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ABSTRACT
Online content popularity prediction provides substantial value to a
broad range of applications in the end-to-end social media systems,
from network resource allocation to targeted advertising. While
using historical popularity can predict the near-term popularity
with a reasonable accuracy, the bursty nature of online content
popularity evolution makes it di�cult to capture the correlation
between historical data and future data in the long term. Although
various existing e�orts have been made toward long-term predic-
tion, they need to accumulate a long enough historical data before
the prediction and their model assumptions cannot be applied to
the complex YouTube networks with inherent unpredictability.

In this paper, we aim to achieve fast prediction of long-term
video popularity in the complex YouTube networks. We propose
LARM, a lifetime aware regression model, representing the �rst
work that leverages content lifetime to compensate the insu�ciency
of historical data without assumptions of network structure. �e
proposed LARM is empowered by a lifetime metric that is both
predictable via early-accessible features and adaptable to di�erent
observation intervals, as well as a set of specialized regression
models to handle di�erent classes of videos with di�erent lifetime.
We validate LARM on two YouTube data sets with hourly and daily
observation intervals. Experimental results indicate that LARM
outperforms several non-trivial baselines from the literature by up
to 20% and 18% of prediction error reduction in the two data sets.
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1 INTRODUCTION
With the prevalence of social media, the ever-increasing YouTube
videos have played a dominant role in Internet tra�c. For example,
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Figure 1: YouTube videos with similar early-stage popular-
ity exhibit distinct long-term popularity

300 hours of videos are uploaded to YouTube every minute, which
results in YouTube’s 18% share of Internet tra�c in North America
1. A key characteristic of these enormous amount of user-generated
content (UGC) is that they enjoy extremely diverse popularity and
popularity evolution pa�erns [1]. A small part of the videos at-
tract over-billion views while the majority of the videos are rarely
viewed. Similarly, some videos can stay popular for a long time
while some others freeze in only several hours a�er being uploaded.
�erefore, it is of substantial value to predict the future popularity
of UGC in order to bene�t the end-to-end social media system in
network resource allocation, personalized content recommendation,
targeted advertising, etc.

Historical popularity has been proven to be a strong predictor for
future popularity [10]. It can be employed in either the classi�cation
problem that di�erentiates popular and unpopular contents [3, 25],
or the regression problem that predicts the exact value of the popu-
larity metric (e.g. views for YouTube videos) [4]. Unfortunately, we
observe that simple historical popularity based prediction cannot
accurately predict the UGC popularity in the long term. For example,
considering that future popularity is decided by early popularity
by a single factor, the simple model proposed in [18] can only pro-
duce reasonable results within a few steps beyond the prediction
moment. �e fundamental reason behind this observation is that

1h�ps://www.sandvine.com/pr/2015/12/7/sandvine-over-70-of-north-american-
tra�c-is-now-streaming-video-and-audio.html



the bursty nature of online content popularity evolution makes it
di�cult to directly capture the correlation between historical data
and future data for a long term. According to our study shown in
Figure 1, two YouTube videos that have similar initial popularity
can achieve totally distinct popularity in the end.

�e goal of this paper is to predict the long-term popularity
of YouTube videos. In addition to the prediction accuracy, we
identify two key requirements for such a prediction to bene�t
YouTube. First, it is critical to support fast popularity prediction,
i.e., predicting the popularity as soon as possible a�er the video
is uploaded. Waiting a long time to accumulate historical data
may negatively impact the system management decisions such
as advertisement and recommendation. Second, the popularity
prediction should be generic such that it can be applied into the
complex YouTube networks with inherent unpredictability. Classic
assumptions of content propagation may not work under such a
complicated network structure [20, 26].

Although long-term popularity prediction of UGC has been re-
cently studied, these e�orts fail to satisfy one or more of the key
requirements. Time series based approach usually leverages the dy-
namics of a extended period of historical popularity [4–8] to predict
the popularity. However, they su�er the cold-start problem since
they have to accumulate enough historical data before achieving a
satisfactory prediction performance [13]. Furthermore, generative
model based approach models the popularity evolution with addi-
tional assumptions such as the structure of networks over which the
content propagates [14–17], e.g., propagating as cascades. �ey are
not applicable for such a complex social network as YouTube and
would cause barriers in explaining content propagation, popularity
evolution, and parameter inference.

In this paper, we aim at achieving fast prediction of long-term
popularity for online videos in complex YouTube networks. We
propose LARM, a lifetime aware regression model, representing
the �rst work that leverages content lifetime to compensate the
insu�ciency of historical data without underlying assumptions of
the network structure. �e intuition is that future popularity is not
only impacted by past popularity, but also driven by the video’s
ability to keep its a�ractiveness for users over a long period, which
is re�ected by lifetime. As exempli�ed in Figure 1, if we have the
knowledge of video lifetime (instead of the early-state dynamics in
the �rst 20 hours) in advance, we would achieve a timely long-term
prediction for the video popularity.

To realize LARM, we are facing two technical challenges. First,
how to de�ne and predict the lifetime of a video in advance is
unclear, which is the key to the lifetime aware prediction. Second, a
prediction method that utilizes the lifetime needs to be deliberately
designed for videos with a diverse range of lifetime.

To tackle these challenges, we �rst de�ne the lifetime metric
as the α-lifespan of videos, i.e., the time point when videos have
accumulated an α ratio of their views. �e reason for this choice is
that α-lifespan is highly predictable when utilizing early-accessible
features. It is also �exible and can be adapted to di�erent observa-
tion intervals. Furthermore, we develop a robust classi�er to divide
the studied online contents into classes with various lifetime, where
a specialized regression model is further trained for each class of
contents to precisely predict their future popularity.

We have crawled two YouTube data sets with di�erent observa-
tion intervals, i.e. hourly and daily, and validated the designs of
LARM via extensive experiments in various practical conditions.
Experimental results show that LARM signi�cantly outperforms
several non-trivial baselines from the literature, with up to 20%
and 18% of prediction error reduction in hourly and daily data set,
respectively.

To summarize, we make the following three main contributions:
• We leverage lifetime estimation to compensate the insu�-

ciency of historical data in long-term online content pop-
ularity prediction, which gains us the advantage of fast
prediction and easy interpretation.

• We formally de�ne the lifetime metric that is both pre-
dictable via early-accessible features and applicable for
model specialization. We believe it throws light on how to
exploit related features in popularity prediction.

• We present a practical demonstration of LARM, which
validates its prediction performance as well as its �exibility
to adapt to data sets with di�erent observation intervals.

�is paper is organized as follows. We present the related work
in Section 2. In Section 3, we describe our data sets that are used
to validate the proposed schemes. We introduce how we predict
the video lifetime in Section 4. �en we proceed to show how
the lifetime knowledge is utilized in YouTube video popularity
prediction in Section 5. In Section 6, we present the empirical
results and we conclude this paper in Section 7.

2 RELATEDWORK
�e technical challenges of long-term popularity prediction for
online contents are mainly resulted from two aspects, i.e. the uncer-
tainty of the driving factors for the popularity evolution, and the
insu�ciency of available data used for prediction [9]. �ere are a
plenty of recent e�orts towards tackling the above challenges. We
discuss these works by categorizing them into generative model
based approaches that a�empt to explain the popularity evolution,
time series based approaches that utilize the historical popularity
dynamics, as well as feature driven approaches that explore the
hidden factors impacting popularity.

Generative Model: �is type of methods model each content
propagation as a stochastic event under some speci�c assumptions
about the popularity evolution. In [27], the spread of tweets is
treated as a reinforced Poisson process. In [14], cascading is mod-
eled as a Hawkes process with two components, i.e. the human
reaction time of sharing and the time-varying post infectiousness of
tweets. �e parameters are inferred utilizing the network informa-
tion including the the time point of each sharing and the out-degree
of each sharer. In [16], a factor indicating the in�uence of tweet
publishers is additionally modeled. A recent work [21] assumes
that UGC popularity is a combination of endogenous factors such
as user interactions within the system and exogenous factors such
as external events. Although these methods have been successfully
applied to study the cascades on social networks such as Twi�er
and Facebook [3], they are not applicable for complex YouTube
systems where the content propagation process is less explainable
and more di�cult to model. For example, the main sources that
a�ract video views in YouTube are not the sharing. Instead, the



Table 1: Data set statistics

Data set No. videos Study period Mean views Mean video length Top-3 categories
Daily 28,190 First 100 days 25730 702 seconds People&blog, gaming, entertainment
Hourly 14,933 First 120 hours 5194 750 seconds Gaming, people&blog, entertainment

searching and related video recommendation [2], which are very
di�cult if not impossible to infer [20], play an important role in
video popularity evolution.

Time Series Approach: Time series approach explores the ef-
fective ways of using available historical popularity series for the
prediction targets. H. Pinto et. al proposes to predict the future
popularity of YouTube videos by assigning di�erent weights to
video popularity in past di�erent days through a multiple-linear
regression (MR) model [4]. �ey further improve the MR model
by considering the di�erences of videos in popularity evolution.
Speci�cally, they �rst select a number of videos as radial basis func-
tion (RBF) centers. �ey then measure the early-stage popularity
similarity between videos by computing the RBF values to the cen-
ters, and feed the RBF features in the regression model (MRBF). �e
problem of MRBF is that both the optimal number of RBF features
and the selection of them require exhaustive experiments, resulting
in tremendous training cost. In [7], the popularity series is modeled
as a pure birth process (PBP), where the growth of popularity is
related to their historic dynamics. However, it does not di�erentiate
the popularity evolution of di�erent videos and infers the model
parameters using the whole training data set. It is proposed in [22]
that videos can be �rst classi�ed into groups based on their popular-
ity phases. �e information can then improve the precision of the
regression based popularity prediction method. Unfortunately, it
does not elaborate on how to identify the future popularity phases
of a video at the early stage of the video. In fact, this process needs
to accumulate enough historical data, making it infeasible for fast
prediction. M. Ahmed et. al. model the past popularity as a chain
of states, which are determined by time and the de�ned popularity
rate of change. �e future popularity is then predicted by inferring
the transition probability among states [6]. �is method is able to
coarsely predict the popularity level of online contents but cannot
predict the exact value. One common issue of time series based
approaches is that they only depend on the historical popularity,
which easily result in a cold-start problem.

Feature Driven Approach: �is type of method exploits the
potential features that impact popularity evolution. Except for the
historical popularity series, content features such as the language,
length, and sentiment of tiltles [10], original poster features like
the number of followers, the number of past posts, and the average
popularity of past posts [12], and the user interactions including the
user comments, likes, and dislikes [28] are all shown to be correlated
to content popularity. Additionally, cross-platform information
such as related tweets on twi�er is considered to impact the video
views [19, 23, 24]. A recent research shows that how a YouTube
video is discovered also a�ects its views [2]. Directly learning based
on these features can achieve comparable results by only utilizing
historical popularity series in popularity classi�cation task. In
[16], these features are applied to add a predictive layer on the

generative model to improve the prediction accuracy in popularity
regression task. However, how to combine these features with
historical popularity series for popularity prediction in complex
social system is still an open problem. To bridge this gap, the
proposed work reasonably combines the historical popularity series
with the lifetime, which is estimated by all other popularity related
features.

3 DATA SET
To motivate and validate the proposed LARM, including both the
video lifetime prediction and video popularity prediction, we have
crawled two data sets from YouTube Data API v32. In this section,
we start with describing the statistics of our data sets. We then
examine the di�erences of the two data sets in terms of video
popularity evolution pa�erns, which provides important insights
for the design of LARM.

3.1 Data Set Statistics
�e �rst data set is a daily data set that contains 631,459 videos. We
track each video’s popularity (views) every day for 100 consecutive
days since it is uploaded. �e other data set is an hourly data set
containing 172,602 videos, where each video’s popularity is tracked
every hour for 120 consecutive hours. �erefore, we have a popular-
ity series for each video with the length of 100 and 120 in the daily
data set and the hourly set, respectively. We observed that some
videos are revoked from YouTube a�er being uploaded for some
time, resulting in a non-increasing popularity series. Additionally, a
large portion of videos have never been watched since their upload,
leading to an all-zero popularity series. We �lter out both types of
videos, and focus our studies on the remaining 28,190 videos in the
daily data set and 14,933 videos in the hourly data set.

Table 1 summarizes the statistics of the two data sets. Note that
mean views are the average of the cumulative views received by
all videos at the end of the study. We can see that the hourly data
set exhibits smaller mean views than the daily data set since it has
a relatively short study period. On the other hand, all other video
statistics of the two data sets, such as video length and categories,
are very similar.

3.2 Video Popularity Evolution Pattern
In this study, we investigate the di�erence of popularity evolution
shapes among di�erent videos. Speci�cally, we represent each
video v in the data set as a time series ( Nv (t1)

Nv (te ) ,
Nv (t2)
Nv (te ) , ..., 1), where

Nv (ti ) is the total views that v receives at time ti , and te is the end
of the study time. We then use K-means to cluster the videos in a
data set into six clusters, and repeat this clustering for the other
data set. We select six representative evolution pa�erns from each
cluster for each data set and show them in Figure 2. �e fraction
2h�ps://developers.google.com/youtube/v3/



80% lifespanHalf lifespan

D1 D2 D3 D4 D5 D6

H1 H2 H3 H4 H5 H6

Figure 2: Six representative patterns in daily data set (�rst row) and hourly data set (second row)

Table 2: Percentage of di�erent video popularity patterns
(pattern # 1-6) in data sets (D: daily; H: hourly)

1 2 3 4 5 6
D 25.7% 25% 19.8% 15% 10% 4.5%
H 11.4% 25.5% 28.3% 21% 10% 3.8%

of the six pa�erns in the two data sets are summarized in Table 2.
We can observe that only a small portion of videos (4.5% in daily
data set, and 3.8% in hourly data set) enjoy a linear increase in their
popularity, while most of the videos have a dynamic popularity
increasing rate. For example, for videos in D1, the increasing rate
of video popularity drops dramatically at the very early stage, and
videos in D4 exhibit a low-high-low pa�ern of the increasing rate.
It is hence unlikely to accurately capture the long-term future
popularity by training a single prediction model to adapt to such
kind of pa�ern dynamics and diversity. �is motivates us to build
specialized models for di�erent subsets to improve the prediction
performance in Section 5.

Additionally, we �nd that the two data sets have very di�erent
sets of popularity evolution pa�erns. For example, for as many as
25.7% of videos in the daily data set, the increasing rate of video
popularity drops dramatically in the very early stage. However,
such a pa�ern is not common in hourly data set. �is observation
requires us to design a prediction scheme that is able to adapt to
di�erent observation intervals.

4 VIDEO LIFETIME PREDICTION
Video lifetime captures the persistence of a video in keeping its
a�ractiveness to users. It is di�erent from popularity, which instead
captures the extent of the video a�ractiveness. In this section, we
�rst formally de�ne the metric for video lifetime that can address
the insu�cient historical data for fast prediction. �en we proceed
to investigate its predictability utilizing a set of early-accessible
features.

Table 3: �e α-lifespan statistics of video subsets with di�er-
ent popularity patterns

α = 0.5
variance 1 2 3 4 5 6 all

D 16.0 3.0 30.4 0.5 48.7 87.8 245.9
H 137.5 40.3 30.1 16.0 2.4 93.1 307.0

mean 1 2 3 4 5 6 all
D 1.5 3.3 8.7 20.8 37.2 60.2 12.5
H 2.5 7.6 15.9 26.6 47.5 77.2 19.7

α = 0.8
variance 1 2 3 4 5 6 all

D 60.0 37.9 72.3 6.2 115.4 118.0 666.3
H 136.5 106.7 103.3 75.0 55.0 134.2 668.4

mean 1 2 3 4 5 6 all
D 4.5 18.0 37.8 54.8 70.8 83.6 32.5
H 13.0 32.0 50.9 69.9 87.3 101.8 51.0

4.1 �e Lifetime Metric
A naive lifetime metric would be the time interval from a video’s
upload to the moment when no view is received by the video for a
certain period of time. However, it is not practical to predict video
lifetime under such a metric. �is is because the observation time is
always �nite and sometimes short due to the cost of crawling data
sets, some videos may have not experienced any freeze during the
whole study period [11]. �e incomplete knowledge of videos will
unavoidably add noises on the lifetime estimation. To avoid this
issue, we de�ne the lifetime metric in LARM as the α-lifespan of
videos. It refers to the time point when videos have accumulated an
α ratio of their views during the study period, which can be as short
as several hours or as long as multiple days. In general, a smaller
value of α leads to a heavier head in the lifetime distribution, while
a larger one leads to a more even distribution. Figure 3 shows the



Figure 3: �e distribution of video lifetime in two data sets

lifetime distribution of the two data sets when α is set as 50% and
80%, respectively. We can see that more than 50% videos in the
daily data set and 25% videos in the hourly data set have a small
lifetime (the �rst bin) under the half-lifespan metric. More videos
tend to have a longer lifetime under the 80%-lifespan metric. For
simpli�cation, we will use the same se�ings of α (50% and 80%) to
demonstrate LARM.

A noticeable feature of α-lifespan metric is that it provides e�-
ciency and �exibility in separating data, which is essential for us to
build specialized models for a data set. We provide the explanations
from the following two aspects.

First, the α-lifespan metric characterizes di�erent popularity
evolution pa�erns. From Figure 2, we can observe that di�erent
pa�erns exhibit di�erent values of α-lifespan. For example, the
half-lifespans of D1, D2, D3, D4, D5 and D6 are 2, 3, 5, 16, 25 and
43 days, respectively. �eir 80%-lifespans are also di�erent, which
are 3, 10, 39, 37, 60 and 77 days, respectively. Similarly, H1, H2, H3,
H4, H5 and H6 have 4, 10, 20, 30, 47 and 68 hours for half-lifespan,
and 15, 29, 55, 76, 95, 96 hours for 80%-lifespan, respectively. We
further examine the variance and mean of α-lifespan values for the
K (K = 6) clusters, and summarize the results in Table 3. For both
of the two data sets, each cluster has a distinct mean of α-lifespan
values. In addition, the variance of α-lifespan values for a cluster is
much lower than that for the whole data set. �ese results indicate
the correlation between the videos’ alpha-lifespan and popularity
evolution pa�ern.

Second, the α-lifespan metric is able to adapt to the distribution
of popularity pa�erns of a data set by adjusting the value of α . For
example, in our daily data set, D1 and D2 are the top two pa�erns,
and we want to address more about their di�erence. In this case,
the 80%-lifespan metric is preferred since the means of lifespan
values of D1 and D2 are more distinct than that under the half-
lifespan metric. We will discuss more details about the impact of
the selection of α in popularity prediction results in Section 6.

Table 4: Early-accessible features for lifetime prediction

Predictor Description Used in Model
cv Video category 1-10
hv Time length of video 2-10
up Number of channel views 3-10
um Number of channel comments 4-10
us Number of channel subscribers 5-10
uv Number of channel videos 6-10

Nv (t1) Number of initial views 7-10
Nm (t1) Number of initial comments 8-10
Nl (t1) Number of initial likes 9-10
Nd (t1) Number of initial dislikes 10

Figure 4: Predictability of lifetime using di�erent sets of
early-accessible features

4.2 �e Predictability of Lifetime
In this section, we present how to predict the α-lifespan using early-
accessible features in order to support the fast popularity prediction
in LARM. We study three types of features that may potentially
impact the video lifetime, i.e., channel features, popularity features,
and content features. Speci�cally, channel features capture the
social impact and the past success of the channel that uploads the
target video. We collect the number of channel subscribers us ,
the total videos uploaded by the channel uv , and the total views
up and total comments um received by these videos. Popularity
features capture the activity of user interactions with the target
video, including number of views Nv (t1), comments Nm (t1), likes
Nl (t1), and dislikes Nd (t1). Since we focus on fast prediction, we
only collect the popularity features at the initial observation, i.e.
the �rst hour or the �rst day upon the upload of videos. Finally,
we collect the content features including the video length and the
video category.

We proceed to evaluate how well the α-lifespan of a video can be
predicted using these features. In particular, we choose regression
tree as the prediction model, since it is appropriate to capture the
non-linearity between features and the prediction target. Addition-
ally, we use R2, the coe�cient of determination, which indicates
the fraction of variance explained by the regression model, to eval-
uate the predictability of α-lifespan. In order to isolate e�ects of
di�erent features, we train multiple models using di�erent subsets



of the features. Table 4 summarizes the notations of the features
and their usages in models.

We train the models using half of our daily data set and hourly
data set, and evaluate the α-lifespan (α = 50%, 80%) using the other
half of the data. From the prediction results shown in Figure 4, we
can see that model 2 achieves a notable performance improvement
over model 1. �is indicates that adding content features like time
length of video hv have signi�cant impact on video lifetime. Simi-
larly, some channel features, such as the number of channel views
up , have even more signi�cant e�ect on α-lifespan. While there ex-
ist popularity features that can further improve the prediction, e.g.,
the number of initial views Nv (t1), most other popularity features
do not bring signi�cant improvements. �is may be interpreted as
that the popularity features are highly correlated with each other.
Moreover, it is interesting to see that 80% lifespan is generally more
predictable than half lifespan. We will show how this e�ect may
impact popularity prediction in Section 5.

In summary, α-lifespan is predictable using the early-accessible
features. �is is highly desirable since we can predict video life-
time and utilize it for fast popularity prediction when the video is
uploaded.

5 VIDEO POPULARITY PREDICTION
In this section, we introduce the proposed video popularity predic-
tion scheme in LARM, which utilizes video lifetime to build a set
of specialized prediction models for videos. Speci�cally, we �rst
present an overview of LARM. �en we discuss the details of LARM
by answering two fundamental questions: 1) How to specialize mod-
els in order to improve prediction performance; 2) What a�ects the
performance of the long-term popularity prediction when using
specialized modes.

5.1 Overview of LARM
LARM predicts the future popularity of a video as a linear function
of its observed popularity series as in [4]. Unlike a large body of
existing linear prediction works that uses a single set of parameters
for all videos as in related work, LARM separates the videos into
multiple subsets and trains a specialized model for each of these
subsets.

Let t0 be the upload time of videov , Lv be the estimated lifetime
of the video, Nv (ti ) be the total views received by v at ti (Nv (t0) =
0), and xv (ti ) be the number of views of the i-th time interval,
i.e., xv (ti ) = Nv (ti ) − Nv (ti−1). LARM a�empts to predict the
actual popularity Nv (tt ) at the future time tt (tt > tr ) utilizing Lv
and Xv (tr ) = (xv (t1),xv (t2), ...,xv (tr )), and outputs the predicted
value N̂v (tr , tt ). Speci�cally, LARM �rst identi�es the specialized
model k for v based on Lv , and then makes prediction as in (1),
where Θk (tr , tt ) = (θk1 ,θ

k
2 , ...,θ

k
r ) is the parameter of model k , and

K is the total number of specialized models used by LARM.

N̂v (tr , tt ) = Θk (tr , tt ) · Xv (t1, tr ) (k = 1, 2, ...,K) (1)
We use mean absolute percentage error (MAPE) as the prediction

performance criterion, as in related work [14]. MAPE is de�ned as
follows.

MAPE =
|N̂v (tr , tt ) − Nv (tt )|

Nv (tt )
(2)

To train the model parameters, we formulate the optimization
problem as in (3), where Ck is the training set for model k . We
minimize the prediction error de�ned by MAPE in order to obtain
the parameters. By treating 1

Nv (tt )2 as the weight, this can be easily
solved as a weighted least square problem.

arg minΘk (tr ,tt )
1
Ck

∑
v ∈Ck

|N̂v (tr , tt ) − Nv (tt )|
Nv (tt )

(3)

5.2 Model Specialization
To build K specialized models, we need to �rst divide the training
data set into K subsets. Formally, it requires us to identify an in-
creasing sequence of lifetime boundaries L = (l1, l2, ..., lK−1). �e
optimal L∗ should lead to the best overall popularity prediction
performance. If we have the longest possible lifetime as N , then
the searching space for L∗ is as large as NK−1. Training a regres-
sion model to evaluate an estimated L̂∗ is an process with O(M)
complexity, where M is the size of the data set. Repeating such
a process for NK−1 times would introduce tremendous cost and
would not be feasible in practice.

In this paper, we switch to search for a near-optimal L with e�-
cient computation. In particular, we use K-means to �rst cluster all
videos from the data set into K clusters, using the same similarity
measurement as in Section 3, i.e. the video popularity evolution
pa�ern. We then sort the K clusters according to the average α-
lifespan of the videos in the cluster in an increasing order. We
also denote l∗i as the largest α-lifespan in cluster i , i.e., the clus-
ter boundary. �e reason of this choice is that α-lifespan can be
treated as a representation of popularity evolution pa�ern, which
inherently impacts the popularity predictions. We can then utilize
the K − 1 lifetime boundaries to divide the training data sets into
K subsets, and train Θk (tr , tt ) for a given pair of (tr , tt ) under the
optimization problem in (3).

To valid the e�ectiveness of the proposed specialization scheme,
we show the prediction performance using K = 2, 3, 4, 5 specialized
models, respectively. Speci�cally, we set tr = 7 days and tt from
8 to 100 days for daily data set, and tr = 7 hours and tt from 8
to 120 hours in the hourly data set. Note that tr = 7 generally
indicates a small amount of historical data. For comparison, we
choose two baselines. �e �rst baseline uses a single model for
the whole training data set (K = 1). �e second one employs the
same amount of specialized models but con�gures an L that evenly
divides the study time into K segments. For example, if K is set as 4,
the baseline set L as (30, 60, 90) for hourly data set, and (25, 50, 75)
for daily data set, respectively. Additionally, in order to isolate the
prediction error caused by lifetime prediction, we use the ground
truth value of video lifetime to perform the comparison.

�e comparison results are shown in Figure 5. We can observe
that model specialization are able to decrease MAPE compared to
using a single model. For example, the MAPE is reduced by up
to 0.13 in the long term when four specialized models based on
half-lifespan metric are used in daily data set, and up to 0.19 when
�ve specialized models based on half-lifespan metric are used in
hourly data set. Using 80%-lifespan metric based specialization
also reduces the MAPE in both data sets. We can observe that
the proposed model specialization scheme outperforms the naive
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Figure 5: �e expected MAPE reduction of using specialized models (note that this is not the ultimate performance of LARM,
since the lifetime prediction error is isolated)

specialization scheme, which achieves a MAPE reduction up to 0.12
in the daily data set, and up to 0.09 in the hourly data set.

In summary, the proposed model specialization scheme is able
to signi�cantly improve the long-term popularity prediction per-
formance.

5.3 Model Optimization
Now we examine what factors a�ect the performance of specialized
models based prediction, so that we can optimize the scheme. First,
α plays an important role as it de�nes the lifetime of videos. Figure
5 clearly indicates that model specialization using the half-lifespan
metric outperforms that using the 80%-lifespan metric. �is is
especially true for the hourly data set. Besides, we even �nd that
the proposed specialization scheme does not signi�cantly reduces
MAPE compared to even specialization scheme for the hourly data
set if 80%-lifespan metric is used. As we have discussed in Section
4, 80%-lifespan metric does not di�erentiate the video popularity
evolution pa�erns and therefore it is critical to select the proper
alpha ratio for the lifetime metric.

Apart from the selection of α ratio, we can observe from Figure
5 that a larger K tends to bring be�er results than smaller ones.
However, it is still not wise to set an extremely large K , since it can
easily result in the over-��ing issue. By comparing the prediction
performance in the cases (d-4) and (d-3), we see that using �ve
specialization models leads to worse performance than using four
models when half-lifespan metric is used.

To sum up, we should deliberately choose α and K to achieve
optimal performance of LARM according to the characteristics of
the data set.

6 PERFORMANCE EVALUATION
In this section, we compare the popularity predication performance
of LARM to state-of-the-art schemes.

6.1 Baselines for Comparison
We consider two di�erent time series based prediction methods for
comparison. Furthermore, we also compare LARM with a feature
driven method to validate the e�ectiveness of LARM on combining
historical popularity and other early-accessible features.

MRBF [4]: �e MRBF method is an extension of MR model that
considers the di�erences of videos in popularity evolution, which
are measured by RBF de�ned as in (4). �e prediction model of
MRBF is formulated as in (5), where C is the set of videos selected
as RBF centers.

RBF (v,vc ) = e
(− | |Xv (t1,tr )−Xvc (t1,tr )| |

2

2·σ 2 ) (4)

N̂v (tr , tt ) = Θtr ,tt · Xv (t1, tr ) +
∑
vc ∈C

ωvc · RBF (v,vc ) (5)

VCDM [7]: �e view counts dynamic model (VCDM) models
the popularity evolution as a pure birth process (PBP) and infers
the parameter using the historical popularity time series.

Regression Tree: It feeds the historical popularity as well as
a subset of features listed in Table 4 into the prediction model.
Speci�cally, we set the feature set as (Xv (tr , tt ),uv ,us ) since it
consistently provides the most accurate predictions.



Table 5: MAPE performance comparison in daily data set

Algorithms LARM-0.5 LARM-0.8 MRBF VCDM Tree
tr = 1 0.4462 0.4570 0.5035 0.5051 0.5106
tr = 2 0.3983 0.3904 0.4532 0.4452 0.4623
tr = 3 0.3573 0.3505 0.4104 0.4042 0.4161
tr = 4 0.3242 0.3185 0.3773 0.3681 0.3810
tr = 5 0.2976 0.2922 0.3512 0.3400 0.3512
tr = 6 0.2744 0.2686 0.3281 0.3166 0.3283
tr = 7 0.2590 0.2540 0.3011 0.2974 0.3152

Table 6: MAPE performance comparison in hourly data set

Algorithms LARM-0.5 LARM-0.8 MRBF VCDM Tree
tr = 1 0.4228 0.4450 0.5105 0.5170 0.5330
tr = 2 0.3786 0.4050 0.4833 0.4746 0.5018
tr = 3 0.3466 0.3691 0.4441 0.4336 0.4664
tr = 4 0.3248 0.3438 0.4173 0.4090 0.4424
tr = 5 0.3123 0.3290 0.4012 0.3943 0.4229
tr = 6 0.2985 0.3136 0.3889 0.3794 0.4003
tr = 7 0.2773 0.2910 0.3671 0.3564 0.3842

6.2 Evaluation Setup
We evaluate LARM and the baseline approaches using a 3-fold cross
validation. We set up two experiments in order to highlight the fast
prediction advantage of LARM. Speci�cally, we �rst evaluate the ac-
curacy of long-term popularity prediction for LARM and baselines
under various amount of historical data. In this experiment, we
use MAPE as the evaluation metric. On the other hand, the second
experiment measures the amount of early data that is needed to
achieve a given prediction target and a tolerable error.

6.3 Prediction Improvement of LARM
We set this historical data amount tr as 1 to 7, and the target predic-
tion moment tt as 100 and 120 for the daily data set and the hourly
data set, respectively. In this way, tr is small enough, and tt − tr
is large enough to guarantee that this is a long-term popularity
prediction problem. According to the empirical study, we use the
feature set (Nv (t1),Nc (t1),us , cv ,hv ) in Table 4 to predict the half-
lifespan and 80%-lifespan of videos in the data set. Furthermore,
we set up six specialization models for LARM so that it can achieve
its best performance.

We measure the prediction performance of LARM using both
half-lifespan metric and 80%-lifespan metric, which is denoted as
LARM-0.5, and LARM-0.8, respectively. Table 5 and Table 6 show
the performance comparison of all schemes. We can see that both
LARM-0.5 and LARM-0.8 signi�cantly outperform other schemes
for all tr in the two data sets. It brings up to 20% of MAPE reduction
in the hourly data set, and 18% of MAPE reduction in the daily data
set. LARM outperforms MRBF and VCDM essentially because it
introduces lifetime in prediction while the other two only depend
on historical popularity. Additionally, although regression tree also
introduces other features, directly feeding these features with the
historical popularity by a single non-specialized model does not

Table 7: EPA performance (tr ) comparison in daily data set

Algorithms LARM-0.5 LARM-0.8 MRBF VCDM Tree
tt = 50 4 4 5 5 5
tt = 60 4 4 6 6 6
tt = 70 5 4 6 6 7
tt = 80 5 5 7 6 7
tt = 90 5 5 7 7 8
tt = 100 6 5 7 7 8

Table 8: EPA performance (tr ) comparison in hourly data set

Algorithms LARM-0.5 LARM-0.8 MRBF VCDM Tree
tt = 60 5 6 8 8 8
tt = 70 5 6 8 8 9
tt = 80 6 7 9 9 10
tt = 90 6 7 9 9 10
tt = 100 6 7 9 9 12
tt = 110 6 7 11 11 13
tt = 120 7 7 11 11 14

help at all. In contrary, its prediction performance even worse than
the pure historical data based approaches.

It is worthwhile to notice that LARM-0.8 performs be�er in the
daily data set. Although this is di�erent from the observation shown
in Figure 5, it is not out of expectation since lifetime prediction
error is introduced and considered in this performance evaluation
experiment. Besides, we have shown in Section 4 that 80%-lifespan
metric is more predictable than the half-lifespan metric and thereby
the results further con�rm the e�ectiveness of LARM.

Furthermore, we examine how popularity prediction perfor-
mance varies with di�erent popularity evolution pa�erns. Speci�-
cally, we use the six popularity pa�erns introduced in Section 3 for
each data set, and show their 50% and 80% percentile of APE when
LARM-0.5, LARM-0.8, and VCDM are used as prediction models.
We only show the results of VCDM since it outperforms the other
two baselines. As shown in Figure 6, we can see that LARM sig-
ni�cantly outperforms VCDM for some speci�c pa�erns, e.g. D2
and D4 in the daily data set, and H4 and H5 in the hourly data
set. �is shows the ability of LARM to capture the future popular-
ity evolution of videos. Furthermore, LARM can steadily decrease
APE for all pa�erns as tr increases, while VCDM shows much
more �uctuations. Sometimes more historical information does not
help reduce prediction error but instead introduces more errors in
VCDM. �erefore, we conclude that LARM is more adaptable to
di�erent types of data sets.

6.4 Early Prediction Advantage
Now we compare the early prediction advantage (EPA) of the pre-
diction models. It is de�ned as the �rst time point t∗ at which
the MAPE for Nv (tr , tt ) (tr > t∗) is less than a threshold τ . �e
EPA performance is essential if we apply popularity prediction to
make decisions such as targeted advertising. Speci�cally, we set
the target date tt as 50 to 100 for the daily data set, and 60 to 120
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Figure 6: �e 50th and 80th percentiles of the distribution of APE for di�erent popularity evolution patterns.

for the hourly data set, with a step of 10. τ is set as 0.3 for both of
the data sets.

Table 7 and Table 8 summarize the comparison results. We can
see that LARM has be�er EPA performance in all di�erent se�ings.
It can achieve up to 3 steps and 7 steps ahead of baseline approaches
in the daily data set and hourly data set, respectively. �is advantage
is a�ributed to LARM’s awareness of video lifetime in a very early
stage, which facilitates the popularity prediction.

6.5 Discussion
�e performance evaluation have validated the e�ectiveness of life-
time based model specialization in long-term popularity prediction.
However, the scheme still has two inherent performance barriers,
which are resulted from the accuracy of lifetime prediction and the
utilization of lifetime information. As shown in Figure 7, there is
a signi�cant gap between LARM and the scheme using the same
model specialization mechanism but with the ground truth of life-
time, as well as between that mechanism and the ideal case with
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Figure 7: Performance bottleneck of LARM

zero prediction error. �e result throws two interesting questions to
us. First, how accurately can we predict the lifetime? Second, how
e�ectively can we utilize the lifetime information? We believe it is
imperative to investigate more advanced features such as the video
topics and user interactions to improve the estimation of video life-
time. Additionally, lifetime estimation can be used as an additional
layer on top of existing prediction models. In this paper, we have
applied it on top of a simple linear regression model. Full-scale
study on overlaying lifetime estimation as additional layer to other
existing prediction models is needed to narrow the performance
gap.

7 CONCLUSION
In this paper, we have presented a novel approach for fast predic-
tion of the long-term popularity on YouTube videos by leveraging
the knowledge of video lifetime in early stage. We explore the
predictability of video life via early-accessible features and how
it impacts the correlation between lifetime and long-term popu-
larity. Inspired by our large-scale study, we propose a α-lifespan
as the lifetime metric and a set of specialized regression models
for the lifetime-aware popularity prediction. �rough extensive
comparison with non-trivial existing schemes in various practical
conditions, we demonstrate that LARM can achieve up to 20% and
18% reduction in prediction error for our hourly and daily data
sets, respectively. LARM represents a promising direction that com-
bines minimal historical data and feature engineering to accomplish
fast and satisfactory popularity prediction without any underly-
ing model assumption. �e success of LARM shall call for more
e�ective features on top of existing prediction models to further
improve the UGC popularity prediction.
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