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Figure 1: HoloLogger attack system. While a user is entering sensitive input in a mixed reality (MR) head-mounted display (HMD),
malware in the benign App collects a data stream of head orientation and location. Then the proposed target key tracking scheme
enables six-degree-of-freedom (6DoF) HMD tracking and generates a stream of keys aimed at by the user. Finally, based on the
timing patterns of head motion and air taps in MR, the keystroke moments are identified, the keystrokes, including repetitive ones,
are recognized, and the candidates of user input are inferred.

ABSTRACT

When using personal computing services in mixed reality (MR)
such as online payment and social media, sensitive information and
account passwords must be typed in MR. To design secure MR
systems and build up user trust, it is imperative to first understand
the security threat to the sensitive MR input. Although keystroke in-
ference attacks by analyzing human-computer interaction in videos
or via wireless signals have been successful, they require placing
extra hardware near the user which is easily noticeable in practice.
In this paper, we expose a more dangerous malware-based attack
through the vulnerability that no permission is required for access-
ing MR motion data. We aim to monitor MR headset motion and
infer the user input through a benign App. Realizing the attack
system requires addressing unique challenges in MR such as six-
degree-of-freedom (6DoF) device motion and no explicit motion
signal for keystroke identification. To this end, we present HoloLog-
ger, the first malware-based keystroke inference attack system on
HoloLens. HoloLogger is empowered by a 6DoF-head-motion-
driven key tracking scheme and an air-tap-pattern-based keystroke
inference framework. Extensive evaluations with 25 users and 750
inference trials of passwords consisting of 4–8 lowercase English
letters demonstrate that HoloLogger successfully achieves a top-5
accuracy of 93%. HoloLogger is also robust in various environments
such as different user positions and input categories.

Index Terms: Human-centered computing—Human computer in-
teraction —Mixed/augmented reality; Security and privacy—Human
and societal aspects of security and privacy—Privacy protection;

1 INTRODUCTION

Mixed Reality (MR) merges virtual objects with the real world, cre-
ating a new environment where computer-generated digital objects
co-exist and interact with physical objects in real-time [26]. MR
has the potential of transforming numerous applications from man-
ufacturing and healthcare to education and entertainment [21]. As
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the market grows, a wide spectrum of personal computing services
have been built into MR platforms such as online payment, email,
and social media. MR users need to enter sensitive information such
as credit card numbers, account passwords, account security ques-
tions while using these services [16]. If such personal information
is leaked, there would be serious security and privacy issues. As
an emerging technology, the security guarantee of MR is still in
its infancy. In order to design secure MR systems and ultimately
make MR a trustworthy technology for every consumer, we must
first understand the potential vulnerability of sensitive MR data.

Keystroke inference attack that infers user input by analyzing
human-computer interaction is one of such potential security threats
to MR. In a typical MR system, users utilize novel interaction modal-
ities such as head movement, hand movement, and gesture to navi-
gate through a virtual keyboard and commit a keystroke. Since the
entire input process is fully exposed to the public, attackers may
capture and exploit the leaked information of user motion and de-
vice motion to infer the user input. This type of attack has been
conducted successfully in computing platforms including MR [18],
smartphones [10, 19], and virtual reality (VR) [1, 2, 6, 20] by captur-
ing user/device motion through different side channels such as video
recordings and wireless signals. However, these keystroke inference
attacks require additional hardware such as cameras and wireless
transceivers to record the user’s motion. The extra hardware must
be installed near the users without alerting them, which limits the
potential attack scenarios. Therefore, the risks of hardware-assisted
keystroke inference are reduced in practice.

In this paper, we expose a more dangerous malware-based
keystroke inference attack in MR, where motion information will be
analyzed to infer user input without requiring extra hardware. We
observe that HoloLens system does not require user permission for
an App to access its motion data. This vulnerability allows us to
employ malware on a benign App to record the headset motion for
keystroke inference. While this paper focuses on HoloLens with
the head gaze and commit (HGC) input model, the principles and
algorithms of the attack are generic. By obtaining the keyboard lay-
out of a target device or App and updating the keyboard parameters
in our framework, one can extend the attack to other MR devices
supporting HGC. More importantly, anyone with basic knowledge of
installing software and deploying an App can launch the attack. The
ultimate goal of this paper is to call for immediate countermeasure
from the MR developer community and raise awareness of other



potential threats in MR.
Realizing the attack system requires overcoming two unique chal-

lenges in MR. First, prior keystroke inference on VR and smart-
phones [7, 20, 27, 36] only analyze three degree-of-freedom (3DoF)
device motion to infer user input whereas HoloLens motion in MR
has six degree-of-freedom (6DoF). Specifically, virtual keyboards
in smartphones or VR systems are moving along with the device by
following user hand or head movement. However, once a HoloLens
virtual keyboard is activated, it will be fixed in the physical world
unless the user finishes entering the data and closes the keyboard.
During a key-entering session, the keyboard will not follow the
user/HMD as the user steps away from the keyboard (see the sup-
plementary video submission). Therefore, there exists 6DoF device
motion in MR, i.e., both HMD orientation and location. The same
head orientation may point to different keystrokes while different
head locations may result in the same keystroke. Second, smart-
phones or VR headsets generate an explicit motion signal, such as
clicking the VR controller or tapping a button on the smartphone,
which identifies the moment of a keystroke. But no such explicit
indication exists in the motion of an MR headset. A user makes
keystrokes in MR by performing a finger-tapping gesture with her
hand in front of the HMD camera, known as the “air tap” [5]. This
key-committing process does not incur any obvious device motion
and thus leaves no explicit indication of when a key is selected.

In this paper, we bridge the aforementioned gaps and expose the
first malware-based keystroke inference attack in MR. Our attack
system, namely HoloLogger, enables 6DoF device motion tracking
in the 3D space. By recording both HMD orientation and loca-
tion, we map the 6DoF HMD motion1 collected by the malware
to the target keys on the MR keyboard. Furthermore, HoloLogger
identifies the keystroke moments by exploring the unique timing
pattern of the HMD motion during an “air tap”. We propose a cursor-
speed-based segmentation algorithm to differentiate the boundaries
between when users browse the keyboard and when users actually
commit the keystroke. We also propose a time-length-based recog-
nition algorithm to identify the repetitive input of the same key.

We evaluate the performance of HoloLogger with extensive ex-
periments. Through our evaluation involving 25 users and 750
sensitive inputs where passwords consisting of 4–8 lowercase En-
glish letters are considered, we validate the accuracy and robustness
of HoloLogger. The top-1,3,5 accuracy of the overall keystroke in-
ference reaches 73%, 89%, and 93%, respectively. We also evaluate
HoloLogger under different practical environments such as different
password lengths, password types, user positions, sampling rates,
implementations of system modules, and HMD wearing time. The
results suggest that HoloLogger maintains a promising inference
accuracy in these dynamic environments, proving its effectiveness
and the importance of exposing this security threat.

Our contribution in this paper is summarized as follows.

• We expose the App permission vulnerability and launch the
first malware-based keystroke inference attack in MR systems.

• We design several algorithms in the attack framework to ana-
lyze the 6DoF head motion for keystroke inference.

• We perform an extensive evaluation of the HoloLogger pro-
totype including evaluating the impact of segmentation, user
movement, password length, etc.

2 RELATED WORK

Malware-based Attacks. Traditional malware-based attacks col-
lect user’s motion data including hand or head movement to achieve
the attack on physical keyboards such as point-of-sale(PoS) ma-
chines [37] and computer qwerty keyboards [14], as well as virtual

1As HMD motion is driven by head motion, we use them interchangeably.

keyboards on smartphones [7, 9, 27, 36, 37] and VR HMDs [20]. For
example, WristSpy [9] presents an attack on smartphones by using
smartwatch motion data to collect hand motion. Ling et al. [20]
collect user’s head movement from a VR HMD and infer the input
made on VR virtual keyboard. However, these prior studies utilize
3DoF motion data that embeds explicit signals of key-committing
moments, making them inapplicable to MR which entails 6DoF
motion data without explicit keystroke indication.
Video-based Attacks. Video-based attacks extract information
from the video recordings of a user typing session. The recording
could be direct surveillance [18, 34], reflective surfaces [4], user’s
eye movement [10], tablet backside [33], fingertip movements [38],
or hand clicking action [20] during the user’s input process. For ex-
ample, EyeTell [10] records the user’s eye movement using the front
camera on the smartphone and infers the input made on the touch
screen. Nevertheless, the video-based attacks require an additional
camera placed near the victim, which is not practical in a private
environment and could raise suspicion in a public environment. In-
stead, HoloLogger does not require a camera or any other additional
hardware to be deployed by the user.
Wireless Signal-based Attacks. Wireless signal-based attacks
[1–3, 8, 19, 32] extract the channel stats information from WiFi
signal revealing its turbulence caused by the user’s hand movement
to eavesdrop keystrokes. For example, VR-Spy [2] detects user’s
gestures while navigating the VR controller and predicts the corre-
sponding committed keystrokes using a k-nearest neighbor classifier.
In addition to the burden of deploying extra senders and receivers
near the victim, the attack accuracy highly relies on the environ-
ment. For example, the surrounding must be controlled to ensure
that movement is only generated by the victim while typing the
keyboard. In contrast, HoloLogger is more resistant to surrounding
turbulence and is more practical in real-world environments.

3 HOLOLENS BACKGROUND

Head Gaze and Commit Input Model. Head gaze and commit
(HGC) input model is the foundation of the HoloLens interaction
system [23]. When a user moves her head around using HoloLens,
the cursor on the virtual screen approximates where the user is
looking at. To commit a keystroke, a user performs a particular hand
gesture called “air tap” in front of the HMD camera. The user first
raises the index finger straight up towards the ceiling and then pinch
the index finger with the thumb and release the index finger. Once
the HMD camera detects an air tap, the cursor will be hit in the
current position to commit a keystroke. HGC has been the most
popular input method in MR since it resembles the way we interact
with computers via a cursor, i.e., moving a cursor around and using
one’s hand to commit the selection [13, 22, 35]. It is used by default
in HoloLens 1 and is also supported by HoloLens 2 and other MR
devices. Therefore, we focus on HGC in this paper.
HoloLens Coordinate System. An illustration of the geometrical
relationship among HMD and virtual objects in the HoloLens coordi-
nate system [17] is shown in Figure 2. The origin point is created by
each App on startup and is fixed at the initial HMD location through
the App’s entire lifetime. HoloLens system keyboard is a planar
object rendered 1 meter away relative to the HMD location and
centered at the direction of the head gaze in the coordinate system.
It is a world-locked content, indicating that it is fixed in the physical
environment once rendered. Its location may only change when the
user finishes the current input, closes the keyboard, and reactivates
it in a different direction. Our attack focuses on one key-entering
session while the keyboard is open and fixed in order to simulate the
real-life scenarios where a user enters a password for one account.
The system keyboard used across Apps is a “QWERTY” keyboard.
Motion Data Source. In HoloLens, the 6DoF head motion is de-
fined by the coordinates of head location and orientation [24]. As the
MR interface is navigated through by head movement, all Apps need



Figure 2: HoloLens coordinate
system.

Figure 3: Cursor position deriva-
tion.

to constantly read the head motion. Therefore, no user authorization
is required for MR Apps to access the head motion data. We utilize
this vulnerability to enable our keystroke inference attack.

4 THREAT MODEL

We assume a scenario where a user is entering sensitive information
using the HGC input model in MR. For example, the user enters a
password for the login of her email or social media account. We
consider users who are inside private areas such as their own offices.
Since any extra signal harvesting hardware will be noticeable in
these areas, prior hardware-assisted attacks [1, 20] no longer work.

The attacker’s goal is to infer the user’s sensitive input data by
deploying malware. We assume the attackers cannot possess or
approach the HMD and then deploy the malware directly. However,
the attackers may develop a seemingly benign App that embeds
the malicious code, such as a regular game App or a music player,
and publish it in the official App Store. Then users may choose to
install the App by themselves or the attacks may trick the users to
install that App for gaming or playing music. This type of malware
deployment is difficult to detect as users can still enjoy the normal
functions of the malicious App. This deployment method has been
widely reported for a decade [11, 40, 41]. As HoloLens is an off-the-
shelf MR HMD and provides a universal virtual keyboard across its
Apps by default (see the submitted video), the attacker can obtain the
layout of this default virtual keyboard before launching the attack.

We consider a default HoloLens operating system available to
users without requiring the research or root mode. Through official
HoloLens APIs, the malware can detect the activation and closing of
the virtual keyboard and collect HMD motion data in between. It can
then send the data to attackers for keystroke inference. The entire
process does not require user permission since access to motion data
and network are by default allowed in MR Apps.

Note that we do not consider the situation where the malware
in the malicious App can directly extract keystrokes from a victim
App because this assumption would be too strong. In the victim
App, keystrokes are stored in local variables. Directly extracting
keystrokes from the App would require the malware to access the
victim App’s local variables in runtime, which is impossible with-
out modifying the victim app. Instead, HoloLogger utilizes the
head-gaze API to monitor the user head motion that is enabled by
default for all Apps [25], which does not require accessing the data
of the victim App.

5 6DOF-HEAD-MOTION-DRIVEN KEY TRACKING

As depicted in Figure 1, the first module of HoloLogger is a 6DoF
head motion driven key tracking module. The original head motion
data logged in the malware is a stream of 6DoF samples, including
two coordinates representing the head location and orientation. By
using the proposed key tracking scheme in this section, the head
motion stream will be translated into a stream of cursor positions
which will then be mapped to a stream of keys aimed at by the user.

Figure 4: The screenshot of the default HoloLens keyboard.

5.1 Head to Cursor Projection
As a user can move around while typing, the distance and direc-
tion between the user and the virtual keyboard will change. Fig-
ure 3 represents the geometry relationship between the varying
user head location H0,H1 and the fixed virtual keyboard plane
P. The initial head location that is determined when the app is
launched is designated as the origin point H0(0,0,0). The current
head location H1(xh1 ,yh1 ,zh1), head orientation G1(α,β ,γ) are ob-
tained for each head motion sample. The three boundary vertices
Si(xi,yi,zi), i = 1,2,3 (top left, bottom left and bottom right) of the
keyboard are obtained when the keyboard is rendered. Identifying
the cursor position on the virtual keyboard is a line–plane intersec-
tion problem [31]. It can be solved by the following steps.

The normal vector −→ns (xn,yn,zn) of the keyboard plane P can
be found by the cross product of two vectors on P. Given the
coordinates of S1,S2,S3, we have the following formal determinant

−→ns =
−−→
S1S2×

−−→
S2S3 =

∣∣∣∣∣∣
−→
i

−→
j

−→
k

x2− x1 y2− y1 z2− z1
x3− x2 y3− y2 z3− z2

∣∣∣∣∣∣= (xn,yn,zn) (1)

where S1(x1,y1,z1), S2(x2,y2,z2) and S3(x3,y3,z3) are the top left,
bottom left and bottom right vertices of the keyboard.

−→
i ,
−→
j and

−→
k

are the standard basis vectors of the HoloLens coordinate system.
Suppose the intersection point between the keyboard plane and

the gaze ray is C(x,y,z). As a vector defined by two points in a plane
is within that plane,

−−→
S1C is within the keyboard plane. Since the dot

product between the normal vector of a plane and any vectors within
that plane is zero, we have −→ns ·

−−→
S1C = 0.

Since the line of gaze ray is overlapped with the head orientation,
the line equation of the gaze ray can be found by head location and
head orientation using the following equation,

x− xh1

α
=

y− yh1

β
=

z− zh1

γ
(2)

Therefore, given the collected head location (xh1 ,yh1 ,zh1) and head
orientation (α,β ,γ), solving equation (1)-(2) gives the cursor posi-
tion C(x,y,z).

5.2 Target Key Identification
Once the cursor position is available, the corresponding key can be
identified by comparing the cursor position with each key’s boundary.
As mentioned in Section 3, the virtual keyboard is fixed during an
input session, e.g., entering a password. The keyboard width and
height can be derived from boundary vertices S1,S2,S3. To get
the boundaries of each key, the keyboard layout of the HoloLens
operating system is needed. This is the system default keyboard
employed across Apps such as App Store, Browser, and Skype. As
shown in Figure 4, there are 4 rows of keys on the keyboard. Except
for the space key and the enter key, all other keys occupy just one
cell. Based on this layout, the vertices and boundaries of each key
can be easily calculated.

The cursor position and key boundary information are both de-
rived in the HoloLens coordinate system with the basis vectors



Figure 5: Removing background noise caused by heavy HMD.

−→
i ,
−→
j ,
−→
k . However, cursor position and keyboard boundary are all

points in the keyboard plane (see Figure 2 and 3). To easily find the
corresponding key for a cursor position, we apply change of basis to
convert all coordinates from the HoloLens coordinate system to the
keyboard plane coordinate system defined by

−→
i′ ,
−→
j′ ,
−→
k′ so that

−→
k′

axis can be eliminated.
We need to derive the transformation matrix A to conduct the

coordinate conversion which only includes translation and rotation.
First, the origin of the keyboard plane coordinate system is at point
S2 with positive X-axis directing to point S3, the positive Y-axis di-
recting to point S1 and the positive Z-axis pointing towards the user.
We know the transformation result is the basis vectors in keyboard
plane coordinate system

−→
i′ = (1,0,0),

−→
j′ = (0,1,0),

−→
k′ = (0,0,1).

In HoloLens coordinate system, suppose
−→
i′ = (xi′ ,yi′ ,zi′),

−→
j′ =

(x j′ ,y j′ ,z j′),
−→
k′ = (xk′ ,yk′ ,zk′).

−→
i′ ,
−→
j′ ,
−→
k′ can be obtained by nor-

malizing the keyboard plane vectors
−−→
S2S3,

−−→
S2S1, and their normal

vector
−−→
S2S3×

−−→
S2S1:

[−→
i′
−→
j′
−→
k′
]T

=

xi′ x j′ xk′
yi′ y j′ yk′
zi′ z j′ zk′

T

=

[ −−→
S2S3

|−−→S2S3|

−−→
S2S1

|−−→S2S1|

−−→
S2S3×

−−→
S2S1

|−−→S2S3×
−−→
S2S1|

]T

(3)

Then the change of basis can be expressed as A ·
[−→

i′
−→
j′
−→
k′
]T

= I.

Thus A = (
[−→

i′
−→
j′
−→
k′
]T

)−1.

Finally, we can transform any coordinate (x,y,z) in the HoloLens
coordinate system to (x′,y′,z′) in the keyboard plane coordinate
system via

[
x′ y′ z′

]T
= A ·

[
x y z

]T .
By comparing transformed coordinates of cursor positions with

the key boundary, we can find the target key. As a result, the stream
of head motion is translated into a stream of target keys.

6 AIR-TAP-PATTERN-BASED KEYSTROKE INFERENCE

In this section, we infer the keystrokes from the stream of cursor posi-
tions and target keys. First, by analyzing the unique behavior pattern
when users conduct an air tap, a cursor speed-based segmentation
algorithm is proposed to divide the target key stream into segments
of potential keystrokes. These potential keystrokes, namely base
candidate, will undergo a repetitive keystroke recognition algorithm
to determine whether or not an identical key has been hit more than
once in the segment. Then the keystroke inference result, i.e., the
top-1 candidate, will be generated. Lastly, an inference calibration
is conducted to address head motion fluctuation and generate more
candidates for the attack.

6.1 Cursor Speed-based Segmentation
There are two types of cursor moving patterns in the collected stream:
browsing and typing. Browsing is the high-speed motion when a
user is looking for the target key. Typing is the low-speed motion
when the user finds the target key and stabilizes the cursor to commit
the keystroke. Only typing motion is needed to infer user input. To
differ typing from browsing, the cursor moving speed is calculated

Figure 6: Peaks, not mounds, must be identified to find low-speed
segments (valleys).

by subtracting the previous cursor position from the current cursor
position. This is because the cursor positions are collected at a fixed
sample rate and the displacement is equivalent to the speed.

The first step of the segmentation is to remove noise and clean
the cursor speed data. Due to the fact that MR HMD is heavier than
handheld devices, head motion is observed to contain more noise
than hand motion. There is continuous background noise caused by
small head movement. It might not be noticeable by humans but
exists in the entire data stream. To remove this noise, second-degree
Simple Moving Average is applied to smooth the cursor speed data.
As shown in Figure 5, the short-term fluctuations in the original
speed data are eliminated but the cursor moving trend is kept.

Since the typing motion is associated with lower cursor moving
speed compared to the browsing motion, the segmentation problem
can be translated into a valley finding problem in the cursor speed
data. We solve the valley finding problem by first identifying peaks
because peaks contain consistent features that are easier to be distin-
guished from valleys. For instance, valleys can have various sizes
of fluctuations but peaks have more static prominence which can be
used for easy identification. The peaks can be identified by finding
local maximum, which are defined as any samples whose two direct
neighbours have a smaller amplitude.

However, identifying peaks by local maximum may lead to false
peaks that are actually mounds. A mound is motion noise caused by
user overshooting or glancing while typing one key. The comparison
of peak and mound is shown in Figure 6. If a mound is identified
as a peak, it will break one segment into two. The second valley
would become the false valley which produces an extra wrong key
in the final keystroke candidate. Therefore, mounds should not be
identified as peaks and should be viewed as a part of the valley. To
address this issue, our segmentation algorithm utilizes peak width
and height based thresholds to filter out mounds. Once all the peaks
are identified, valleys can be found by taking out the peaks from the
stream and keeping the remaining segments.

The output of the segmentation algorithm are the start and end
indexes of all segments. In each segment, HoloLogger records
multiple samples of cursor position and targeted key. Since the user
would spend most of the time within one typing segment aiming
at the committed key, we apply majority voting within a segment
to convert samples of target keys to the one single keystroke that
appears the most frequently. The single keystroke from all segments
become the base candidate for the keystroke inference.

6.2 Repetitive Keystroke Recognition
Repetitive keystroke occurs when the user first browses the keyboard
to locate the target key and then air taps the key for multiple times.
The motion difference among committing these repetitive keystrokes
only exists in hand motion rather than head motion. The cursor speed
during the repetitive keystrokes is minimal. Therefore, the head
motion for committing repetitive keystrokes appears to be similar to
the motion when committing one keystroke, making the repetitive
keystrokes difficult to recognize.

Based on the fact that repetitive keystrokes take longer time to
enter, we recognize the keystroke within a segment of a longer
length as the repetitive keystroke. We focus on addressing repetitive



Figure 7: Overview of the inference calibration algorithm.

Figure 8: Repetitive keystroke recognition by segment length.

keystroke that contains two identical keystrokes. However, the
proposed segment time length-based algorithm is generic and can be
applied to cases that repeat the keystroke three times or more. From
the collected data, we observe that repetitive keystrokes take longer
than once but less than twice of the time spent on striking one non-
repetitive key because browsing is skipped for selecting the second
key. As shown in Figure 8, each segment’s longest keystroke “j”,
“e”, “o”) is selected to compose the base candidate (“jeo”) despite
the browsing on some other keys (e.g., cursor on “w” and “r” when
striking “e”). Since the segment containing “e” lasts longer than
others (“j” and “o”), it is likely to contain repetitive keystroke. To
determine whether a segment has repetitive keystrokes, we define
keystroke length factor as Np

Navg
, where Np is the length of the selected

keystroke in pth segment, Navg is the average keystroke length and
the unit is the number of samples. Note that if the user commits
keystrokes on adjacent keys (e.g., “wer”), she would browse to the
target key, hold her hand to air-tap, and repeat this for all keystrokes.
Thus Figure 8 would have three separate segments corresponding to
“w”, “e” and “r”, which can be directly recognized.

The length factor of each keystroke is calculated. If the length
factor of a keystroke is above a threshold, we add this keystroke
to the potential repetitive keystroke list R. If there are multiple
keystrokes in R, they are ranked by the values of length factor.
The highest-ranking keystroke will be used to form the inference
result. The inference result will repeat this recognized keystroke for
two times. If there is no keystroke with a length factor above the
threshold, the inference result will be the same as base candidate
generated in the segmentation step. For example, if only keystroke
“e” is found with length factor above the threshold in Figure 8, “e” is
added to the repetitive keystroke list R, and the inference result will
contain “ee” instead of “e”.

6.3 Inference Calibration
To improve HoloLogger’s performance, we conduct several steps to
calibrate the above inference result (the top-1 candidate), and gen-
erate more candidates for the keystroke inference. The calibration
algorithm is illustrated in Figure 7 and explained as follows.
Calibration 1 – Modify Repetitive Keystroke. As MR interaction

behavior varies across different users and input attempts, it is pos-
sible that the longest segment may not be the one having repetitive
keystroke. For example, when a user has trouble aiming at the tar-
get key and spends a long time stabilizing the cursor, the segment
would be long but actually include one keystroke. Hence, a desired
calibration method is to modify repetitive keystroke.

First, we remove the repetitive keystroke, if any, from the top-1
inference result. This way, the candidate is restored to the base
candidate. We then check the potential repetitive keystroke list R
generated in Section 6.2. As the highest-ranking keystroke in R has
been used in top-1 candidate, we select the next highest-ranking
keystroke in R and repeat this keystroke twice to form the calibrated
result. This step is repeated until all keystrokes in R have been tried.
In the example shown in Figure 7, R begins with two keystrokes
“e” and “o”. Thus, from R and the base candidate, we can built two
more candidates: “jeeo” and “jeoo”.
Calibration 2 – Update Base Candidate. In addition to incorrect
inference of repetitive keystroke, it is possible that the base candidate
obtained in Section 6.1 needs revision. Recall that the recognized
keystroke of each segment is selected by majority voting. However,
it is possible that the most frequently appeared key is not the actual
committed key. A typical scenario is when the user is trying to
commit a keystroke but spends the same or even longer time looking
at a nearby key than the key to strike. In such cases, the majority
voting fails to recognize the actual keystroke in that segment.

To address the incorrect base candidate, we propose to further
calibrate result since the correct key is also recorded in the target key
stream. We further divide a segment into different groups of samples
aiming at different keys. We define the occurrence of a key group as
how many samples are collected during the aiming. The group with
the highest occurrence has been used for the original base candidate.
For calibration, we find the second most frequently-aimed key and
compare its occurrence to the most frequently-aimed key in order to
see whether it is the missed keystroke. The closer their occurrence
are, the more likely that the second most frequently-aimed key is
the missed keystroke. Thus, we define the occurrence factor as Mq

Mmax
,

where Mq is the occurrence of the qth key group and Mmax is the
occurrence of the most frequently-aimed key in the same segment.

The occurrence factor of each key group is calculated. If the oc-
currence factor of a key group is above a threshold, its corresponding
key is added to the potential missed keystroke list O. If there are
multiple keys in this list, they are ranked by the values of occurrence
factor. The highest-ranking key will replace the original key of that
segment to form the updated base candidate. The remaining keys in
list O will be used to generate more updated base candidates in the
same way. For each updated base candidate, we loop back to the step
in Section 6.2 and Calibration 1 again to generate corresponding
candidates. An example is shown in Figure 7. We first find the
second longest key group in each segment. By calculating their key
groups’ occurrence factors, we know segment 1 and 2’s keystrokes
could be updated. Hence, the keystrokes of these groups are added



Figure 9: Experiment setup.

to O. Then, from the current base candidate “jeo” and O, we can
update the base candidate by substituting the original keystroke with
the one in O. This step is repeated until all keys in O are tried. In this
way, we can generate the updated base candidates “jep” and “ieo”.
On top of these updated base candidates, we may repeat repetitive
keystroke recognition, Calibration 1 and 2 until a desired number of
top-k candidates is generated.

7 EXPERIMENTS

Apparatus. As shown in Figure 9, the testing environment of
HoloLogger consists of a HoloLens version 1 and a laptop. The
laptop for data processing is a ThinkPad P71 with a 3.10GHz CPU.
This simulates the threat model where data is processed in a backend
system.

On HoloLens, malware is implemented with Unity game engine
and disguised in a benign App. It listens to the keyboard invoking
event from HoloLens API to capture the keyboard activation time
and closing time. The head motion is logged at 70 fps while the
keyboard is activated. In addition, the three boundary vertices of the
keyboard are acquired on the keyboard’s startup. The data will be
sent to the laptop when the network is available. We employ popular
Python libraries including Pandas and Numpy for data processing.
Participants. A total of 25 participants (9 females and 16 males,
ages 22 to 32) were recruited through public advertisements. All
participants were university students. Among the participants, 8 of
them wore glasses and they kept their glasses on during the experi-
ments. Ten participants have used MR more than once before and
15 never used it. Since we did not observe a significant difference in
attack performance in different user groups, we do not separate the
results.

Participants signed a written consent form in accordance with
existing IRB approval which allows us to record head navigation
and location data from human subjects for discovering the vulnera-
bility of MR platforms. A brief introduction of Hololens interaction
was given to the participants. To help participants get familiar with
Hololens operation, they were first asked to take a training session,
during which they tried five 8-character inputs. The experiment only
started when the participants felt familiar with the interaction. Since
the goal of HoloLogger is to infer sensitive keystrokes, we focus
on hacking user passwords in the evaluation. Note that whether a
“username” is associated with the password does not bias the evalu-
ation results. During the experiment, a participant sat in a relaxed
posture wearing the HMD and typed a set of given passwords picked
from the list of 100 most common passwords [30] to validate the
performance of HoloLogger in realistic situations. The set includes
30 passwords with lengths ranging from 4 to 8 lowercase letters
(each length category contains 6 passwords), half of which contain
repetitive keystrokes. A total of 750 password trials were collected.
We focused on English passwords without numbers and special sym-
bols because entering them requires switching to another virtual
keyboard with a different layout (see Figure 4).
Evaluation Metrics. We use F1 score to evaluate the performance
of keystroke segmentation. The ground truth is the list of passwords
we instructed users to input. If an identified segment (valley) has an

Figure 10: F1 score with different
peak width and height thresholds.

Figure 11: Top-1 accuracy with
different length factor values.

overlap with one of the ground truth segments, it is counted as the
correct segment.

We also use the hit rate of top-1,3,5 candidates generated by
HoloLogger to evaluate the overall keystroke inference performance.
A password is hit when it exactly matches the inference result.

In f erence Accuracy =
No. o f Matched Passwords

No. o f All Passwords
×100% (4)

8 EVALUATION RESULTS

In this section, we evaluate the performance of HoloLogger. We
start with a micro-benchmark to perform sensitivity analysis of sys-
tem parameters and evaluate components of HoloLogger. We then
conduct a set of test attacks under various practical environments,
such as different password lengths, password types, user movements,
sampling rates, implementations of HoloLogger modules, and HMD
wearing time. Finally, we present the results of a user experience
study to obtain more insights of MR keystroke inference.

8.1 Micro-benchmarks
In this section, we aim to adjust the parameters in HoloLogger and
optimize each module. Note that to avoid bias, the data used in this
section is separated from the data used in Section 8.2. It includes 5
random passwords with lengths ranging from 4 to 8 characters for
each user (125 password trials in total).
Optimizing Segmentation. Recall that we use peak width and
height thresholds to filter out mounds and avoid the introduction of
incorrect segments. To evaluate the performance of this threshold-
based segmentation, we present the results of F1 score under dif-
ferent width thresholds and height thresholds in Figure 10. Under
a fixed height threshold, we observe that as the width threshold
increases, the accuracy increases continuously, reaches a maximum,
and then decreases gradually. This is because when the width thresh-
old is low, most of the mounds are above the threshold and identified
as peaks. These false peaks lead to false valleys and thus low accu-
racy. As the width threshold approaches the width of most mounds,
more mounds are correctly filtered. However, when the width thresh-
old becomes too high, even actual peaks are not wider than it. Then
multiple valley segments are falsely identified as one single segment.
As a result, multiple keystrokes are missed in the segmentation.

The maximum accuracy, 96%, is achieved when the width thresh-
old is 40 samples and the height threshold is 3.8× 10−6m/s. We
keep these values to maintain the best segmentation performance in
the remaining tests.
Optimizing Repetitive Keystroke Recognition. To ensure repet-
itive keystroke is correctly recognized, we design a length factor
in Section 6.2 to identify unusually long segments. In this section,
we show the inference performance under varying values of the
length factor. As shown in Figure 11, the top-1 inference accuracy
increases to a maximum of 75% while the length factor increases to
1.7. Then the accuracy drops as the length factor further increases.
This is because if the length factor is too small, a single keystroke is
recognized as repetitive keystrokes whereas if the length factor is too



Figure 12: Top-5 accuracy with
different occurrence factor val-
ues.

Figure 13: The system achieves
promising performance across all
characters.

large, actual repetitive keystrokes are not found. Both Scenarios will
result in wrong password inference. Therefore, the optimal length
factor is set for implementing HoloLogger.
Optimizing Inference Calibration. As the base candidate may be
derived incorrectly, the inference calibration is important to improve
the top-k inference accuracy. We evaluate the accuracy of the in-
ference calibration results, i.e., the top-5 candidates under different
values of occurrence factor. Results are shown in Figure 12. While
the occurrence factor is increasing, the accuracy increases as well.
It can be explained as that with a low occurrence factor the correct
base candidate will be updated to the next-frequently-aimed key in
the same segment even if the aiming time for that key is much lower
than the correct key, which decreases the accuracy. The optimal
accuracy, 94%, is achieved when the occurrence factor is 0.78.

8.2 Keystroke Inference Evaluation

In this section, we investigate the performance of HoloLogger under
various practical environments. To avoid bias, the data used in this
section are 625 new passwords different from the previous tests.
Impact of Different Characters We evaluate the keystroke infer-
ence performance for each individual English character on the key-
board. This serves as the benchmark for the multi-key password
inference. In this evaluation, HoloLogger only executes the pro-
cessing until segmentation. No repetitive keystroke recognition or
calibration is performed. The precision and recall of inferring 26
English characters are shown in Figure 13. Based on the result, we
conclude that HoloLogger achieves promising performance across
all characters and the challenges of keystroke inference come mainly
from multi-key cases.
Impact of Repetitive Keystroke We also divide the passwords into
two groups based on whether they contain repetitive keys and com-
pare the inference accuracy between them. The top-k accuracy of
passwords in the complete set as well as in two groups is shown in
Figure 14. While the top-1 accuracy is low for passwords with repeti-
tive keystrokes, the accuracy of cases with more attempts, e.g., top-5,
is only slightly impacted. This is because the inference calibration
process effectively identifies most of the repetitive keystrokes within
the first five trials. This result proves that HoloLogger is able to
accurately identify repetitive keystrokes under several trials. We
also observe that the top-1 to top-4 accuracy for inferring passwords
without repetitive keystrokes are the same while the top-5 accuracy
increases around 2%. The improvement appears only in the fifth
attempt because inference errors are largely caused by identifying
a single long-lasting keystroke as two repetitive keystrokes. Thus
Calibration 1 in Section 6.3 does not help in the first four attempts.
The accuracy only improves when Calibration 2 kicks in and updates
the base candidate.
Impact of Password Length Users may set up passwords or sen-
sitive information with different lengths. We evaluate the impacts
of the length of input on the inference accuracy. The number of
characters in our test input ranges from 4 to 8. We calculate their
top-k inference accuracy and the results are summarized in Figure 15.

Figure 14: The system accurately
identifies repetitive keystroke.

Figure 15: Inference results of
passwords of different lengths.

Figure 16: User’s positions do not
affect top-k inference accuracy.

Figure 17: The system achieves
acceptable performance given
limited sampling rates.

It shows that the accuracy is impaired by the increase of password
length. The reason is that longer passwords have a higher chance
of wrong segmentation and repetitive keystroke recognition. But
it is also important to note that the longer password length is not
sufficient to prevent the attack. For example, the top-5 accuracy
drops from 97% to 90% when the password length increases from 4
characters to 8 characters.
Impact of User Movement As HoloLogger tracks head motion in
6DoF, a user’s positional change, i.e., moving from one place to the
other, should not affect the attack performance. We conducted a
sub-test to validate this idea. During this test, 5 users were asked
to input 30 passwords at 3 different positions including the initial
position when the App is started, as well as 1.5 meters to the right
and left from the initial position. A total of 450 passwords were
collected. In Figure 16, we show the results when data is collected
at the initial position, 1.5 meters to the right and left from the initial
position, respectively. We observe that such head location change
does not affect the inference accuracy. This is because HoloLogger
infers the keystroke through 6DoF motion data. This result verifies
the effectiveness of HoloLogger under varying input locations.
Impact of Sampling Rates The sampling rate of the HoloLogger
system is an important parameter. In this section, we evaluate how
the sampling rate of the malware will affect inference accuracy. To
study this, we use different amounts of collected data to simulate
different sampling rates at 40, 50, 60, and 70 fps (primary), respec-
tively. The inference results are shown in Figure 17. We observe
that the accuracy decreases as the sampling rate decreases. This is
because less data leads to more segmentation and recognition errors.
Therefore, a reasonable sampling rate is required to conduct the
keystroke inference.
Importance of Inference Calibration To investigate to what extent
the inference calibration process improves the inference results, we
implement different variants of HoloLogger by disabling different
designs within this process and evaluate the variation of the accu-
racy. We first disable the repetitive key recognition (denoted as RC).
Then we activate the repetitive character recognition function and
disable the base candidate updating design (denoted as BC). We
compare these two variants with the full HoloLogger (denoted as
Complete) and show the results in Figure 18. We observe that the
top-1,3,5 accuracy of complete HoloLogger is 73%, 89%, and 93%



Figure 18: Repetitive keystroke
recognition improves accuracy.

Figure 19: Inference results un-
der different HMD wearing time.

respectively. In addition, the repetitive key modification drastically
improves the system performance. This indicates that handling repet-
itive keystrokes is a significant factor for the keystroke inference to
succeed.
Impact of HMD Wearing Time We also study if factors related
to users would affect the inference accuracy. Specifically, we are
interested in the impact of user fatigue. Since HoloLens is a heavy
HMD, user behavior may change dramatically when they wear the
HMD for a long time. A sub-test is conducted with 5 participants.
Each participant is asked to wear the HMD for different time periods
before starting the typing experiments. The result in Figure 19 shows
top-k accuracy slightly decreases when the wearing time increases.
This may be attributed to the fact that when a user wears the HMD
for a longer time, it is harder to hold HMD steadily to aim at the
key. However, the accuracy decrease is negligible. This is because
HoloLogger can handle different types of motion noise. Thus, this
result validates the generality of HoloLogger.

8.3 User Experience

We collect user feedback on HoloLogger through a user experience
survey for a set of comparison experiments. In the experiments,
users type passwords in an App with the malware and an identical
App without the malware. Users do not know the difference between
these two Apps. Users also try both HGC and voice input. All 25
users attend the survey by completing a questionnaire immediately
after the experiment. The questionnaire asks users to compare the
malware with the benign App in responsiveness. In addition, the
survey asks about user opinion of the HGC compared to the voice
input on several aspects: convenience, security, and social comfort
(comfortable to use in the public). The survey result is summarized
in Table 1. Most of the participants did not experience significant
lagging. This suggests that no suspicion will be raised about this mal-
ware in terms of responsiveness. We also observe that HGC is more
convenient, secure, and acceptable by users. In other words, people
prefer HGC rather than voice input in practice which highlights the
importance of exposing this threat of keystroke inference.

9 DISCUSSION AND FUTURE WORK

Generalization for Keyboard Layout and MR Devices. In this
work, we implemented HoloLogger based on the parameters of the
default HoloLens keyboard. Although this keyboard has been used
for most HoloLens Apps, we acknowledge that some Apps may
adopt a customized keyboard layout and that the system-default
layout may change upon operating system update. However, the
proposed designs of HoloLogger are generic. Attackers can still
obtain the updated layout information by downloading the target OS
and the target App. They can then update the keyboard parameters in
the derivation in Section 5. Therefore, HoloLogger can be extended
to accommodate various types of keyboards.

Similarly, HoloLogger can be extended to other MR devices that
support the HGC input model than the HoloLens 1. HoloLogger is
designed based on the user interaction pattern in the HGC model

Table 1: User Feedback.
Questions Answer: Y Answer: N

Q1 Have you used an AR device before? 10 15
Q2 Is there noticeable lagging when typing? 3 22
Q3 HGC input is more secure than voice input 21 4
Q4 HGC input shows more social comfort than voice input 19 6
Q5 HGC input is more convenient than voice input 14 9

rather than specificity in HoloLens 1. By using the keyboard param-
eters of the target MR device, attackers can launch the attack at any
HGC-based device. As HGC has been the default input modality in
HoloLens 1 and is still adopted by HoloLens 2, our attack will bring
a broad impact on the MR design.
Diversity of Repetitive Keystrokes. HoloLogger is designed to
infer input containing at most one repetitive keystroke. Although
this is true for a large number of sensitive inputs, it is possible that
the sensitive input contains multiple repetitive keystrokes (such as
“eeoo”), repetitive keystrokes composed of three or more repeating
characters (such as “eeeo”), or a combination of both cases (such as
“eeeoo”). As a result, the accuracy of HoloLogger will be decreased
in these cases. Fortunately, a threshold of the length difference
among segments can be included to detect segments with repetitive
keystrokes that are drastically longer than others. Also, a length fac-
tor can be optimized to determine the number of keys in a repetitive
keystroke segment. This indeed requires a larger scale of empirical
data and a separate study to finalize the design choices.
Countermeasures and Lessons Learned. Based on the extensive
results shown in Section 8, we have found some important implica-
tions in terms of defending the proposed MR keystroke inference
attack. We recommend these countermeasures for MR users and
developers in order to prevent the potential leak of sensitive input
data. From the user’s perspective, protection can be achieved by
using passwords that contain repetitive keystrokes and more char-
acters. Another method is to change the MR interaction to gaze
tracking [15], a touchpad [12, 39] or the hand tracking introduced
in HoloLens 2. However, this does not eliminate the threat and
the large number of HGC users will still suffer from the proposed
attack. On the other hand, from the operating system point of view,
while it is not practical to forbid an App’s access to head motion
data, the operating system could limit the sampling rate of motion
data, especially when the user is making inputs on a keyboard. This
should not affect other regular MR interactions, but could reduce
the risks of keystroke inference. Furthermore, using a keyboard
with randomized key arrangements may help. However, virtual key-
boards used for entering sensitive data in most computing platforms
such as HoloLens, Android, and iOS are still QWERTY keyboards.
The reason is that using randomized key arrangements might af-
fect usability [28, 29]. This makes keystroke inference on standard
keyboards indeed a realistic and serious security threat.

10 CONCLUSION

In contrast with MR’s rising popularity, its security is rarely explored.
In this paper, we discuss the feasibility of inferring user input on
MR HMDs that use the HGC model. We present the first prototype
of a malware-based keystroke inference attack towards these HMDs.
Specifically, we exploit the 6DoF head motion data to derive the
stream of keys targeted by users. By leveraging the unique head
navigation pattern during air taps, keystrokes, including repetitive
keystrokes, are segmented and recognized. Extensive experiments
through 750 attacks towards passwords consisting of 4 to 8 lowercase
English letters among 25 participants show that the proposed attack
achieves top-1,3,5 accuracy of 73%, 89%, and 93%, respectively.
The exposure of this attack will alert MR users, system designers,
and MR developers, and inspire them in designing more secure
MR systems. The success of HoloLogger shall also call for more
exposure and mitigation of security threats in MR and VR in order
to establish trustworthiness in immersive computing platforms.
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