
for division schemes with more tiles, e.g., Div #6, it takes more time
for their reliability to stabilize at 1.

D
iv

 #
1

D
iv

 #
2

D
iv

 #
3

D
iv

 #
4

D
iv

 #
5

D
iv

 #
6

0

50

100

R
e
li

a
b

il
it

y
 (

%
)

(a) Division Schemes

0.05 0.1 0.15 0.2 0.25

Timing Budget (s)

0

20

40

60

80

100

R
el

ia
b

il
it

y
 (

%
)

Div #1

Div #2

Div #3

Div #4

Div #5

Div #6

(b) Relation to the timing budget

Figure 16: Reliability

7.4.3 Good-case Normalized Score. GNS of different division schemes
are plotted in Figure 17(a). Generally, the division scheme with
fewer tiles achieves higher GNS . The division scheme with more
tiles does not perform well because the increased number of tiles
causes its critical scaling ratio to be small. This causes the chosen
scaling schemes to be conservative that leads to low event scores
in more cases.

GNS of different division schemes as a function of the timing
budget is shown in Figure 17(b). For all division schemes, GNS
gradually increases as the timing budget increases while division
schemes with fewer tiles have higher GNS values.

7.4.4 Mean Normalized Score. MNS for different division schemes
are shown in Figure 18(a). Division schemes with more tiles have
higherMNS values because of their high reliability and high GNS
values. MNS as a function of the timing budget is shown in Fig-
ure 18(b). In general, MNS increases with the timing budget and

D
iv

 #
1

D
iv

 #
2

D
iv

 #
3

D
iv

 #
4

D
iv

 #
5

D
iv

 #
6

0

0.2

0.4

0.6

G
N

S

(a) Across division schemes

0.05 0.1 0.15 0.2 0.25

Timing Budget (s)

0

0.2

0.4

0.6

0.8

1

G
N

S

Div #1

Div #2

Div #3

Div #4

Div #5

Div #6

(b) Relation to the timing budget

Figure 17: Good-case Normalized Score
the division scheme with fewer tiles perform better than those with
more tiles.

D
iv

 #
1

D
iv

 #
2

D
iv

 #
3

D
iv

 #
4

D
iv

 #
5

D
iv

 #
6

0

0.1

0.2

0.3

0.4

M
N

S

(a) Across division schemes

0.05 0.1 0.15 0.2 0.25

Timing Budget (s)

0

0.2

0.4

0.6

0.8

1

M
N

S

Div #1

Div #2

Div #3

Div #4

Div #5

Div #6

(b) Relation to the timing budget

Figure 18: Mean Normalized Score

7.5 Summary of evaluation
In this evaluation, we show that LiveTexture is reliable to meet
various timing constraints by achieving a reliability of 89.4% and
efficient to use available timing budgets by achieving a mean nor-
malized score of 0.511 which is higher than that of most baseline
systems. For systems that have comparable mean normalized scores
to our system, they are more likely to violate the timing constraint
and will suffer when the computation resource is not enough.

8 RELATEDWORK
In this section, we present related work on the 360 video live stream-
ing, 360 video stitching and rate adaptation techniques in 360 video
streaming.

8.1 360 video live streaming
There have already been researchers working on 360 video live
streaming. For instance, [9] has built a 360 video live streaming sys-
tem using GoPro cameras and boosts the stitching speed by foveated
stitching. [22] also builds an interactive 360 video telephony sys-
tem over LTE using GoPro cameras carried by a drone. There are
also consumer grade 360-degree cameras doing live streaming, e.g.,
GoPro Omni [6], Ricoh Theta S [17], and Samsung Gear 360 [13]
that enable users to live stream the video captured by their device
to a smartphone or PC application or the website.

8.2 360 video Stitching
360 video stitching consists the camera calibration and the image
alignment.

Camera Calibration. Camera calibration is fundamentally the
estimation of the camera model. A widely adopted camera model

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt

is the one proposed by Jean-Yves Bouguet [2], where cameras are
characterized by the extrinsic, intrinsic parameters and distortion
coefficients. The estimation involves feature extraction [1, 11], im-
age matching, rough estimation based on homography and fine
adjustment through bundle adjustment [19].

Image Alignment. Image alignment is done by applying the
projection map, the blending map and the compensation matrix
sequentially to pixels in the input frames [9]. The projection map
projects pixels on the input frame to the output panoramic frame.
The blending map indicates how the pixel values in the overlapping
image area projected from two cameras are decided. The compen-
sation map compensates for the intensity in different cameras.

8.3 Rate adaptation Techniques
Tile-based Approach. For tile-based approaches like 360Prob-
Dash [21] and OpTile [20], a raw panoramic video is divided into
video chunks with the same duration. For each chunk, it is spatially
divided into N tiles. Then, each tile is encoded into segments with
M different bitrate levels. Therefore,M ×N segments will be stored
at the server for streaming. The client can pre-fetch the tiles based
on the transmission bitrate budget.

Viewport-adaptive Approach.Viewport-adaptive approaches
like those adopted by Facebook [8] and Pixvana [10] divide a raw
panoramic frame into video chunks as tile-based approaches do.
The difference is that each video chunk is encoded into different
representations which have different distribution of quality. The
client will request different representations based on the prediction
of the viewport and the available bandwidth budget.

Projection-basedApproach. Projection-based approachesmap
pixels from a spherical surface to different forms of surface instead
of the standard approach of equirectangular projection that maps
pixels to a 2D face. Typical examples are Cubic projection [12],
offset cubic projection [25] and pyramid projection [14].

9 CONCLUSION
Tile-based approaches have been widely used in on-demand 360
video streaming. However, they cannot be directly applied to live
360 video streaming because they does not perform real-time stitch-
ing but instead assumes the video to be stitched before streaming.

In this work, we present an event-driven stitching algorithm for
tile-based live 360 video streaming. This algorithm is featured by
an event-driven model to abstract various types of semantic infor-
mation as events and a tile actuator to decide on the optimal tiling
scheme. The tile actuator decides on the optimal tiling scheme by
employing an offline profiling phase and an online greedy search
phase. The offline profiling phase efficiently explores combinations
of tiling schemes and events by applying multiple state space reduc-
tion techniques and finds the quasi-optimal tiling scheme based on
the Pareto Boundary. The online greedy search phase fine-tunes the
quasi-optimal tiling scheme by modeling an optimization problem
and repeatedly solving it.

In the evaluation, we compare our system, LiveTexture, with sev-
eral baseline systems over different combinations of events and tim-
ing budgets. The result shows that the proposed algorithm adapts

well to various timing budgets by meeting 89.4% of the timing con-
straints and uses the timing budgets more efficiently than other
baseline algorithms by achieving a mean normalized score of 0.511.

REFERENCES
[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust

features. In European conference on computer vision. Springer, 404–417.
[2] JY Bouguet. 2005. Camera calibration toolbox for matlab. California Institute of

Technology. Computational Vision at CALTECH (2005).
[3] Xavier Corbillon, Alisa Devlic, Gwendal Simon, and Jacob Chakareski. 2017.

Optimal set of 360-degree videos for viewport-adaptive streaming. In Proceedings
of the 2017 ACM on Multimedia Conference. ACM, 943–951.

[4] Google. 2014. Google Cardboard. https://vr.google.com/cardboard/
[5] Google. 2018. Google VR API reference | Google VR | Google Developers. https:

//developers.google.com/vr/
[6] GoPro. 2002. GoPro. https://gopro.com/
[7] gstreamer. 2018. GStreamer: open source multimedia framework. https://

gstreamer.freedesktop.org/
[8] Evgeny Kuzyakov and David Pio. 2016. Next-generation video encoding tech-

niques for 360 video and VR.
[9] Wei-Tse Lee, Hsin-I Chen, Ming-Shiuan Chen, I-Chao Shen, and Bing-Yu Chen.

2017. High-resolution 360 Video Foveated Stitching for Real-time VR. InComputer
Graphics Forum, Vol. 36. Wiley Online Library, 115–123.

[10] Pixvana. 2018. An Intro to FOVAS: Field of View Adaptive Streaming for Virtual
Reality. https://pixvana.com/intro-to-field-of-view-adaptive-streaming-for-vr/

[11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB:
An efficient alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE
international conference on. IEEE, 2564–2571.

[12] David Salomon. 2007. Transformations and projections in computer graphics.
Springer Science & Business Media.

[13] Samsung. 2017. Samsung Gear 360. https://www.samsung.com/global/galaxy/
gear-360/

[14] Kashyap Kammachi Sreedhar, Alireza Aminlou,MiskaMHannuksela, andMoncef
Gabbouj. 2016. Viewport-adaptive encoding and streaming of 360-degree video
for virtual reality applications. In Multimedia (ISM), 2016 IEEE International
Symposium on. IEEE, 583–586.

[15] Thomas Stockhammer. 2011. Dynamic adaptive streaming overHTTP–: standards
and design principles. In Proceedings of the second annual ACM conference on
Multimedia systems. ACM, 133–144.

[16] Afshin Taghavi Taghavi Nasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi
Prakash. 2017. Adaptive 360-degree video streaming using scalable video coding.
In Proceedings of the 2017 ACM on Multimedia Conference. ACM, 1689–1697.

[17] Ricoh Theta. 2015. Product | RICOH THETA. https://theta360.com/en/about/
theta/s.html

[18] Carlo Tomasi and Takeo Kanade. 1991. Detection and tracking of point features.
(1991).

[19] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.
1999. Bundle adjustmentâĂŤa modern synthesis. In International workshop on
vision algorithms. Springer, 298–372.

[20] Mengbai Xiao, Chao Zhou, Yao Liu, and Songqing Chen. 2017. OpTile: Toward
Optimal Tiling in 360-degree Video Streaming. In Proceedings of the 2017 ACM
on Multimedia Conference. ACM, 708–716.

[21] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 2017.
360ProbDASH: Improving QoE of 360 Video Streaming Using Tile-based HTTP
Adaptive Streaming. In Proceedings of the 2017 ACM on Multimedia Conference.
ACM, 315–323.

[22] Xiufeng Xie and Xinyu Zhang. 2017. POI360: Panoramic Mobile Video Telephony
over LTE Cellular Networks. In Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies. ACM, 336–349.

[23] Alireza Zare, Alireza Aminlou, Miska M Hannuksela, and Moncef Gabbouj. 2016.
HEVC-compliant tile-based streaming of panoramic video for virtual reality
applications. In Proceedings of the 2016 ACM on Multimedia Conference. ACM,
601–605.

[24] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. 2017. Live Video Analytics at Scale with
Approximation and Delay-Tolerance.. In NSDI, Vol. 9. 1.

[25] Chao Zhou, Zhenhua Li, and Yao Liu. 2017. A measurement study of oculus 360
degree video streaming. In Proceedings of the 8th ACM on Multimedia Systems
Conference. ACM, 27–37.

https://vr.google.com/cardboard/
https://developers.google.com/vr/
https://developers.google.com/vr/
https://gopro.com/
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/
https://pixvana.com/intro-to-field-of-view-adaptive-streaming-for-vr/
https://www.samsung.com/global/galaxy/gear-360/
https://www.samsung.com/global/galaxy/gear-360/
https://theta360.com/en/about/theta/s.html
https://theta360.com/en/about/theta/s.html

	Abstract
	1 Introduction
	2 Motivation
	3 Event-driven Tile-based live 360 video streaming framework
	3.1 Event-driven model
	3.2 Stitching model
	3.3 System Architecture

	4 Tile Actuator Problem and Challenges
	4.1 Problem formulation
	4.2 Challenges

	5 Tile Actuator Design
	5.1 Offline Profiling
	5.2 Online Greedy Search

	6 Implementation
	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Baselines
	7.3 Macro Analysis
	7.4 Micro Analysis
	7.5 Summary of evaluation

	8 Related work
	8.1 360 video live streaming
	8.2 360 video Stitching
	8.3 Rate adaptation Techniques

	9 Conclusion
	References

