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Abstract—Privacy-Aware Location-Based Service (PA-LBS)
preserves LBS users’ privacy but undesirably sacrifices service
quality. In order to balance the two factors with satisfactory
user experience, existing frameworks are faced with two barriers,
i.e., scalability and social-friendliness. First, existing schemes do
not enable LBS users to flexibly scale their privacy level on
service provision. Such a lack of scalability easily results in either
unacceptable service quality degradation or insufficient privacy
protection and fails to meet the dynamic user requirements.
Second, existing schemes handle privacy protection by merely
considering the trust relationship between users and servers but
ignore the complex trust relationships among users. As a result,
users cannot preserve privacy in location-based social services
that involve user-to-user interactions. In this paper, we present
the first scalable and social-friendly PA-LBS (SSPA-LBS) system.
In particular, we propose a novel camouflage algorithm with
formal privacy guarantee that enables LBS users to expose their
location information by scaling two privacy related factors, i.e.,
camouflage range and place type. Furthermore, we apply the
Scalable Ciphertext Policy Attribute-Based Encryption (SCP-
ABE) algorithm to enable LBS users to effectively control the
access from other users to their location information. Moreover,
we also demonstrated the operational efficiency of the proposed
system through successful implementations on Android devices.

Index Terms—Social media sharing, privacy, access control,
SCP-ABE, scalable media format

I. INTRODUCTION

Location Based Services (LBSs) have been shared by a large
portion of mobile applications nowadays. By reporting real-
time locations, LBS users can actively request information
from LBS servers. These applications include navigation,
points of interests (POIs) searching, public transportation
schedule checking, etc. Alternatively, LBS servers can also
actively push information to LBS users by accessing their
real-time locations. A representative application of this case is
nearby friend notification, which alerts LBS users when their
friends are nearby. By accumulating the historical location
records, LBS servers can also provide users with personalized
services such as friend recommendation, POI recommenda-
tion, and personalized advertising [1], [2].

The prevalence of LBSs has resulted in a dramatic increase
in the transmission of personal geo-data that usually embeds
a high precision location information initially sensed by the
positioning system [3], [4]. The lack of secure and reliable
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access control on these personal precise location information
may result in serious privacy issues. One example is the real-
time tracking, where malicious people track a LBS user by
accessing his or her real-time precise location information.
LBS users may also suffer off-line attacks through location
analysis such as work/home place disclosure if the historical
precise geo-data is leaked [5].

To prevent these privacy issues, it is imperative to develop
privacy-aware LBS (PA-LBS) and enable users to securely
control the exposure of their location information. However,
PA-LBS has to sacrifice the service quality such as result accu-
racy and computation/communication cost, or even depreciate
the service provision to achieve privacy protection. Despite the
existing efforts to balance service availability/quality guarantee
and privacy protection [6], [7], there are still two barriers
preventing users from satisfactory user experience. First, LBS
users are not provided with scalability when selecting their
privacy levels in different services. This easily results in either
unacceptable service quality degradation or insufficient privacy
protection and fails to meet the dynamic user requirements.
Second, existing schemes are not social-friendly. They merely
handle the user privacy protection from untrusted servers,
ignoring the complex trust relationships among users. As a
result, users cannot preserve privacy in location-based social
services involving user-to-user interactions. Handling privacy-
aware user-to-user interactions is a challenge since trust rela-
tionships among users are not only varying in terms of social
context but also dynamic in both time and space domain [8].

In this paper, we tackle these two technology barriers
and propose a Scalable and Social-friendly PA-LBS (SSPA-
LBS) system. In particular, we propose a novel camouflage
algorithm supporting scalability with formal privacy guarantee.
LBS users can select their privacy level by designating a set
of camouflage points, and scale up (scale down) by increasing
(decreasing) the number of camouflage points. In addition,
LBS users have two factors for scaling the privacy level, i.e.,
location range and location type. In this way, a LBS user can
select the privacy guarantee and service quality in a more
flexible way to adopt various LBS applications. Furthermore,
we apply the Scalable Ciphertext Policy Attribute-Based En-
cryption (SCP-ABE) algorithm [9] to enable LBS users to
effectively control the access from other users to their location
information, providing friendliness.

We summarize the contributions of this research as below:

• We develop the first SSPA-LBS system that meets both
scalable privacy protection requirement and social inter-
action requirement of the LBS users (Section 3).
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• We propose a novel camouflage algorithm that enables
LBS users to disclose their location information by
scaling two privacy related factors with formal privacy
guarantee (Section 4).

• We propose a reliable location access control mechanism
to effectively manage the exposure of the location infor-
mation among LBS users (Section 5).

II. RELATED WORKS

A. Homomorphic Encryption

Homomorphic encryption (HE) enables specific computa-
tions in the cipher-text domain [10]. In HE-based PA-LBS
framework, LBS users report the HE-encrypted locations for
privacy protection. Unfortunately, HE-based mechanism sup-
ports very limited applications since only some specific opera-
tions can be conducted in the cipher-text domain. Furthermore,
LBS users have to perform heavy computations in order to
request services, which is especially problematic for resource-
constraint mobile devices. Moreover, an excessive amount of
all service related data need to be pre-encrypted and stored
in the LBS server incurring significant overhead to update
information in cipher-text domain. Since HE-based mechanism
is intrinsically non-scalable, it does not enable LBS users to
relieve the cost by reducing the privacy levels.

B. k-Anonymity

k-anonymity protects the identities of the LBS users by
allowing a user to send requests from a region only when
at least k − 1 other users of the service are present in that
region [14], [15]. The LBS server provides service based on
the reported region instead of the precise location of the user.
This implies that the LBS user is indistinguishable from at
least k − 1 other users by sacrificing the result accuracy.

By setting a larger k for better privacy guarantee or smaller
k for more precise results, k-anonymity seems to be able to
provide scalability. However, the selection of k highly depends
on the nearby k− 1 users. If there are no users within a close
enough range, anonymization cannot be performed and hence
no privacy-aware services can be provided. Additionally, k-
anonymity depreciates all services that need identities since it
protects user identities from LBS servers. Due to requirement
of continuous report of exact locations to trusted third party
(TTP), k-anonymity may result in serious privacy issues when
the TTP is compromised [16].

C. k-Camouflaging

In k-camouflaging based PA-LBS, k − 1 camouflaged lo-
cations are generated and reported with the real location to
request service [17], [18]. The LBS server has to respond to
each of the k service queries and cannot distinguish the true
user location from k − 1 camouflaged ones. LBS users can
also obtain the accurate results from the server.

Such a mechanism supports scalable privacy guarantee in
a more practical way compared to k-anonymity. However, a
random selection of camouflage points with no sophisticated
privacy strategy results in vulnerability in location analysis
attacks [19]. For example, if a user sends multiple requests

from one location, the probability for an attacker to guess it
as the real location can be very high by observing multiple
user requests. Additionally, k-camouflaging results in a waste
of user side communication cost in both receiving and re-
questing services, since multiple requests are sent and multiple
responses are received in service provision.

D. Single-Camouflaging

The idea of single-camouflaging is to generate a camouflage
point within a camouflage range, to replace the real location
of a LBS user [20]. The LBS server then provides services
based on the obfuscated user locations. To relieve possible
service quality degradation, the LBS server can enlarge the
serving area [8], [21]. The LBS user will ultimately compute
and recover the expected results from the returned results.

It is straightforward that a larger camouflage range results in
more resource consumption and hence worse service quality.
However, how to measure the achieved privacy guarantee is not
trivial. In [22], the ratio between the optimal range in terms of
service quality and the selected camouflage range is defined to
measure the achieve privacy and result accuracy. However, this
measurement is not enough since user privacy in LBS does not
simply depend on the camouflage range. In [23], the entropy of
region c is utilized to measure the achieved privacy. Practically,
a LBS user will have to rely on a TTP to get E(c) since it is
dynamic resulting from user activities. This may cause privacy
issues when the TTP is compromised, as what is faced by
k-anonymity. Geo-indistinguishability has also been defined
[21] and optimized [24] to achieve the privacy preservation.
However, as we will discuss in Section IV A, these camouflage
algorithms still suffer from several severe vulnerability issues.

E. Summary

We can see that each existing mechanism has its unique
barrier in balancing privacy protection and service quality. In
particular, all of them have not addressed the scalable privacy
guarantee issue properly. Moreover, few existing works have
dealt with the privacy-aware user-to-user interactions. The
lack of scalability and social-friendliness undesirably limits
the adoption of LBS applications, especially for the social
applications that are receiving increasing popularity nowadays.

In this paper, we build the SSPA-LBS system to: 1) provide
scalability from two key perspectives to improve the flexibility
in balancing between privacy guarantee and service quality;
2) provide social friendliness to support LBS applications that
involve user-to-user interactions.

III. SYSTEM OVERVIEW

We now overview the SSPA-LBS and its system models.

A. Location Assumption

We first introduce the assumptions about the camouflage lo-
cation information in SSPA-LBS. We assume that the possible
locations of a LBS user form a set of POIs X . A LBS user
located at A ∈ X reports the camouflage location information
to request services. The camouflage location information in
SSPA-LBS is composed of camouflage point A′, camou-
flage range R, and place type T (e.g. restaurant). Disclosing
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Fig. 1. Illustration of typical message flows in SSPA-LBS system

(A′, R, T ) results in user location observations L ⊆ X , which
contains POIs of all type T located within R centered at A′. As
camouflage range and place type are both intrinsically scalable,
the user can adjust L by scaling R and T and disclose location
information with different precisions.

It is worth to notice that existing schemes merely consider
camouflage point and camouflage range and ignore the place
type as part of location information when protecting user
privacy. However, place type significantly impacts both service
provision and privacy protection. First, the context of place
type is critical to enable personalized services. Furthermore,
place types can disclose information with various sensitivities,
in different scenarios and to different people.

Moreover, a specific (A′, Ri, Ti) determines an unique set
Li of observations on user locations. In the example shown in
Fig. 1, the LBS user Alice sets four privacy levels by choosing
two camouflage ranges, i.e. R1

A and R2
A (R1

A < R2
A), and two

place types, i.e. T1 and T2 (T1 is more precise than T2, noted
as T1 < T2). One example of T1 and T2 could be fast food
and restaurant where the first one belongs to the second one
and is more precise. Disclosing (A′, R2

A, T2), (A′, R2
A, T1),

(A′, R1
A, T2), and (A′, R1

A, T1) result in observations L1, L2,
L3, L4, respectively, where L4 discloses the most precise
location information and results in the lowest privacy level.

B. Adversary Model

We assume that the adversary aims at locating the LBS
user’s current real location. He/she will pick one point from
the observation set L. We also assume that the adversary has
the user’s historical access profile and is aware of the prior
probability distribution of points in L. In the case of Fig. 1,
such prior knowledge of the adversaries could be expressed
as Pk(i) (

∑
i∈Lk

Pk(i) = 1; k = 1, 2, 3, 4) where k indicates
privacy levels and i indicates POIs in the camouflage range.

C. Trust Model

We assume that LBS servers are semi-trusted by LBS users.
A LBS server is trusted to provide correct and complete
information for LBS users based on the reported location
information, and is trusted to conform to the mechanisms in
the SSPA-LBS model. However, the LBS server is not trusted
to keep the location information of LBS users private from

other parties. Moreover, the trust relationship between a LBS
user and the LBS server vary with applications. Additionally,
we assume that LBS users do not trust each other and that the
trust relationship varies among users and across applications.

D. Message Flow Mechanism

We introduce the typical message flows of SSPA-LBS and
illustrate them in Fig. 1.

1) User-to-Server Message Flow: User-to-server message
flow preserves the privacy of a LBS user who is provided
services by the LBS server. It contains three typical steps, i.e.
privacy level selection by LBS user, service provision by LBS
server, and service recovery by LBS user.

To begin with, a LBS user can select different privacy levels
to the LBS server in different scenarios. For example, the
user can expose the real location to the server if the current
location is not sensitive at all, and report camouflage location
information in order to preserve privacy. Note that the real
location can be treated as a special case of camouflage location
where camouflage point is the real location, camouflage range
is zero, and place type is the precise place type. In the case
of Fig. 1, Alice chooses to expose (A′, R2

A, T1) to the LBS
server. For the server, Alice could be at any type T1 POIs (e.g.
fast food restaurants) within R2

A from A′, i.e. points in L2.
The LBS server then provides services based on the cam-

ouflage location information. In order to include the complete
service information in the service response, the LBS server
may need to enlarge the serving area. In Fig. 1, the LBS server
notifies Alice the nearby merchandise promotions since the
historical records shows Alice often goes for shopping after
visiting a fast food restaurant. Suppose the usual serving area
is within rA centered at A, the LBS server then has to enlarge
it as within rA′ = R2

A + rA centered at A′ in order to fully
cover Alice’s desired serving area.

Upon receiving the response, the LBS user will have to
remove redundant service information resulted from enlarged
serving area. In the case shown in Fig. 1, Alice remove
merchandise promotions out of the range rA from A.

2) User-to-User Message Flow: User-to-user message flow
handles privacy protection of one LBS user from other users,
in the case that the service provision for other users requires
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Fig. 2. Functional modules of location sharing and request

the location information of that LBS user. The functional
modules in this user-to-user mode is illustrated in Fig.2.

First, a LBS user in SSPA-LBS system designates different
privacy levels for different users according to their trust
relationships, and shares camouflage location information with
various precisions to other users accordingly. We further let
LBS users make access policies for these camouflage location
information based on attributes such as social relationships and
relative distance, encrypt them using the proposed SCP-ABE
algorithm, report the encrypted information to the LBS server,
and rely on the server to distribute their location information.
The reason of selecting attributes-based access control instead
of identity-based access control is to adapt to the dynamic
trust relationships among users.

Upon receiving request from a LBS user, i.e., Bob re-
questing nearby notification of Alice within a radius of rB
as in Fig. 1, the LBS server provides services using the
camouflage location information shared between it and Alice,
i.e., (A′, R2

A, T1). The server then notifies Bob that Alice is
nearby whenever A′ is no more rB + R2

A far away from B.
The utilization of camouflage location information in service
provision result in redundancies, which are wrong alerts in this
case. To calibrate the service results, the server sends the SCP-
ABE encrypted location information of Alice to Bob along
with the notification.

Bob removes wrong alerts by generating a specific SCP-
ABE key and then decrypting the location information of Al-
ice. If the attributes of Bob enable him to obtain (A′, R1

A, T1),
(A′, R2

A, T1), or (A′, R1
A, T2), Bob can identify the alert as a

wrong one. If Bob can only access (A′, R2
A, T2), he will not

be able to correctly identify the wrong alert.
Note that the procedure described in Fig. 1 can be directly

scaled to the cases with multiple users (either multiple A or
multiple B) by sending multiple location reports A1 or B1 to
the server. Furthermore, the server is prevented from learning
the location of Alice shared with LBS users since the SCP-
ABE algorithm guarantees that only the users with designated
attributes can decrypt the corresponding location information.

IV. CAMOUFLAGE ALGORITHM

In this section, we introduce the scalable camouflage algo-
rithm that provides LBS users with formal privacy guarantee.

B
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Bd'A
Ad

r
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r
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Fig. 3. Two possible locations of the camouflage point A′ generated by
Miguel Andrés’s camouflage algorithm

A. Preliminary

1) Geo-Indistinguishability: Based on the differential pri-
vacy theory [28], geo-indistinguishability [21] has been de-
fined to provide privacy guarantee for LBS users. Specifically,
if Alice generates a camouflage point A′ within radius r with
a probability P (A′|A) and the other user Bob at an arbitrary
location B generates the same camouflage point A′ with a
probability P (A′|B), then A′ reveals little information about
whether Alice’s real location is A or B. Based on such an
assumption, ε-geo-indistinguishability is defined in (1) and,
correspondingly, the user enjoys εr-privacy within r.

P (A′|A)
P (A′|B)

≤ eεr (∀r > 0,∀A,B : dBA ≤ r) (1)

2) Typical Camouflage Algorithms: A typical camou-
flage algorithms has been proposed based on ε-geo-
indistinguishability [21]. In the algorithm, a camouflage point
x ∈ R2 is generated for a user who locates at x0 ∈ R2

utilizing the function planar laplacian centered in x0 as in
(2). Specifically, ε2/2π is a normalization factor, and dx0

x is
the distance between the center x0 and the generated point x.

Dε(x0)(x) =
ε2

2π
e−εd

x0
x (2)

Now let us consider the examples indicated in Fig. 3, where
A is the real location of the user who expects εr-privacy within
r, and B is another point in X within this area. Note that the
distance between A and B, i.e. dBA , will be no more than r.
Suppose the reported location is A′, which is dA

′

A away from
A, and dA

′

B away from B. According to (2), by observing
A′, the probability that A generates A′ should be P (A′|A) =
ε2

2π e
−εdA

′
A and the probability that B generates A′ should be

P (A′|B) = ε2

2π e
−εdA

′
B . Therefore, we have the following

P (A′|A)
P (A′|B)

=
e−εd

A′
A

e−εd
A′
B

= eε(d
A′
B −d

A′
A ) ≤ eεd

B
A ≤ eεr (3)

According to (1), this implies that the user who is located at
A enjoys εr-privacy within r.

3) Vulnerability Analysis: Despite the wide acceptance,
we observe that this typical type of camouflage algorithm
introduces three vulnerabilities when applied into the proposed
scenario where the distance between the real location A and
the camouflaged point A′ needs to be less than a given r.

First, these algorithms cannot guarantee geo-
indistinguishability that is defined in (1). As we have
discussed, generating a camouflage point following planar
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laplacian distribution provides εr−privacy for users by
satisfying (3). It is easy to show that both of the two cases in
Fig. 3 satisfy (3) according to triangle inequality. However,
since dA

′

B > r while a generated camouflage point is no more
r away from the real location, P (A′|B) is actually 0. As a
result, P (A′|A)/P (A′|B) = ∞, and hence no ε exists to
provide users with ε-geo-indistinguishability as defined in (1).

Second, the algorithm is not robust to resist location analysis
attack. We define success rate of resisting attack Suc as the
ratio between the probability of guessing other locations and
the probability of guessing the real location. Additionally, we
define dis(A, i) as P (A′|A)/P (A′|i) representing the rate of
distinguishing the real location A from an arbitrary possible
locations i (i ∈ X \ A) by generating A′ as the camouflage
point, where X is the possible location of A. Furthermore, we
assume that the attacker who performs location analysis has
the prior distribution of X and that P (A) +

∑
i∈X\A P (i) =

1. When the camouflage point A′ is observed, Suc can be
represented as in (4). i ∈ X \A

(Suc)A′ observed =

∑
i∈X\A P (i|A′)
P (A|A′)

=
∑

i∈X\A

P (i|A′)
P (A|A′)

=
∑

i∈X\A

P (A′|i)P (i)
P (A′|A)P (A)

=
1

P (A)

∑
i∈X\A

dis(A, i)−1P (i)

(4)

From (4) we can see that distinguishability and prior dis-
tribution of possible points should be jointly considered to
guarantee Suc. In other words, the attacker’s side knowledge
should be considered for optimal privacy protection. However,
existing camouflage algorithm merely provides an upper bound
eεr for each dis(A, i) and will not be able to address the
attacker’s prior knowledge.

Third, the algorithms do not allow users to disclose their
location information with arbitrary precision, i.e., the algo-
rithms are lack of scalability. Let us consider the example
shown in Fig. 4. Suppose that Alice who locates at A wants
to preserve εr1−privacy for Bob and preserve εr2−privacy for
others. Using existing camouflage algorithm, Alice will have
to generate A′1 within r1 from A and disclose it to Bob, and A′2
within r2 from A and disclose it to others. Correspondingly,
Alice should be located within r1 from A′1 by Bob, and within
r2 from A′2 by others. However, if Bob additionally request
less precise information (A′2), which is reasonable in access
control, he will be able to locate Alice in the shaded area,
which is more precise than what Alice intended to disclose.

B. The Proposed Scheme

In this section, we propose a novel camouflage algorithm
for the proposed framework. First, the algorithm guarantees
privacy for users based on the calibrated definition of ε-geo-
indistinguishability. Second, the algorithm leverages the prior
distribution of points in X to resist location analysis attack.
Third, the algorithm enables various privacy guarantees.

A
'
2A'

1A

1r 2r

Fig. 4. Two camouflage points with εr1−privacy and εr2−privacy generated
by Miguel Andrés’s camouflage algorithm

1) Calibrated Definition of Geo-Indistinguishability: In or-
der to provide privacy guarantee within a certain region, which
is also necessary to facilitate service provision, truncation has
to be utilized with the laplacian mechanism, i.e. generating
camouflage point (A′) within a specific range (r) from the
real location (A) instead of everywhere in the plane. However,
truncation also results in lack of ε-geo-indistinguishability
guarantee defined as in (1), since (5) cannot be satisfied under
the assumption that L are POIs within r from A.

dA
′

i ≤ r (∀i ∈ L) (5)

Such a contradiction is actually resulted from the inappro-
priate assumption of L. In practice, it is infeasible for users to
choose L. Instead, L should be determined by attackers after
the observation of the camouflage point, which is composed
of POIs within r from A′. By calibrating the definition of
geo-indistinguishability as in (6), we can see that (5) is
always satisfied. As a result, the laplacian mechanism with
truncation proposed by Miguel Andrés et al can guarantee ε-
geo-indistinguishability for users. The proposed camouflage
algorithm leverages Miguel Andrés’s mechanism and guar-
antees privacy based on the calibrated definition of ε-geo-
indistinguishability shown in (6).

P (A′|A)
P (A′|B)

≤ eεr (∀r > 0,∀A,B : dA
′

A ≤ r, dA
′

B ≤ r) (6)

2) Setup: In this step, the user (Alice) sets the expected
privacy guarantees, i.e. how precise the location information
is to disclose, for service request in different scenarios. In
particular, the privacy guarantee can be scalable in terms of
both camouflage range and place type. A higher privacy level
corresponds to a relatively larger camouflage range and less
precise context of place type, and vice versa. For ease of
presentation, we use the example shown in Fig. 1 to present
the algorithm. Specifically, Alice sets four privacy levels by
selecting camouflage ranges R1

A, R2
A (R1

A < R2
A), and place

type context T1, T2 (T1 < T2).
3) Camouflage Point Generation: This step generates a

single camouflage point satisfying all levels of the expected
privacy guarantee of Alice as in Algorithm 1.

First, Alice gathers the location information of points in X .
This can be simply achieved through POI retrieval, which is
supported by many open APIs such as Google Places [30].
Alice even needs not to disclose her location information
but simply designates a retrieval area to get the location
information of POIs through the open APIs [31]. Additionally,
Alice needs not to retrieve the whole X , which is infeasible
and unnecessary, but instead retrieves a subset of X . Generally,
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Alice should guarantee that the final location observation sets
should be all included in the retrieved set. In the case shown
in Fig. 1, Alice only needs to retrieve all place type T2
POIs within R2

A + R1
A from A, since the observation sets

Lk(k = 1, 2, 3, 4) should be composed of points within R2
A

from A′ and A′ is no more than R1
A from A. Note that

this retrieval area is less precise than the location information
disclosed by any privacy levels, and hence does not prevent
us to preserve user privacy as expected.

Then, Alice selects the indistinguishability parameter ε,
and generates n points as the candidates of camouflage
point within R1

A from A. More specifically, Alice randomly
chooses θ1, θ2, ..., θn uniformly from [0, 2π), and z1, z2, ..., zn
uniformly from [0,1), and computes dj = C−1ε (zj)(j =
1, 2, ..., n), where Cε(zj) = 1 − (1 + εzj)e

−εzj . (dj , θj) is
then mapped to the closest point A′j on the grid of discrete
cartesian coordinates within R1

A.
Furthermore, Alice constructs Cj ⊂ X that contains type

T2 of POIs within R2
A from candidate A′j . Therefore, Cj

contains all intermediate observations. Alice then designates
the prior distribution Pj for all the observations. Finally, Alice
computes the value of the objective function utilizing the
designated prior distribution as in (7). The candidate that
results in the maximize value of (7) will be selected as the
output camouflage point.

maximize
∑

i∈Cj\A

eε(d
A′

j
A −d

A′
j

i )P (i) (7)

Note that the above objective function only guarantees that
the camouflage point is optimal for the highest privacy level,
since Cj = L1. The gap between the optimal value and the
value generated by the algorithm for other privacy levels can
be presented as in (8), where Pji and Pj are the priors of
Li (i = 2, 3, 4) when the points outside of Li are set as zero
priors and non-zero priors respectively. Suppose that there are
two points x1 and x2 in L3 and four points x1, x2, x3 and
x4 in L1. If priors of points in L3 are ( 12 ,

1
2 ), while priors of

points in L1 are ( 13 ,
1
3 ,

1
6 ,

1
6 ). As a result, the optimal objective

for L3 is degraded with a factor 1
2 −

1
3 = 1

6 .∑
k∈Li\A

eε(d
A′

j
A −d

A′
j

k )(Pji(k)− Pj(k)) (8)

Such a gap is the sacrifice for scalability. In order to balance
the gaps among different privacy levels, Alice can further
assign weights for priors of points in different observation
set. For example, if Alice wants to reduce the gap of optimal
objective for the lowest privacy level, she can assign higher
weights for priors in L1. P (i)|i∈L4

> P (i)|i∈L2\L4
>

P (i)|i∈L1\L3\L2
. The objective function with weight assign-

ment is represented as in (9).

maximize
∑

i∈Cj\A

wie
ε(d

A′
j

A −d
A′

j
i )

s.t.
∑

i∈Cj\A

wi = 1
(9)

Algorithm 1 Camouflage Point Generation Algorithm
Input: Real location A, location set X , number of camouflage

point candidates n, camouflage range set R, camouflage
type set T , indistinguishability parameter ε

Output: Camouflage point A′

1. Randomly choose θ1, θ2, ..., θn uniformly from [0, 2π),
and z1, z2, ..., zn uniformly from [0,1)

2. Compute dj = C−1ε (zj)(j = 1, 2, ..., n), where Cε(zj) =
1− (1 + εzj)e

−εzj

3. Map (dj , θj) to the closest point A′j on the grid of discrete
cartesian coordinates within max(R)

4. Create the observation sets centered with each A′j(j =
1, 2, ..., n) for each pair from R and T , and set priors for
each POI within the observation sets

5. Return A′j which maximizes (9)

4) Proof of Privacy Guarantees: First, the proposed camou-
flage algorithm guarantees ε-geo-indistinguishability based on
the definition in (6). Since the algorithm generate camouflage
point following planar laplacian distribution, the probability
that A generates A′ should be P (A′|A) = ε2

2π e
−εdA

′
A and the

probability that i generates A′ should be P (A′|i) = ε2

2π e
−εdA

′
i

after observing A′. Suppose that A′ is within r from A, then
we have dA

′

i < r for arbitrary i in the location observation set
according to the proposed algorithm. Therefore, we have (10),
which accords with the definition of ε-geo-indistinguishability.

P (A′|A)
P (A′|i)

=
e−εd

A′
A

e−εd
A′
i

= eε(d
A′
i −d

A′
A ) ≤ eεd

A′
i ≤ eεr (10)

Second, the proposed camouflage algorithm resists location
analysis attack with an optimized success rate. The camouflage
point generated by the algorithm has the maximum value
of objective function among the n candidates. The value
approximates optimal when n approximates infinity. Under

the laplacian mechanism, eε(d
A′

j
i −d

A′
j

A ) is equal to dis(i, A) =
dis(A, i)−1 with A′j as the camouflage point. Additionally, the
priors of points out of C is zero since the real location is no
more R2

A away from A′j . Therefore, the objective function in
(7) accords with

∑
i∈X\A dis(A, i)

−1P (i), which means that
the generated camouflage point maximizes the success rate of
resisting location analysis attack according to (4).

V. LOCATION ACCESS CONTROL

Managing the exposure of the location information is still a
challenge. First, the trust relationships among users are various
and dynamic. Second, there are usually no secure channels
shared between arbitrary two LBS users, as between a LBS
user and a LBS server. In this section, an automatic location
access control (LAC) mechanism based on our previously
proposed SCP-ABE algorithm [9] is proposed.

A. SCP-ABE Algorithm

The SCP-ABE algorithm was proposed to perform access
control on multi-dimension scalable data. Fig. 5 shows an
example of 2-by-2 scalable data structure, containing four
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Fig. 5. 2-by-2 scalable data structure and the corresponding access policies
in SCP-ABE

messages m11, m12, m21, and m22, where (m11) alone
discloses the basic information. The disclosed information is
enriched with the additional messages located at higher level
(m12, m21, and m22). Therefore, there are totally four access
privileges under the 2-by-2 scalable data structure, i.e, m11

accessible, m11 and m12 accessible, m11 and m21 accessible,
and all accessible. The access to each message is managed
under a specific policy determined by attributes, i.e., P11, P12,
P21, and P22. The access policy of a high-level message (e.g.,
m12) is more restricted (contains more attributes) than that of
a low-level message (e.g., m11), and hence P11 ⊆ P12 ⊆ P22

and P11 ⊆ P21 ⊆ P22. The algorithm includes system
setup, access tree construction, encryption, decryption, user
key generation, and delegation.

B. SCP-ABE Based LAC Mechanism
Upon integrating the SCP-ABE algorithm with the SSPA-

LBS system, we let the camouflage location information be
the input messages of the SCP-ABE algorithm. In the example
shown in Fig. 1, we input three messages including m11 =
(A′, R2

A, T2), m12 = (R1
A), and m21 = (T1) to the SCP-ABE

algorithm. The access of m11, (m11,m12), (m11,m21), and
(m11,m12,m21) corresponds to the access of Alice’s location
information with four precisions. Moreover, the attributes used
in SSPA-LBS system contain two types, i.e., LBS-related
attributes and LBS-unrelated attributes. Specifically, LBS-
related attributes may include relative distance, the number
of co-visited places, the social relationship, etc. LBS-unrelated
attributes refer to dummy attributes in SCP-ABE algorithm and
only need to be authorized by the AA. By contrast, the LBS-
related attributes, such as friendships and the relative distance
between two users, will additionally require the authentication
from the LBS server. Additionally, we assume there is a TTP
playing the role of AA. The TTP does not store any location
information of users, which is different from the role of TTP
in other systems. Thus there is no location privacy leakage
caused by TTP compromise.

We demonstrate the details of SCP-ABE based LAC mech-
anism utilizing the nearby friend notification example shown
in Fig. 1, where Alice sets four privacy levels and Bob desires
to receive the alert when Alice is nearby. The whole process
involves initialization, location report, and location request.

1) Initialization: Alice runs initialization as below:
• Run the SCP-ABE setup algorithm to create the public key
PK as in (11) and the master key MK as in (12).

• Select the LBS-related attribute set SlA and the LBS-
unrelated attribute set SnA. Run the SCP-ABE access tree
construction algorithm to build access tree TA, as shown
in Fig. 6. Specifically, attributes from SlA are included in
subtrees T11, T12, and T21. SnA are a1, a21, and a21.

1/2

2/2

2/2root

1
qT

11T

2/2

21T
2/2

12T

1/2

a21 a12

a1

22112111 IPPIP

21221

12212

1
12

1111

\

\

\

TIP

TIP

TII

TP

q

Fig. 6. SCP-ABE access tree for 2-by-2 scalable LAC

• Cooperate with the AA, run the SCP-ABE user key gen-
eration algorithm to create user secret key SKA for all
attributes, where r and ri are random numbers, and attrii
is the context of attribute i.

PK = {G0, g, h = gβ , f = g1/β , e(g, g)α} (11)

MK = {β, gα} (12)

SKA ={D = g(α+r)/β ,∀i ∈ SnA ∪ SlA :

Di = grH(attrii)
ri , D′i = gri}

(13)

In LBS, user attributes change more frequently compared to
that in other systems, due to the user movement. This requires
timely update of the access tree or user secret keys. Therefore,
Alice should periodically runs the initialization step.

2) Location Report: Alice runs the following steps to report
camouflage location to servers.

• Run the camouflage algorithm to generate the cam-
ouflage location information (A′, R1

A, T1), (A′, R2
A, T1),

(A′, R1
A, T2), and (A′, R2

A, T2), and select one to report
((A′, R2

A, T2) in this example).
• Run the SCP-ABE encryption algorithm to encrypt
(A′, R2

A, T2), R
1
A and T1, and send the ciphertext CTA

along with the reported camouflage location to the server.

CTA =(TA,∀i ∈ SnA ∪ SlA : Ei = gpi(0), E′i = H(attrii))
pi(0)

C̃11 = mA
11e(g, g)

α(pR11
(0)+s), C11 = hpR11

(0)+s,

C̃12 = mA
12e(g, g)

α(pR12
(0)+s), C12 = hpR12

(0)+s,

C̃21 = mA
21e(g, g)

α(pR21
(0)+s), C21 = hpR21

(0)+s)
(14)

Specifically, s is the root secret, pi is the polynomial corre-
sponding to leaf node i, pR11

, pR12
, pR21

are the polynomials
corresponding to subtree root nodes of T11, T12, and T21
respectively. These parameters are created in access tree
construction algorithm [9].

On receiving Alice’s location report, the server applies for
the secret key SKAl as in (15) from the AA. Note that these
secret keys are for authorizing the LBS-unrelated attributes and
delegating the corresponding user secret keys for other LBS
users. The LBS server cannot successfully decrypt CTA using
SKAl, which will be further explained in security analysis.

SKAl ={D = g(α+r)/β ,∀i ∈ SlA :

Di = grH(attrii)
ri , D′i = gri}

(15)
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3) Location Request: Suppose that Bob desires to receive
an alert when Alice steps into the range with distance no
more than rB from his location. He sends the nearby friend
notification request to the LBS server. Upon receiving the
request, the LBS server tracks the location of Alice and Bob,
and alert Bob whenever Alice steps into the serving range.
To guarantee that there is no missed alert, the LBS server
has to enlarge the serving range, which is rB + R2

A in this
example. The serving range could be further enlarged if Bob is
also camouflaging. However, the enlargement on serving range
will result in wrong alerts, which are identifiable or partially
identifiable depending on Bob’s access privilege on Alice’s
location information. Therefore, in order to identify wrong
alerts when receiving the alerts, Bob requests for Alice’s
location information (CTA) from the LBS server.

To obtain Alice’s location information in plain text, Bob
performs the following steps to obtain user secret key SKA

B .
• Request for LBS-unrelated attribute authorization (S1 ⊆
SnA) and the corresponding user secret key SKAn

B0 as in (16)
from AA.

• Request for LBS-related attribute authorization (S2 ⊆ SlA)
and the corresponding user secret key SKAl

B as in (20)
from the server, where rB and rBi are random numbers
specifically assigned by the LBS server for Bob, and rBi
is associated with attribute i. rB and rBi are kept secret by
the server.

• Run the SCP-ABE delegation algorithm and creates the new
user key SKAn

B1 as in (17), where r1 and r1i (i ∈ S1) are
randomly selected and kept secret by Bob..

• Send SKAn
B1 to the server, and have SKAn

B2 regenerated by
the server. Derive SKAn

B from SKAn
B2 as in (19), and finally

obtains SKA
B by (21).

SKAn
B0 = {∀i ∈ S1 : Di = grH(attrii)

ri , D′i = gri} (16)

SKAn
B1 ={∀i ∈ S1 :

D1
i = Dig

r1H(attrii)
r1i , D1′

i = D′ig
r1i }

(17)

SKAn
B2 ={∀i ∈ S1 :

D2
i = D1

i g
rBH(attrii)

rBi , D2′

i = D1′

i g
rBi }

(18)

SKAn
B ={∀i ∈ S1 :

D̃i = Dig
rB ·H(attrii)

rBi , D̃i
′
= D′ig

rBi }
(19)

SKAl
B ={D̃ = Dfr

B

,∀i ∈ S2 :

D̃i = Dig
rB ·H(attrii)

rBi , D̃i
′
= D′ig

rBi }
(20)

SKA
B ={D̃ = Dfr

B

,∀i ∈ S1 ∪ S2 :

D̃i = Dig
rB ·H(attrii)

rBi , D̃i
′
= D′ig

rBi }
(21)

In the above process, the LBS server runs SCP-ABE
delegation algorithm twice. However, the server reuse the
random numbers in generating SKAl

B to generate SKAn
B2 .

These random numbers are unique for each LBS user at each
location request.

Bob then needs to decrypt CTA using SKA
B by running the

SCP-ABE decryption algorithm. Suppose that Bob’s access
privilege guarantees him to access (A′, R2

A, T2). Then Bob can
decrypt each node x starting from the level of T11 as in (22).

At the end, Bob will obtain FR11 = e(g, g)rpR11
(0) (Fx of

T11 subtree root) and Froot = e(g, g)rs (Fx of tree root). Bob
can further obtain K11 as in (23), where rB = r + rB . mA

11

can then be decrypted according to (24). Details of decryption
process can be referred in [9]. Bob will eventually decrypt
(A′, R2

A, T2), which will facilitate the identification between
the correct alerts and wrong ones.

Fx =
e(D̃x, Ex)

e(D̃′x, E
′
x)

=
e(gr+r

B ·H(attrix)
rx+r

B
x , gpx(0))

e(grx+r
B
x , H(attrix)px(0))

=
e(gr+r

B

, gpx(0)) · e(H(attrix)
rx+r

B
x , gpx(0))

e(grx+r
B
x , H(attrix)px(0))

= e(g, g)(r+r
B)px(0)

(22)

K11 = FR11 · Froot = e(g, g)rB(pR11
(0)+s) (23)

C̃11

e(C11, D̃)/K11

=
mA

11e(g, g)
α(pR11

(0)+s)

e(hpR11
(0)+s, g(α+r+rB)/β)/e(g, g)rB(pR11

(0)+s)

=
mA

11e(g, g)
(α+rB)(pR11

(0)+s)

e(gβ(pR11
(0)+s), g(α+rB)/β)

=
mA

11e(g, g)
(α+rB)(pR11

(0)+s)

e(g, g)β(pR11
(0)+s)(α+rB)/β

= mA
11

(24)

C. Reliability Analysis

The SCP-ABE based LAC mechanism provides reliability
for both user access control and server access control.

1) Reliable User Access Control: The proposed LAC mech-
anism prevents users to decrypt location information that
exceeds their access privileges through collusion.

The collusion means that two users collude with each other
to derive more precise location information. Note that the col-
lusion of directly exchanging decrypted location information
is beyond the capability of any access control mechanism.
Suppose that Bob owns the attributes satisfying the access
policy P11 of Alice, and another user Clark owns the attributes
satisfying P21 \ P11. According to SCP-ABE, Bob can only
obtain mA

11, while Clark should not obtain any access keys
due to the lack of attributes satisfying P11. The goal of their
collusion is to obtain mA

21. Therefore, Bob and Clark will have
to obtain K21, which is computable from FR21

and Froot
as in (23). However, Bob and Clark are not able to obtain
K21 even if they exchange their intermediate computational
results. More specifically, after separately running the SCP-
ABE decryption algorithm, Bob has Froot = e(g, g)rBs and
FR11

= e(g, g)rBpR11(0) while Clark can obtain FR21
=

e(g, g)rCpR21(0). Since rB and rC are random values specially
designated for Bob and Clark, Froot computed by Bob and
FR21 computed by Clark cannot be combined together to
compute K21. Further, Bob and Clark cannot obtain rB and rC
since obtaining them from grB and grC are computationally
infeasible according to Diffie-Hellman assumption [33].
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Fig. 7. Service quality loss varies with camouflage range and place type

2) Reliable Server Access Control: The proposed SCP-
ABE LAC mechanism can guarantee Alice’s desired privacy
level with respect to the LBS server.

First, the server is not able to decrypt any messages using
its secret keys. In the proposed LAC mechanism, the LBS
server owns all LBS-related attributes while not any LBS-
unrelated attributes. As long as the access tree guarantees
that all access privileges require LBS-unrelated attributes, the
server can be prevented to obtain Froot and hence cannot
decrypt any messages.

Second, the server are not able to derive the required secret
keys from user secret keys. In order to perform the SCP-
ABE decryption algorithm, Bob needs to use SKAn

B instead
of SKAn

B0 that is issued by the AA. If Bob directly sends
SKAn

B0 to the LBS server and requests the server to run
delegation algorithm based on SKAn

B , the LBS server would
obtain Bob’s SCP-ABE user key. Along with SKAl

S , the LBS
server will have the access privilege no lower than Bob’s.
As a result, Alice may lose her desired privacy guarantee
with respect to the server. However, in the proposed LAC
mechanism, this reliability issue can be avoided because Bob
first runs the delegation algorithm, and only sends the output
SKAn

B1 to the LBS server without disclosing r1 and r1i . It is
then computationally infeasible for the LBS server to derive
grH(attrii)

ri from gr+r
1

H(attrii)
ri+r

1
i , or gri from gri+r

1
i ,

which makes it impossible to obtain SKAn
B0 .

VI. COST EVALUATION

The proposed camouflage algorithm and the proposed LAC
mechanism bring scalable privacy guarantee and social friend-
liness for LBS users, enabling flexible balance between privacy
level and service quality in diverse applications. As a sacrifice,
they result in additional cost in the LBS system, including
communication cost and computation cost. Note that the pro-
posed privacy preserving scheme is application/dataset agnos-
tic. No matter what type of application is under consideration,
the proposed scheme will be executed on a standard fixed data
format for each location exchange. Therefore, we carry out the
cost evaluation for each location exchange between two users
or between one user and one server.

A. Service quality loss

To demonstrate the impact of both camouflage range and
place type on service quality loss, we study the nearby
friend notification application and conduct experiments on the
gowalla data set, which contains 6,442,890 user check-ins
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Fig. 8. Redundancy ratio varies with camouflage range

from 196,591 users [25]. We first choose 100 check-ins from
the date set. Utilizing the proposed camouflage algorithm, we
generate a camouflage point for each check-in place, by setting
camouflage range from 0.2 kilometer to 1 kilometer and place
type context as T1 (e.g. starbucks), T2 (e.g. cafe), and T3 (e.g.
cafe & restaurant), respectively. In particular, the gowalla data
set only provides T1 while T2 and T3 are manually marked.
In practice, the user can select APIs that provides hierarchical
categories for POIs, such as foursquare and yahoo geoplanet
[26]. The nearby friend notification is simulated in this way:
centered at each check-in place A, we randomly select one
place B within 0.5 kilometer (i.e. the notification range) as
the location of the nearby friend. We then measure whether
the "friend" can identify that the user is within 0.5 kilometer
by learning the camouflage point A′, the camouflage range
RB , and the place type TB . Reflected by the algorithm, we
can measure whether the place satisfying 1) place type is
TB ; 2) within RB from A′; 3) within 0.5 km from B, is
unique. If yes, the nearby friend is identified, otherwise it is
failed. We define service quality loss as the ratio of the fails
and the total number of check-ins, and measure its minimum
value, maximum value, first quartile, median, third quartile,
and mean (marked as cross) with different camouflage ranges
and place types among the 100 check-ins, as shown in Fig. 7.
The figure clearly indicates that a larger camouflage range and
a less precise place type both result in higher service quality
loss. In particular, the impact of place type is generally more
significant when the camouflage range is larger.

B. Communication Cost

In the SSPA-LBS system, LBS server enlarges its serving
area in order to guarantee that all user expected results are
included, which inevitably results in additional communication
cost on both server side and user side. In particular, we define
redundancy ratio D , i.e., the ratio of the number of redundant
results and the number of expected results, as in [8] to measure
the communication cost of the scheme. A higher redundancy
ratio brings more extra communication cost, and vice versa.

In general, D is affected by the privacy level, i.e., the
precision of reported user locations. D can be represented as
in (25), where C is the expected count of responses, and Ce is
the extended count of responses. In nearby friend notification
service, where alert is based on the distance between two users,
the camouflage range itself determines C and Ce. In personal
advertising where the place type is a key perspective for
service provision, C and Ce additionally depend on the place
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TABLE I
REDUNDANCY RATIO VARIES WITH PLACE TYPE

Expected type Extended type Dmedian D0.75 D0.25

cafe cafe&restaurant 1.15 1.32 0.91
salon salon&spa 0.88 1.05 0.74
swimming swimming&fitness 1.21 1.50 1.00

type. We first use nearby friend notification application to
illustrate how D varies with camouflage range R. Furthermore,
suppose that all user locations are uniformly distributed, D
can be represented as in (26), where r is the expected serving
range, re is the extended serving range (re = r + R), and
πr2e−πr2 is the area containing redundancies. From Fig. 8, we
conclude that heavy communication cost can be avoided if the
camouflage range does not exceed the expected serving range
too much. We then use nearby restaurant recommendation
application to show how D varies with place type T . More
specifically, we choose 100 most popular check-ins from
gowalla data set, and study nearby cafe vs cafe&restaurant
recommendations within a serving range of 1 km, salon vs
salon&spa recommendations within a serving range of 2
km, swimming vs fitness&swimming recommendations within
a serving range of 3 km. In this case, C is the count
of cafe/salon/swimming recommendations, Ce is the count
of cafe&restaurant/salon&spa/fitness&swimming recommen-
dations. Results are listed in Table I, where Dmedian, D0.75,
and D0.25 represent the median, the third quartile, and the
first quartile of the redundancy ratio, respectively. We observe
that extended types introduce the redundancy as expected.
The swimming&fitness extended type has the highest D. This
is because in this particular dataset the number of fitness
location over swimming location is higher than other two
cases, indicating a potential higher density for fitness centers.

D =
Ce − C
C

(25)

D =
πr2e − πr2

πr2
(26)

C. User Side Computation Cost

User side computation mainly comes from two phases: the
location report phase that consists of the camouflage algorithm
and the SCP-ABE encryption and the location request phase
where data decryption and delegation algorithms are involved.
We implement the user side algorithms on a Google Nexus
4 (1.5GHz quad-core Snapdragon S4 Pro with Krait CPUs,
Android 5.0) and measure the involved computations.

Camouflage: The camouflage algorithm is computationally
trivial. The process of the proposed camouflage algorithm
indicates that the computation cost linearly increases with the
number of the surrounding PoIs and the number of camouflage
point candidates n. In general, the cost is about n times of that
of Miguel Andrés’s camouflage algorithm. In the experiment,
we retrieve 30 popular places in entertainment category from
google place API as the user locations. We set ε = 1,
camouflage range R = 0.2km, place type as entertainment,
and candidate number n = 6. The average number of POIs
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Fig. 9. Computation time of mobile side operations

that satisfies these settings for each user location is 10. The
measurement of the average computation time of generating a
camouflage point is ∼15 ms.

Location encryption: The top two types of heavy com-
putations involved by SCP-ABE encryption are pairings and
exponentiations on G0 and G1. As in [34], operations are
conducted using a 160-bit elliptic curve group based on the
curve y2 = x3 + x over 512-bit finite field. The computation
time of encrypting a message linearly increases with the
number of attributes. By fixing the message length as 64
bytes, we run the SCP-ABE encryption algorithm ten times
and obtain the average computation time as 60ms per attribute.

Location decryption: SCP-ABE decryption mainly con-
tains two parts of computations, i.e. pairings and multipli-
cations on G1. For encryption, the cost of decryption is
approximately linear with respects to the number of attributes.
The average computation time is 48ms per ten attributes.

Delegation: This algorithm involves in exponentiations and
multiplications on G0 and G1. The computation time also
linearly increases with the number of attributes. The measured
average time is 75ms per attribute.

Fig. 9 shows a summary of the average computation time
of the above mentioned operations.

D. Server Side Computation Cost

The LBS server side computation cost comes from dele-
gation. The AA side computation cost comes from user key
generation. Both of the two algorithms involve in exponenti-
ations and multiplications on G0 and G1. Since the user key
generation and the delegation in the SCP-ABE algorithm is the
same as in CP-ABE algorithm. We measure the cost based
on the benchmark of CP-ABE algorithm [34]. As provided
in [34], the computation time of user key generation is about
30ms per attribute on workstation with 64-bit 3.2 Ghz Pentium
4 processor. Besides, the computation time of delegation is
almost the same due to similar computation operations.

We further measure the computation cost on the side of Al-
ice, Bob, the AA, and the LBS server with various number of
N attributes. Alice, who is camouflaging and hence performs
the camouflage algorithm as well as data encryption, spends
15ms + N × 60ms in the service. Bob, who is requesting
Alice’s location, needs to perform delegation and decryption.
In particular, the delegation time is at most 2× (N/2)×75ms
since S2 ∈ SlA, while the decryption time is (N/10)× 48ms.
Additionally, the AA will spend N × 30ms assigning the
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user key for Alice. The LBS server will spend at most
(N/2)× 30ms for delegating SKAl

B to Bob.
By selecting N from 10 to 20, we evaluate the computation

time on each communication party’s side in Fig. 10. The
results show that running the nearby friend notification service
in the SSPA-LBS model costs around 1 seconds on the mobile
side, which is at the same level of the average response time
of general mobile applications[35]. Therefore, we conclude
that the SSPA-LBS model could be efficiently applied on the
mobile side, an important fact for privacy-aware LBSs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the SSPA-LBS system that
meets both scalable privacy protection and social interaction
requirements of the LBS users. Through experimental evalu-
ation, we have demonstrated the cost efficiency of the SSPA-
LBS system. Future work shall include two major aspects.
First, it is essential to develop strategies for sustained privacy
preservation on power-constrained mobile device. Although
the proposed camouflage algorithm and LAC mechanism
shows acceptable performance on mobile device, it is not
efficient enough to let LBS users frequently camouflage and
encrypt their locations whenever moving to a new place.
Second, it is desirable to enable the LAC mechanism to handle
the user key revocation more conveniently. In general, previous
user secret keys need to be revoked when the user attributes
are changed. In LBS, user movement is normal and frequent,
resulting in dynamic LBS-related attributes. This brings a great
challenge to develop efficient and reliable LAC.
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