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ABSTRACT
Display power consumption has become a major concern for
both mobile users and design engineers, especially consider-
ing the prevalence of today’s video-rich mobile services. The
power consumption of liquid crystal display (LCD), a domi-
nant mobile display technology, can be reduced by dynamic
backlight scaling (DBS). However, such dynamic changes of
screen brightness may degrade users’ quality of experience
(QoE) in viewing videos. How would QoE be impacted by
different DBS strategies has not yet been understood clearly
and thus obscures the way to achieve systematic power sav-
ing. In this paper, we take a first step to explore the QoE
of DBS on smartphones and aim at maximally enhancing
the display power performance without negatively impact-
ing users’ QoE. In particular, we conduct three motivational
studies to uncover the inherent relationship between QoE
and backlight scaling frequency, magnitude, and temporal
consistency, respectively. Motivated by the findings of these
studies, we design a suite of techniques to implement a com-
prehensive DBS strategy. We demonstrate an example ap-
plication of the proposed DBS designs in a mobile video
streaming system. Measurements and user evaluations show
that more than 40% system power reduction, or equivalently,
20% more power savings than the non-QoE approaches, can
be achieved without QoE impairment.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Video

General Terms
Design; Experimentation; Human Factors

Keywords
LCD; Mobile Video Streaming; Power Consumption; QoE

1. INTRODUCTION
The proliferation of mobile web access and social networks

has dramatically boosted mobile video services. Although
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mobile computing and storage capabilities have been con-
tinuously expanding in order to meet the ever-growing video
services, relatively short lifetime of batteries has long been
a major complaint by smartphone users. Among the op-
erational components of a mobile phone, display power is
one crucial issue that needs to be addressed urgently. Not
only have displays been identified as one of the most power-
consuming subsystems [1], but display power is also con-
sumed in a broader video-related applications as long as the
video is playing on the mobile phone. For example, unlike
communication components that consume energy only when
video streaming is in session, power dissipation of displays
shall occur in both online and offline video viewing.

Liquid crystal display (LCD) is a dominant display tech-
nology that is adopted by larger number of modern devices,
e.g., Apple iPhone 6/6 Plus, Google Nexus 4/5, and LG G
3/4/Pro. According to a recent study [2], the revenue share
of LCD-based mobile phones is expected to reach 70% in
2020. The power consumption of LCD primarily comes from
the backlight at the display panel. By dimming the back-
light, we could save the display energy. However, dimmed
backlight may lead to a lower perceptual luminance of dis-
played pixels, which would cause video distortion and even-
tually degrade users’ quality of experience (QoE). Hence, the
key principle of LCD power reduction in mobile videos is to
dynamically scale the backlight as low as possible without
negatively impacting users’ QoE. This is commonly termed
as dynamic backlight scaling (DBS).

Despite this general consensus, we observe that our under-
standing of power-saving strategies for LCD is still limited.
This might surprise many experts since DBS has been ac-
tively studied in design automation communities. The rea-
son behind this observation is that mobile videos introduce
new effects on the QoE of backlight scaling while little is
known regarding the optimal backlight under this new con-
text. First, prior backlight scaling schemes for a single image
[3–5] cannot be directly applied to the multi-frame videos.
Second, most exiting works [6, 7] were implemented using
programmable LCD modules, which cannot adequately re-
flect human perception on smartphones that employ larger
screen size and higher pixel-density. Most importantly, prior
objective distortion metrics for DBS, e.g., linear relationship
between perceptual luminance and backlight levels [4, 8, 9],
become inaccurate and need to be replaced by subjective
QoE modeling that specifically targets DBS.

On the other hand, although video QoE has been exten-
sively researched in the context of encoding and streaming
to improve compression and delivery performance, QoE of



backlight-scaled videos for power efficiency has not been
studied. In this research, we take a first step to explore
QoE when DBS is applied in order to maximally enhance
the power performance of LCD-based mobile phones with-
out sacrificing end users’ QoE. To achieve this ambitious
objective, we are facing several research challenges.

• Finding a suitable scaling frequency : How frequently
should DBS be applied is fundamentally dependent on
both QoE and power. Less frequent scaling will result
in more stable viewing experience, but will leave much
smaller space for manipulating the backlight dynamics,
which diminishes the potential for power saving [8].
When to apply the scaling also matters because abrupt
variation of backlight is annoying to users.

• Determining a smallest scaling magnitude: For a given
segment of video frames, obtaining a smallest scaling
magnitude in order to maximally reduce power con-
sumption is a non-trivial task. The inherent relation-
ship between QoE and backlight change has not yet
been understood clearly. This is further complicated
by the fact that users may express distinct perception
for different video contents even under the same back-
light condition.

• Applying temporally consistent DBS across multiple
segments: Simply scaling each segment’s backlight in-
dividually without inter-segment consideration shall
lead to QoE degradation because human eyes are shown
to be extremely sensitive to temporally inconsistent
videos. For example, adaptive streaming studies [10]
have reported that quality switches with high variation
frustrate the end users.

In order to tackle these challenges, we have carried out a
comprehensive investigation on the QoE of dynamic back-
light scaling. We have developed a customized video App,
QoEPlayer, to conduct three motivational studies to explore
the connection between QoE and scaling frequency, magni-
tude, and temporal consistency, respectively. By leverag-
ing statistical analysis, we discover that a video shot based
scaling frequency is on average 11 times more acceptable by
users than other alternative approaches. Accordingly, we de-
sign and tune a video shot detection algorithm to decide the
best scaling frequency. Furthermore, we observe a content-
luminance-dependent logistic relationship (instead of linear)
between QoE and backlight levels. We then construct a
QoE model using logistic regression in order to determine
the best scaling magnitude of a given video shot. Moreover,
we find it interesting that users are only sensitive to down-
scaled backlight switches rather than up-scaled ones. There-
fore, we train a binary classifier to detect those inconsistent
down-scaled backlight switches and then properly smooth
these variations. Finally, combining all these findings, we
develop a systematic strategy for DBS as applied to mo-
bile phones. We demonstrate an example application of the
proposed designs in a video delivery system and show that
more than 40% system power can be saved, which is equiva-
lent to 20% more power savings than conventional strategies
without QoE considerations.

To summarize, the contributions of the proposed research
include:

• A open-source video App, QoEPlayer, for subjective
mobile video studies on Android platform (Section 3).

• A set of motivational studies to explore the intrinsic re-
lation between QoE and scaling frequency, magnitude
and temporal consistency (Section 4-6).

• A suite of designs to achieve the most power-efficient
DBS strategies without negative effects on user expe-
rience (Section 4-6).

• A practical demonstration of the usage of the proposed
DBS designs, showing 40% system power reduction, or
equivalently, 20% more power savings than non-QoE
approaches (Section 7).

2. RELATED WORK

2.1 Dynamic Backlight Scaling
In general, exiting DBS schemes first compute the percep-

tual luminance of a backlight-scaled image by assuming it
is linearly proportional to scaling magnitude and/or original
pixel value. Then the backlight keeps scaling down until cer-
tain distortion thresholds between the two images are met.

Particularly, Cheng and Pedram scaled the backlight while
preserving the image contrast [3]. Chang et al. increased the
original pixel values to compensate for the scaling distortion
and then retained the brightness and contrast [4]. Iranli
et al. compensated the original image by considering his-
togram equalization [5]. These single-image level schemes
demonstrate the principle of backlight scaling, but they are
not directly applicable to mobile videos.

DBS for videos were studied by considering video-related
distortion metrics. Structural similarity (SSIM) [7] and peak
signal-to-noise ratio (PSNR) [11] based measure were ex-
ploited to apply DBS. Visual sensitivity characterization in
frequency domain was used to smooth the flicker effect of
DBS [6]. Recently, Lin et al. optimized the scaling strate-
gies by dynamic programming to minimize power consump-
tion [8]. Liu et al. proposed to use GPU to perform lu-
minance compensation and to reduce power effectively [9].
However, these works all rely on objective distortion for-
mulations that are not specifically developed for DBS and
therefore lack direct relationship with user experience.

In this paper, we explore the user experience of backlight-
scaled videos through subjective user tests on modern smart-
phones. We aim at uncovering the inherent relations among
QoE, backlight and video content, and utilizing them to im-
prove the power performance of mobile phones.

2.2 QoE Studies
Many objective metrics for QoE focus on low-level video

features, e.g., PSNR and SSIM [12]. However, whether or
not these objective metrics match well with user experience
is still controversial and is usually application-dependent
[13]. More commonly, QoE is modeled as mean opinion
scores obtained from subjective evaluation data. Many ef-
forts were made for different applications, such as general
networked video systems [14] and adaptive HTTP stream-
ing [15, 16], and ITU video-telephony [17]. One potential
issue of such score-based tests is that participants may be
overburdened by the multiple levels of score and may strug-
gle with making a decision [18].

Recently, binary assessment choice was suggested for sub-
jective tests to evaluate the acceptability of videos [13,18,19].
The lowest acceptable video for pleasant viewing can be



found using Method of Limits in classical psychophysics [20],
where users view a series of videos varied in successive dis-
crete steps with descending or ascending order and submit
their binary acceptability choice.

There were also important data-driven works that mine
the large-scale network traffic [21] or user engagement data
[22] to model QoE in Internet applications. However, this is
not feasible for DBS on mobile phones as users need to per-
sonally hold the device and view the backlight-scaled video
to experience the video display.

All these exiting works explore how QoE is impacted by
encoding or transmission parameters, e.g, resolution, bit-
rate and delay, in order to enhance the networking perfor-
mance. In this paper, however, our objective is fundamen-
tally different in that we probe into the new QoE space of
backlight scaling in order to enhance the power performance.

3. USER STUDY SETUP
In this section, we introduce the general setup of user

studies and system demo. Test-dependent setup will be pre-
sented in the subsequent sections.

Test Devices. LG Optimus G Pro and Google Nexus
4 are used in all tests except the study of temporal consis-
tency where G Pro and Xiaomi Mi 2 are used. The screen
size, resolution, pixel density of G Pro, Nexus 4, and Mi 2
are 5.5 inch/1080x1920/401 ppi, 4.7 inch/768x1280/318 ppi,
4.3 inch/720x1280/342 ppi, respectively. The diverse screen
setting allows us to study the impacts for different devices.

Participants. We recruit a total of 50 participants from
two universities. Their ages range from 20 to 39. There are
32 males and 18 females. All participants have a normal
color vision. We also report that one participant works in
the area of mobile display. However, we do not find any sig-
nificant difference in that particular result. A set of 40 par-
ticipants take part in the three motivational studies whereas
a set of 20 participants evaluate the system application. For
each test, participants are divided into two halves and each
half uses a different test phone.

Video Sources. We use 15 training sources for moti-
vational studies. There are 5 standard sequences, 2 open
movies [23], and 8 movie trailers that are 2015 Oscar nomi-
nees for best picture. To validate the designs in system-level
application, we also prepare another 4 test sources that are
2015 Oscar nominees for best actor and actress without over-
lapping with above sources. Such selection concurs with the
important principle of user studies that real-world materials
should be used [18]. Since we are interested in DBS, we en-
code all videos identically at a high quality with 1280x720
resolution, 23 quantization parameter, 24 frames/second,
and H.264/AVC baseline profile. We also encode all au-
dio materials at AAC format with 44kHz and >180kbps to
guarantee that users can understand the content and enjoy
the viewing experience. These encoded sources will be split
into test clips for the studies in the subsequent sections.

Assessment Objective. Due to the simplicity and com-
fort of user decision in binary-choice QoE tests, we follow
prior works [13,18,19] to adopt this promising method. Par-
ticipants are asked to identify whether or not a test clip is
acceptable. Since we intend to maximally reduce the power
without negative effects on users’ regular viewing experience,
acceptable quality is informed as the quality with tiny/no
adjustment of screen brightness that participants would en-
joy and thus have a pleasant experience in daily life.

(a) Readme (b) Playlist

(c) Pop-up Dialogue (d) Opinion Form

Figure 1: Screenshots of QoEPlayer.

Test Environment. Human perception of screen bright-
ness might be affected by ambient light. We focus on the
ambient light ranging from 100 to 1000 lux, which mim-
ics the indoor residential and working lighting [24]. This
is because people spend majority of time on viewing mo-
bile videos in such indoor scenarios. According to the study
in [25], 358 out of 663 people watch mobile video at home
while 176 at university or working place, 92 at vehicle and
37 at cafe shop, barber and bus station. Although the loca-
tion distribution within the categories is not known, it is still
clear that a greater bulk of mobile viewing occurs indoor.

Test App: QoEPlayer. We implement a open-source1

Android application for the tests. Initially, participants reg-
ister at the Readme page (Figure 1a) by providing personal
information. They are then asked to randomly select a video
clip that has multiple versions differed by a certain stimu-
lus (Figure 1b). The presentation order of multiple versions
can be customized as random, ascending, and descending.
Once a test version is selected, QoEPlayer will automati-
cally check whether the ambient light meets the requirement
via the light sensor in the device. If satisfied, video playback
will start. Otherwise, a warning window that instructs users
to move to a darker/brighter environment will pop up.

Upon playing the video, QoEPlayer creates a control thread
to dynamically adjust the backlight via Android API based
on a given scaling profile. It also guarantees that DBS is syn-
chronized with the video and audio codec to support pause,
fast forward, etc. During video playback, participants can
double tap the screen to initiate a pop-up dialogue (Fig-
ure 1c) and submit their decision. Note that this function
is only active when allowed by the test protocol. Alterna-
tively, there is always a opinion form (Figure 1d) showing
at the end of playback. After the choices are submitted in

1www.cse.buffalo.edu/UBMM/People/zhisheng_yan.html



either way, QoEPlayer will automatically save the results of
participants and return to the playlist.

This automatic process provides participants with a sim-
pler and more immersive viewing experience, which eventu-
ally speeds up the studies. We emphasize that QoEPlayer
can be modified and ported to any mobile QoE studies.

4. ADDRESSING DBS FREQUENCY
To find a proper scaling frequency, we must identify the

requirements in terms of both QoE and power. First, it is de-
sired to let the backlight scaling occur at time points when
users pay much less attention to the video. Second, the
number of video segments separated by the scaling points
should be as many as possible if QoE is not compromised.
In fact, more segments allow more rooms for manipulating
the backlight dynamics, hence reducing more power [8]. For
example, if we mix two segments whose lowest scaling mag-
nitude to maintain QoE areM1 andM2, we would need to
apply the magnitude max(M1,M2) to the mixed segment
to ensure QoE, which is less power efficient than assigning
M1 and M2 to each segment, respectively.

4.1 Motivational Study

4.1.1 Methodology
Ideally, we should examine the QoE under all combina-

tions of segmentation for a video and then model the scaling
frequency versus QoE data and content features of segments.
However, this is infeasible as there are too many ways of
segmentation, e.g., a 1-second video will have tens of mil-
lions options. Therefore, we proceed by comparing several
possible approaches and obtain a suboptimal yet acceptable
solution. To the best of our knowledge, only two previous
works considered DBS frequency. In [8], a constant scaling
frequency with certain number of frames was used (denoted
as Const). In [26], the authors used the rule that the vari-
ance of average luminance of frames belonging to a segment
should be less than a threshold value (denoted as GoS).

In addition, we propose to adopt a video shot as one scal-
ing segment and scale the backlight at shot boundaries. A
shot refers to a series of consecutive frames played for an
uninterrupted period of time. We propose this strategy as
there is usually a sudden transition of content when the shot
is switched. We anticipate that users might pay much less
attention to the shot-boundary frames with sudden switch
than to the within-shot frames showing the actual contents.
Thereby, the impacts of DBS can be diminished. Note that
video scenes in semantic level is a similar idea. We pre-
fer shots as scaling segments since a scene consists of one or
more shots and thus leaves us less space for power reduction.

4.1.2 Results
We prepare 4 test clips (2 full trailers and 2 movie clips)

with average duration 115 seconds. Each clip is dynamically
backlight scaled using the above three frequencies. The con-
stant frequency and variance threshold are set to the default
value of 10 frames [8] and 40 [26], respectively. Besides, we
use a shot detection algorithm to be introduced in the next
subsection to find the shot boundaries and manually correct
the false/missed detection. For all frequency strategies, the
scaling magnitude M of each segment i is decided using a
simple linear mapping that is based on the scheme in [26].
Specifically, if the content of the current segment is darker
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Figure 2: Acceptability under different scaling fre-
quencies on G Pro (left) and Nexus 4 (right).

than the previous segment, its backlight magnitude can be
a little less than the previous magnitude without degrading
QoE and vice versa, i.e.,

Mi =


max(Mi−1 −Mstep, 0) Yi < Yi−1

Mi−1 Yi = Yi−1

min(Mi−1 +Mstep, 1) Yi > Yi−1

(1)

where Y is the average luminance of a segment over all
frames and pixels, andMstep is backlight variation step that
is 0.2. We choose thisMstep to avoid too little or too much
backlight variations that may make all or none frequencies
strategies acceptable. Participants are asked to watch 3 fre-
quency versions of a clip in a random order and then move to
next clip. They can make a “unacceptable” decision during
the backlight-scaled playback while they will need to wait
until the end of playback to confirm “acceptable”.

To better analyze the binary subjective data, we use ac-
ceptability A as in [13,18,25], i.e., A = Nacc

Ntot
, where Nacc is

the number of acceptable decisions and Ntot is the number
of total votes. We show the acceptability (95% CI) of 4 clips
under different scaling frequencies in Figure 2. We can ob-
serve that QoE is clearly impacted by frequency strategies.
Chi-square test between frequency strategies and acceptabil-
ity, χ2 = 167.008 df = 2 p < 0.001, further supports that
QoE under different scaling frequencies differs significantly
from each other in a statistical sense.

It can also be seen from Figure 2 that shot-based scaling
frequency achieves the best result for all test clips on both
devices. Its average acceptability reaches 88.75%, and is on
average 1.82 times and 20.3 times better than the other two
methods, respectively. This could be explained as users pay
most attentions to the essential parts of a video, such as ob-
jects, people, and stories. Subconsciously, they do not quite
care about the shot switches. Hence, frequent backlight scal-
ing in the middle of presenting those essential contents is
much more annoying than that in shot boundaries. Thereby,
we can conclude that shot-based scaling frequency provides
a simple yet effective solution to this challenging problem. It
is also noted that QoE results are content-dependent, which
shall guide us to deliberately set the scaling magnitude of
shots based on the content characteristics.

4.2 A Shot Detection Algorithm for DBS
We now present the design of a new shot detection algo-

rithm to determine DBS frequency. Video shot detection
have been previously studied [27]. Although none of exiting
designs focuses on DBS, they provide the foundations for the
proposed algorithm. Shot detection usually consists of two
steps [28]: computing discontinuity values for consecutive
frames and detecting the shots based on the discontinuity.
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Algorithm 1 Proposed Shot Detection Algorithm

1: procedure Shot Detection for DBS
2: S ← 0, EMDpre ← EMD(0, 1)
3: for k ← 1; k < LastFrame; k ← k + 1 do

4: if EMD(k, k + 1) > θ & EMD(k,k+1)
EMDpre

> η then

5: if k + 1− spre ≥ Dmin then
6: S ← S ∪ {k + 1}, spre ← k + 1

7: EMDpre ← EMD(k, k + 1)

8: return S . S: set of start frames for shots

We propose to adopt the luminance histogram based dis-
continuity metric in DBS. This is because DBS is more power
efficient if we divide a video into segments with distinct lu-
minance feature rather than mixing them together. Further-
more, luminance metric is robust to missed detection in the
case of DBS since missed detection could occur only when
the luminance strength between two shots are very similar.
This is not a problem as we would assign the same scaling
magnitude to both shots even if we detected them. Summa-
rizing these discussions, we set the objective to detect hard-
cut shots with abrupt luminance change. It is unnecessary
to detect those shots with gradual transition like dissolves.

We employ Earth Mover’s Distance (EMD) [29], which
is commonly used in image retrieval, as the luminance his-
togram feature. EMD is defined as the minimum cost paid
to transform one histogram into the other. Formally, EMD
between histogram P and Q is expressed as:

EMD(P,Q) = (minfij
∑
i,j fijdij)/(

∑
i,j fij)

s.t. fij ≥ 0,
∑
j fij ≤ Pi,

∑
i fij ≤ Qj∑

i,j fij = min(
∑
i Pi,

∑
j Qj)

(2)
where fij is the flow amount transported from ith bin to
jth bin and dij is ground distance between bin i and j. We
choose EMD because it is a cross-bin metric that considers
both bin height and inter-bin distance. Unlike bin-to-bin
metrics used in conventional shot detection, EMD effectively
captures the luminance discontinuity, which makes it a sat-
isfactory metric for DBS.

The proposed shot detection exploits EMD for global thresh-
olding and relative EMD for local thresholding to make the
detection decision. This is more flexible than conventional
global threshold based methods. The reason is that we ob-
serve a wide range of EMD values at true hard-cut positions,
as exemplified in Figure 2. By incorporating relative thresh-
old η, we can ensure that non-hard-cut positions with EMD
greater than global threshold θ would be dropped. Since
most hardware cannot support per-frame scaling, the shot
duration should also be greater than a minimum value Dmin,
which is decided to be 5 based on our measurement. Note
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Table 1: Detection false hits/miss rate (%)
sniper bunny birdman boyhood Budapest
0/8.06 4.72/2.36 2.63/18.42 0/2.86 0/4.90

imitation selma tear theory whiplash
5.00/7.00 2.07/2.07 11.03/5.15 6.06/0 1.57/3.15

ducks oldtown parkrun rushhour redkayak
0/0 0/0 0/0 0/0 0/0

that shot detection is not sensitive to this hardware limit as
most shots last more than 1 second and thus per-shot scal-
ing can be easily supported. The algorithm is summarized
in Algorithm 1. Specifically, we first calculate the EMD be-
tween frame k and its previous/next frame, respectively. If
EMD(k, k + 1) is greater than global threshold and suffi-
ciently larger than EMD(k − 1, k), as well as current shot
lasting more than Dmin, we can decide that a new video
shot starts from frame k + 1.

We find the proper thresholds by experiments, as com-
monly done in shot detection research [27, 28]. We observe
that all hard-cut positions have a much larger EMD than
their neighbors. We go through all 15 training sources and
discover that EMD values at hard-cut positions are at least
13.37 times greater than its prior neighbor while the EMDs
at non-hard-cut positions are at most 3.21 times greater.
Hence, we conservatively set η to 10 for possible hard cuts
that have relatively small relative EMD.

Next, we range the global threshold from 1 to 8 and show
the overall detection accuracy of all video sources in Figure
4, wherein false hits is the ratio of falsely detected shots
to the actual number of shots and miss rate is the ratio of
missed shots to the actual number of shots. A larger θ allows
less EMD values to pass the global thresholding and thus is
less likely for false hits. However, it would also increase the
chance of missing true shotsGiven that both curves show sta-
ble trends, we can safely determine the optimal θ as 4. The
detection results for each source under optimal thresholds
are shown in Table 1. The accuracy fulfills the requirement
of 5% false hits and miss rate [27] in most cases.

More importantly, we shall report that a false hit is usu-
ally found when there is a special lighting in the video, e.g.,
multiple camera lights repeatedly on. Thereby, false hits
are not quite dangerous since people can hardly discern a
backlight change under those strong lighting effects. On the
other hand, the missed shots usually have very similar con-
tent luminance to its neighbors, e.g., a talking man from two
shotting angles. Even though those shots are not missed, we
would scale the backlight for them similarly as their neigh-
bors. Based on the results and DBS’s insensitivity to shot
detection accuracy, we conclude that the proposed algorithm
can achieve a satisfactory performance for determining scal-
ing frequency.
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Figure 5: Acceptability under different scaling mag-
nitude on G Pro (left) and Nexus 4 (right).

5. MODELING DBS MAGNITUDE

5.1 Motivational Study
We then proceed to determine the smallest possible scal-

ing magnitude of a given video shot. Recall that both scal-
ing magnitude and content luminance have strong effects on
QoE. Hence, we must analyze the acceptability of shots with
different content luminance under different backlight levels.
It is desired to represent the luminance feature of a shot by
using EMD because EMD has shown advantages in char-
acterizing the luminance as discussed previously. However,
we shall need to first obtain a shot’s histogram in order to
compute EMD. Median histogram is a histogram descriptor
for a group of frames and has been widely used in multi-
media applications [30]. Each bin of the median histogram
is computed by the median bin height over all the frame
histograms. We select this descriptor since it can effectively
eliminate the outlier frames within the shot [30]. Finally, we
define the luminance feature of a shot, denoted by EMDshot,
as the EMD distance between the shot’s median histogram
and the constant histogram of a black (zero-intensity) image.
A lager EMDshot indicates a brighter content.

We compute EMDshot for all shots in all the training
videos. A total of 1014 values are collected and they range
from 16 to 185.38. For user study, we divide EMDshot into 5
categories (category 5 darkest) with a step of 34 to represent
different luminance strength of a shot. We then prepare 5
test clips accordingly (average duration 9 seconds). Besides,
we vary the backlight scaling magnitude from 0.95 to 0.05 at
a step of 0.1. The scaling magnitude can span from 0 (turn
off) to 1 (full backlight). Overall, we prepare 50 versions of
backlight scaled shots (5 EMDshot x 10 M ) for this user
study. Notice that the backlight is scaled only once at the
beginning of the shot and the “acceptable” quality becomes
the static brightness that users perceive no/tiny difference
compared with the full-backlight version and would enjoy ev-
eryday. Participants are first asked to watch a full-backlight
version as a reference. Then 10 scaled versions are played
either from highest magnitude or from lowest magnitude us-
ing Method of Limit as in [13, 18]. Participants will choose
whether or not each version is acceptable. They are allowed
to confirm acceptable/unacceptable during the playback.

Eventually, we collect 2000 binary data points for this
study (40 participants x 50 video versions). To better visu-
alize the binary data and grasp a clear understanding of the
data, we convert the binary data into acceptability as in the
previous section. We show the raw acceptability data for 5

Table 2: Model Coefficients
Term Estimate Wald Test Likehood Ratio Test

Constant -9.208 z = −13.69 NA
EMDshot -0.081 z = −13.62 χ2 = 2526.5 df = 1964
M 28.604 z = 15.09 χ2 = 454.1 df = 1963

∗All tests are significant at p < 0.001.

luminance categories in Figure 5. It is clear that the rela-
tionship between QoE and backlight is not linear, indicating
past assumptions, e.g., [4, 8, 9], is not accurate. Instead, we
observe a sigmoid curve (“S” shape curve) for all luminance
categories. Furthermore, the sigmoid curve is horizontally
shifted when EMDshot is varied. For example, darker con-
tent can enjoy a higher acceptability than brighter content
under the same scaling magnitude. Based on the sigmoid
curve, we propose to employ a logistic function, an effective
option for QoE modeling according to ITU-T [17], to model
QoE versus scaling magnitude and luminance feature.

5.2 Logistic Regression Analysis
Logistic regression is a statistical analysis for binary re-

sponse data whose probability of being positive is a sigmoid
curve. This perfectly matches our data shown in Figure 5.
The logistic function can be written as:

F (~x) =
1

1 + exp−(α+βx1+γx2+δx3+··· )
(3)

where α, β, γ, · · · are the coefficients and ~x = (x1, x2, · · · )
are the predictor variables. In our user study, the predic-
tor variables are the three stimuli, i.e., shot EMD, scaling
magnitude of a shot, and device type. We use maximum
likelihood estimation (MLE) to determine the coefficients.
Data points that have studentized residuals less than -2 or
greater than 2 are identified as outliers, which follows the
standard logistic modeling in [31].

The modeling results demonstrate that all the predictors
are significant except device type. Specifically, Wald test
of device term, z = −1.313, p = 0.189, implies that the
contribution of device type to model fit is not statistically
significant. We also run likelihood ratio test to compare
the two models with and without device type. The results,
χ2 = 1.734 df = 1 p = 0.187, confirm that including device
type into the model would not significantly improve model
fit in a statistical sense. This is interesting as it is opposed
to conventional video QoE for coding, where larger screen
size relatively enlarges the coding artifacts and indeed de-
teriorates QoE. In the proposed scenario, however, people
would always have an absolute perception of brightness re-
gardless of screen size or pixel density. Considering that
simplicity is always preferred under the same accuracy, we
drop the device predictor and re-model the data using the
other two predictors. We show the regression results in Ta-
ble 2. We notice that all the coefficients are now statistically
significant by passing Wald test and likelihood ratio test.

After model selection, we evaluate goodness of model fit.
We carry out likelihood ratio test of model fit to compare
our model with the perfect model that uses all degrees of
freedom. The results, χ2 = 454.1 df = 1963 p > 0.999,
is insignificant and indicate that there is very little unex-
plained variance and thus good model fit. We also com-
pute multiple metrics of goodness of model fit in Table 3,
i.e., root-mean-square error, Nagelkerke pseudo R-squared,



Table 3: Model Evaluations
RMSE R2 r rho

Proposed 0.079 0.909 0.985 0.915
PSNR NA NA 0.798 0.803
SSIM NA NA 0.828 0.836

Pearson correlation coefficient (r) and Spearman rank corre-
lation coefficient (rho). The proposed model obtains a small
RMSE and close-to-one values for the other three metrics,
which implies an accurate and reasonable model.

We also compute the correlation between user experience
data and objective metrics in conventional DBS, i.e., PSNR
[11] and SSIM [8] between original and backlight-scaled im-
ages. The perceptual luminance of backlight-scaled images
is calculated by the product of scaling magnitude and orig-
inal pixel values. The PSNR and SSIM of a shot is the
average over the frames within the shot. The results show
that the proposed model is 9%∼23% more correlated to the
subjective data, which provides much more space to exploit
user experience and enhance power performance.

Finally, we summarize the user acceptability model of scal-
ing magnitude as

A =
1

1 + exp−(α+βEMDshot+γM)
(4)

where the coefficients are shown in Table 2. Given an ac-
ceptability requirement, we would then be able to compute
the best scaling magnitude of a given shot.

6. SMOOTHING DBS INCONSISTENCY

6.1 Motivational Study
We now study whether or not the continuous playback of

backlight-scaled shots using the proposed scaling magnitude
would cause flicker effect and how to smooth such, if any,
temporal inconsistency. We proceed by studying the user
acceptability of two continuously played shots because this
can aid us to understand user experience at the minimum
scaling unit. Thereby, we would be able to guarantee QoE
for the whole video by individually smoothing the scaling at
each shot boundary. Specifically, we aim to identify whether
or not the magnitude of the second shot is proper given a
known magnitude of the first shot. To this end, we set up
a series of test clips of two consecutive shots (average du-
ration 8 seconds), wherein the luminance feature EMDshot
of both first shot and second shot spans from category 1 to
5. We exclude the 5 clips whose first and second shots have
the same luminance category because, under the same ac-
ceptability requirement, the optimal scaling magnitudes of
these two shots will be very similar based on (4) and will
show smooth variation.

We fix the scaling magnitude for the first shotMfst at the
optimal value obtained from (4) using 0.9 acceptability. For
the second shot of down-scaled clips (Mfst,opt >Msec,opt),
we reduce the second magnitudeMsec gradually fromMfst

at step of 0.1 until reaching the computed optimal mag-
nitude of second shot, i.e., Msec = {Mfst − 0.1,Mfst −
0.2, · · · ,Msec,opt}. We do not include the versions whose
second shot is scaled lower than Msec,opt since those sec-
ond shots do not have the basic brightness to support user
acceptability as shown in the scaling magnitude study. For
example, suppose we have a clip with Mfst,opt = 0.4 and

 Category Switch of Shot EMD
5->4 5->3 5->2 5->1 4->3 4->2 4->1 3->2 3->1 2->1

 A
cc

ep
ta

bi
lit

y 
(9

5%
 C

I)

0

0.2

0.4

0.6

0.8

1

 Category Switch of Shot EMD
1->5 1->4 1->3 1->2 2->5 2->4 2->3 3->5 3->4 4->5

 A
cc

ep
ta

bi
lit

y 
(9

5%
 C

I)

0

0.2

0.4

0.6

0.8

1

Down Scaled (DS) 0.1 DS 0.2 DS 0.3 DS 0.4

Figure 6: Acceptability of different patterns for up-
scaled switch (left) and down-scaled switch (right).

Msec,opt = 0.7 and we scale both shots at 0.4. Even though
the backlight scaling is smooth, the second shot is too dark
to be accepted because its scaling magnitude was already
below 0.7 at the first place. Similarly, there is only one ver-
sion for those up-scaled clips, i.e., Msec =Msec,opt. Given
these facts, we generate 30 versions of 20 test clips for this
user study. Participants follow the same test protocol in
scaling frequency test and a total of 1200 binary data points
(400 up-scaled and 800 down-scaled) have been collected.

We discover an interesting distinction between the user
experience of up-scaled and down-scaled clips. As shown in
Figure 6, we see that the acceptability of all up-scaled clips
are clearly high. This result is compatible with conventional
QoE studies, where low-quality segments followed by high-
quality segments was reported to be more preferred [32].
This phenomena might be due to the fact that users sub-
consciously believe brighter video is better and thus accept
those up-scaled clips. Therefore, we decide to directly apply
Mopt for up-scaled shots. On the other hand, we observe
that QoE of down-scaled clips decreases as the scaling vari-
ation increases. Furthermore, QoE under the same level of
variation largely depends on luminance features. Consider-
ing these inter-related factors, we need to deliberately handle
the down-scaled switches. In order to identify and smooth
the inconsistent scaling, we propose to train a binary classi-
fier to detect the inconsistency at every down-scaled switch
and then smooth it by increasing Msec accordingly.

6.2 A Classifier for Smooth Scaling
Logistic regression is also a commonly used binary classi-

fier [31]. Since it has been shown to accurately characterize
the relation among QoE, content luminance and backlight,
we build a logistic binary classifier to detect down-scaled
inconsistency. We use the same method as shown in the
previous section to process the outliers and fit the model.

Considering the stimuli of the motivational study, many
possible features can be used to train the classifier: device
type, variation of scaling magnitude ∆M, variation of lumi-
nance feature ∆EMDshot, Mfst, Msec, EMDshot,fst, and
EMDshot,sec. We first exclude Msec and EMDshot,sec be-
cause of their direct correlation to ∆M and ∆EMDshot,
respectively. For example, given Mfst, Msec and ∆M
can be mutually derived from each other. Besides, we find
that the feature of device type does not pass Wald test
(z = 1.672 p = 0.094) and the likelihood ratio test of pre-
dictors (χ2 = 488.44 df = 765 p = 0.093). This implies that
device type is not a significant feature for the classifier. This
is expected as we have discussed in the modeling of scaling
magnitude. Finally, we obtain a classifier with 4 significant
features as shown in Table 4.



Table 4: Classifier Coefficients
Feature Estimate Wald Test Likehood Ratio Test

Constant -48.930 z = −3.68 NA
∆EMDshot 0.088 z = 7.05 χ2 = 848.99 df = 769

∆M -54.775 z = −10.00 χ2 = 517.80 df = 768
EMDshot,fst -0.347 z = −3.73 χ2 = 507.13 df = 767
Mfst 128.060 z = 3.86 χ2 = 491.26 df = 766

∗All tests are significant at p < 0.001.

Table 5: Classifier Evaluations (%)
Precision Recall F1

Proposed 87.79 93.09 90.36

To evaluate the classification performance of the classi-
fier, we perform 10-fold cross validation to data points. In
Table 5, we show the precision, recall and F1 score (F1 =
2·precision·recall
precision+recall

). The results show that the classifier can
achieve a reasonably good performance. Hence, we can
rely on this classifier to detect the inconsistent down-scaled
switches. Then the scaling magnitude of the detected sec-
ond shot would be increased step by step (step size 0.05)
until it can be accepted by the classifier.

7. SYSTEM IMPLEMENTATION
In this section, we demonstrate a practical application of

the proposed DBS designs in a HTTP progressive stream-
ing/download system to validate the benefits of QoE-driven
power-saving strategy. We choose progressive streaming rather
than adaptive streaming because we intend to keep the play-
ing quality of videos unchanged, allowing a more accurate
study of user experience in terms of DBS. We first summa-
rize the proposed DBS profiler that addresses the issues in
scaling frequency, magnitude and temporal consistency:

1. Determine the scaling boundary of the input video us-
ing shot detection via Algorithm 1.

2. Compute the best scaling magnitude for two consecu-
tive shots under a given acceptability requirement us-
ing the logistic model in (4).

3. Detect the inconsistent down-scaled switch using the
binary classifier and smooth the inconsistency, if needed,
by gradually reducing the variation until it is accepted.

4. Iterate step 2 and 3 until all video shots are profiled.

We have implemented the full video-on-demand (VoD)
system, where the university server stores encoded videos
and users request the video using QoEPlayer. We consider
two real-world scenarios. First, users access the video in the
university using high-speed campus WiFi, which mimics the
enterprise networks. Second, users view the video outside of
campus using WiFi of third-party providers, which simulates
the typical environment where videos are stored in the near
CDN servers. In order to ensure that the QoE evaluation
is only impacted by DBS, we choose not to select 3G/4G
networks as their relatively unstable network condition and
low data rate may cause networking-related distortions.

The server handles the computation of DBS and stores
the DBS profile of a video as a separate file. Once a video is
selected by the user, QoEPlayer will first download the cor-
responding DBS profile from the server if it is not already

in the local storage and then proceed to the backlight-scaled
video playback. By offloading most DBS-related computa-
tions to the server side, the proposed DBS profiling can be
efficiently treated by modern server clouds. Furthermore,
considering that VoD services is time insensitive and a video
only needs to be profiled once, we believe such an architec-
ture is feasible and promising for power saving at the system
level for massive number of devices.

The potential extra cost of the system lies in the trans-
mission of the profiling file, which may introduce additional
delay and power consumption. To investigate this issue, 5
participants are invited to watch clip “ducks” at both on-
campus and off-campus environments. We ask them if they
perceive any significant initial delay between two scenarios
and how is the initial delay compared with their regular
viewing. We are happy to report that none of them reports
noticeable initial delay in both questions. In fact, this is
expected since the file size of the profile is only around 1kB.
Based on our measurement, it at most takes a few hun-
dreds of milliseconds to download the file, which can hardly
be perceived during the video start-up process. Hence, we
conclude that the extra delay is negligible. We will show
in the following that the additional power consumption is
also marginal and does not compromise the benefits of the
proposed designs.

We compare the performance of the proposed DBS designs
with a conventional design, which uses the frame luminance
variance [26] to decide scaling frequency and SSIM [8] to
compute the scaling magnitude. The scaling magnitude of a
video segment is computed by iteratively reducing the back-
light (step size 0.05) until the minimum SSIM of the frames
hits the given threshold. We combine these two schemes as
they have been shown in prior sections to achieve better per-
formance than existing approaches. The enhancement over
such a strategy will highlight the advantages of the proposed
designs. Both acceptability and SSIM requirement are set
to be 0.9. The smoothing step size for reducing the down-
scaled variation is set to be 0.05.

7.1 QoE Evaluations
We ask the participants to evaluate the acceptability of

backlight-scaled videos using both the proposed profiling
and the reference profiling. We focus on the on-campus sce-
nario since we need to avoid the potential impact of video
buffering on QoE. By using high-speed WiFi (around 4Mbps
throughput), the video (bit-rate∼2Mbps) can be playbacked
uninterruptedly. Given that 4 full videos (average duration
134 seconds) are tested, we follow the test protocol as in the
scaling frequency study.

As shown in Figure 7, the acceptability of the proposed
DBS is higher than the reference designs for all clips. This
is attributed to the fact that the proposed designs scale
the backlight at appropriate time points with pleasing mag-
nitude and smooth transition. In contrast, the reference
designs cannot accurately capture the scaling time points
and fail to smooth the temporal inconsistency of backlight
changes. Although we notice that the average backlight level
of videos using reference designs are higher than that of the
proposed designs, this fact does not positively contribute to
the overall QoE. This is because there is virtually no per-
ceptual difference between the scaling magnitude enforced
by the proposed designs and the reference designs. Thus,
the high magnitude of reference designs is unnecessary.
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Figure 7: Acceptability on G Pro (left) and Nexus
4 (right).

7.2 Power Evaluations
In order to measure the battery power, we use Qualcomm

Trepn, a measurement tool that directly reads hardware
data from the devices. The test devices used in the system
level evaluations, i.e., LG Optimus G Pro and Google Nexus
4, have been listed by Qualcomm as the supported devices
that enjoy accurate power readings via Trepn [33]. During
the system power measuring, we turn off all the unused apps
and services. We also close all unnecessary networking ac-
tivities, such as automatic update and Bluetooth, and only
keep video transmission via WiFi active. We measure the
power between the moment when users click a video and
the moment video playback ends. After every measurement
round, we make sure the cache is cleared and the entire video
will be transmitted again in the next round.

We obtain the power reduction of different DBS designs
based on the measurement method in [34]. First, we perform
ten rounds of power measurement for a clip using three dif-
ferent strategies: (1) full backlight without DBS, (2) the
proposed DBS, and (3) the reference DBS. Then the aver-
age power of a particular strategy can be computed. Finally,
the power reduction of DBS over full-backlight playback is

expressed as
Pfull−PDBS

Pfull
, where Pfull is the average power

without DBS and PDBS is the average power with DBS (ei-
ther the proposed designs or the reference designs).

We show the results of power reduction in Figure 8. We
observe that the proposed DBS designs accomplish a sig-
nificant power savings. It can reach up to 42.34% power
reduction depending on the device and content luminance.
If a video is filmed in a darker environment and played on
a larger screen, e.g., “wild” on G Pro, more power can be
saved. The proposed DBS also outperforms conventional ob-
jective distortion based DBS by saving up to 20.95% more
power when clip “wild” is tested on LG G Pro. The reason is
that those objective distortion assumptions of conventional
designs sacrifice much space for DBS and thus cannot max-
imally exploit the advantages of this technique. Although
one may decrease the SSIM threshold to reduce the power
of the reference designs, its QoE performance would be fur-
ther downgraded, which is unacceptable for everyday appli-
cations. Therefore, we conclude that the proposed designs
achieve best results in terms of both QoE and power.

8. DISCUSSION
Luminance Compensation. To absorb scaling distor-

tion, several schemes have attempted to compensate the
pixel luminance first and then scale the backlight. This lumi-
nance compensation is not adopted in this research because
we would like to focus on the inherent correlation among
QoE, backlight scaling, and content luminance at the funda-
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Figure 8: Power Reduction on G Pro (left) and
Nexus 4 (right).

mental level. Adopting additional enhancement techniques,
such as luminance compensation that relies on many objec-
tive or linear assumptions, into our study shall complicate
the issues. Through luminance compensation, many image
pixels can be fully compensated and how the resulting con-
trast distortion in the backlight-scaled image would impact
QoE is unknown. It is true that luminance compensation
is a complimentary technique to DBS. However, a separate
full-scale study is definitely needed. Once the relationship
between QoE and luminance compensation is better under-
stood, we expect to achieve an even higher power saving.

VoD System Design. We have shown that the overhead
of the extra profiling file is negligible. Alternatively, the pro-
filing information can be easily embedded into the encoded
video bitstream as supplemental enhancement information
(SEI) of H.264 for DBS at each mobile device to save en-
ergy. Such embedding as SEI can be seamlessly integrated
into standard VoD systems. This will provide an elegant
way to deliver such miniaturized yet essential information.

Note that both adaptive bit-rate streaming and backlight
scaling have significant impacts on the overall QoE. They
are two independent dimension of QoE. For example, in
an adaptive streaming system, when one watches a video
with frequently and abruptly scaled backlight, the overall
QoE would be bad no matter how high the bit-rate is and
how smooth the rate variation is. Although HTTP adap-
tive streaming is not currently supported in the proposed
designs, this can be achieved easily by adopting a similar
method to obtain the scaling magnitude and consistency
models for different bit-rate/resolution. Similarly, DBS strat-
egy for those rare video viewing scenarios, e.g., brighter out-
door or darker interior, can also be easily obtained.

9. CONCLUSION
In this paper, we have presented a novel approach for tack-

ling the challenges of systematic power reduction on LCD
smartphones from the perspective of QoE. We explore the
QoE effects when dynamic backlight scaling is applied by
conducting three motivational studies. Inspired by the in-
teresting insights derived from these studies, we propose a
suite of designs to address the DBS frequency, magnitude
and temporal consistency. Through devising a VoD system
that adopts the proposed designs, we demonstrate that the
proposed DBS can achieve more than 40% system power sav-
ings, which represents a 20% improvement over conventional
non-QoE schemes, without QoE impairment.

We would like to emphasize that this new approach is fun-
damentally different from conventional video QoE research
which mainly aims to improve encoding and networking per-
formance. This research is indeed a pioneering step towards
exploring QoE to enhance power performance. Especially,



this approach extends a promising dimension for QoE stud-
ies. Furthermore, this research represents a significant at-
tempt to address the prevailing issue of mobile display power
in the application layer. The preliminary results have shown
that such interdisciplinary research can achieve much desired
display power performance in contemporary .
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