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Abstract—Understanding the vulnerability of virtual reality
(VR) is crucial for protecting sensitive data and building user
trust in VR ecosystems. Previous attacks have demonstrated
the feasibility of inferring VR keystrokes inside head-mounted
displays (HMDs) by recording side-channel signals generated
during user-HMD interactions. However, these attacks are heavily
constrained by the physical layout or victim pose in the attack
scenario since the recording device must be strictly positioned and
oriented in a particular way with respect to the victim. In this
paper, we unveil a placement-flexible keystroke inference attack in
VR by eavesdropping the clicking sounds of the moving hand con-
troller during keystrokes. The malicious recording smartphone
can be placed anywhere surrounding the victim, making the
attack more flexible and practical to deploy in VR environments.
As the first acoustic attack in VR, our system, Heimdall,
overcomes unique challenges unaddressed by previous acoustic
attacks on physical keyboards and touchscreens. These challenges
include differentiating sounds in a 3D space, adaptive mapping
between keystroke sound and key in varying recording placement,
and handling occasional hand rotations. Experiments with 30 par-
ticipants show that Heimdall achieves key inference accuracy
of 96.51% and top-5 accuracy of 85.14%–91.22% for inferring
passwords with 4–8 characters. Heimdall is also robust under
various practical impacts such as smartphone-user placement,
attack environments, hardware models, and victim conditions.

I. INTRODUCTION

Virtual reality (VR) is a highly promising computing
platform with 171 million users [8]. It has enabled diverse
applications, including gaming, healthcare, and training. How-
ever, due to its collection and storage of extensive personal
data, VR poses unique privacy challenges. Leaks of biometrics,
passwords, credit cards, or intimate behavioral data can result
in identity theft and unauthorized access. Therefore, it is
crucial to devise new measures to safeguard VR data.

Most of the existing approaches to protecting VR data fo-
cus on knowledge- or biometrics-based authentication schemes
[17], [29], [47], [36]. These schemes aim to prevent unau-
thorized access to VR data when an attacker physically pos-
sesses the VR head-mounted display (HMD). The underlying
assumption is that by securing the HMD, VR data will also
be protected. However, recent studies have shown that the
interaction between a user and an HMD creates various side
channels that are completely exposed to the public. Attackers

can record these side channel signals and exploit their subtle
relationship with VR keystrokes to infer sensitive input, even
without physical possession of the HMD. For example, by
analyzing video recordings of a user [31], [40], [69] or vari-
ations in surrounding wireless signals [1] during a VR input
session, attackers have successfully inferred keystrokes inside
the HMD. Notably, the threat posed by these recording-based
side channel attacks is significantly higher in VR environments
than in traditional desktop or mobile environments due to
the blocking of users’ real-world visuals by HMDs and the
decrease in situational awareness [20].

While these initial attacks demonstrate the feasibility of
recording user-HMD interactions and inferring VR keystrokes,
they are hindered by practical limitations. All these attacks
are heavily constrained by the physical layout or victim pose
in the attack scenario because the recording devices must be
placed in a certain orientation and position with respect to the
victim. For instance, in the video-based attack [31], [40], [69],
a camera must be positioned directly in front of the victim to
capture finger clicking and controller moving comprehensively,
i.e., the camera must always maintain line-of-sight views of
the controller. If the camera is shifted to a side position and
the finger or controller becomes obscured, even partially, by
body movement, the attack would fail. Similarly, the wireless
signal based attack [1] requires the deliberate placement of
a transmitter and a receiver such that the victim lies within
a direct well-aligned link between the two malicious devices.
Hence, users can effectively counter these placement-sensitive
attacks by positioning themselves in a secure layout, such as
sitting in a corner.

In this paper, we expose a placement-flexible VR keystroke
inference attack named Heimdall, which leverages a novel
side channel created by the acoustic emanation from the hand-
held VR controller during user-VR interactions. Heimdall
targets the single hand controller that is universally supported
across VR HMDs from Samsung, Google, HTC, and Oculus
[57], [22], [24], [42]. When a user navigates through the
virtual keyboard by moving the controller and commits a
keystroke by clicking the controller, a distinct clicking sound
is emitted and recorded by a nearby malicious smartphone.
By analyzing the spatial relationship between the moving con-
troller and the fixed smartphone, the sound of each keystroke
can be uniquely defined and used to infer the corresponding
key entered inside the HMD. Since the clicking sound can
be recorded anywhere surrounding the victim, the malicious
smartphone can be placed in any position and orientation
without strict requirements. This includes non-line-of-sight
scenarios where the smartphone has partial or no visibility of
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the controller, e.g., behind the victim. Consequently, Heimdall
is more flexible with the layout or furniture near the victim and
the victim’s poses, offering attackers more options in choosing
when, where, and how they record the keystroke sounds and
posing greater threats in practice.

Challenges and Approaches. Although previous studies have
analyzed acoustic emanations from physical keyboards and
smartphone touchscreens to infer keystrokes [32], [72], [73],
[34], [13], no research has exploited the acoustic side channels
of VR devices that present a distinct interaction modality.
Therefore, realizing Heimdall requires overcoming new
challenges. First, when analyzing keystrokes on physical key-
boards, the time difference of arrival of keystroke sounds can
be recorded by omnidirectional microphones on the same 2D
surface to differentiate them [73], [32]. However, keystroke
sounds of the VR controller can come from anywhere in 3D
space, so the omnidirectional signal and its phase are no longer
sufficient to differentiate keystroke sounds in VR. To solve
this problem, we propose a directional acoustic signal acqui-
sition framework. We use porous plastic tubes to convert the
omnidirectional microphones on a smartphone to directional
microphones, allowing VR keystroke sounds from different 3D
positions to create directional signals with uniquely-distorted
phases and magnitudes for differentiation, similar to how 3D
sounds are perceived by human ears via ear canals.

Second, unlike traditional acoustic keystroke attacks that
place microphones on or next to the victim device and assume
a minimal impact of placement position and orientation [32],
[72], the relative position and orientation between the user and
the microphones in VR can vary significantly in different attack
scenarios. While we can record a directional keystroke sound
and map its distinct direction-of-arrival (DOA) to the respec-
tive key in a given microphone-user placement, the same key’s
keystroke sound and DOA will change in a new placement. To
overcome this challenge, we propose an adaptive DOA-Key
mapping scheme that adjusts the DOA-Key mapping obtained
in a baseline placement to the actual placement in the attack.
The scheme iteratively applies translation and rotation to the
DOAs in a baseline mapping until a subset of them matches
the DOAs of victim keystroke sounds in the attack, thereby uti-
lizing the updated DOA-Key mapping for keystroke inference.

Third, compared with traditional devices where a keystroke
sound is emitted from the key that is pressed, VR systems
generate monotonous keystroke sounds from a single handheld
controller. As a VR user may navigate the virtual keyboard by
rotating their wrist without significant hand movements, the
acoustic signals with the same DOA can introduce different
keystrokes. To remedy this issue, we devise an inter-key
relation-based calibration model that corrects mapping errors
caused by the mismatch between rotated hands and unchanged
DOAs. The rationale is that while the sound source locations
of two VR keystrokes may be close, the time interval and
controller moving direction between the two keystrokes are
distinct depending on the distance between the virtual keys.
We accordingly generate a list of VR keystroke candidates to
improve the attack performance.

Evaluations. We validate the inference accuracy and ro-
bustness of Heimdall through extensive evaluations of 30
participants using 45 passwords, three types of VR HMDs, and

Fig. 1: The virtual keyboard, controller, and smartphone in a
keystroke session.

two types of smartphones. The results show that Heimdall
reaches key inference accuracy of 96.51%. When hacking
a password with 4–8 characters, Heimdall can derive the
exact password in five attempts with accuracy from 85.14% to
91.22%. The robustness study demonstrates that Heimdall
maintains a satisfactory performance under various practical
impacts such as smartphone-user placement, attack environ-
ments, hardware models, and victim conditions.

Ethical Considerations. All experiments involving human
subjects in this study have been approved by the IRB. We
have only used Heimdall to perform attacks on the datasets
described in this paper. Heimdall has never been used in
other ways or released to other parties.

Contributions. The contributions of this paper include

• A directional acoustic signal acquisition framework
that records differentiable VR keystroke sounds in 3D
space via customized phone microphones (§V).

• An adaptive DOA-Key mapping scheme that adapts
DOAs of keystroke sounds in the baseline placement
to the attack case for keystroke inference (§VI).

• An inter-key relation-based calibration model to cor-
rect mapping errors caused by the mismatch between
rotated hands and unchanged DOAs (§VII).

• An extensive evaluation of inference accuracy and its
robustness under practical scenarios (§VIII and §IX).

II. BACKGROUND AND CHALLENGES

A. User Behavior during VR Keystroke

As illustrated in Figure 1, VR devices employ a controller-
based keystroke method. When keystrokes are needed, a virtual
“QWERTY” keyboard is rendered in front of a user inside
the HMD. During a sensitive keystroke session, the user
continuously enters a sequence of keys using this keyboard,
e.g., a password or an answer to a security question. The user
stays at the same physical location and moves the controller
around to complete the keystrokes. The VR operating system
(OS) tracks the controller’s position. When the controller is
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Fig. 2: The controller positions differ between keys, but cluster
across users.

aimed at the target virtual key, the user clicks the confirm
button on the controller and commits a keystroke.

Throughout this process, the user may slightly move her
head and body for navigation, but it should be emphasized
that the virtual keyboard remains fixed in front of the user,
regardless of these movements. The VR OS only re-renders
the virtual keyboard under large-scale movements when the
original keyboard is completely out of the user’s view, e.g., the
user rotating her body 90◦ to the right or walking around the
room. Although such movements are possible while exploring
a VR App, they rarely occur in a sensitive keystroke session.
In fact, a stationary position can reduce motion sickness while
focusing on an object [59]. In this paper, we focus on a typical
session without irregular behavior that commits a keystroke
and then moves around to switch the view of the keyboard for
subsequent keystrokes.

B. Correlation Between Key and Sound

The acoustic signal emitted from the controller upon a
keystroke is correlated to the respective key entered in VR.
As shown in Figure 1, when the user navigates the cursor
through the virtual keyboard, the controller moves up/down
and left/right in a plane approximately parallel to the keyboard.
Given the malicious smartphone fixed in the 3D space and
the origin point set at the center of the smartphone, keystroke
sounds generated at different azimuths and altitudes can be
recorded and associated with respective keys.

Moreover, the correlations between keystroke sounds and
respective keys are similar across users [41], [47]. Under a
recording placement with a given relative position and orien-
tation between smartphone and user, different users generate
similar keystroke sounds when committing the same key. This
is because VR OS synchronizes the VR cursor movement with
the controller movement. To move from one key to the other
with a fixed distance on the virtual keyboard, different users
need to move their hands with the same distance in the physical
world. Thus keystroke sounds of the same key from different
users are generated at similar 3D positions. Therefore, if the
smartphone-user placement is consistent, attackers can pre-
collect keystroke sounds of all target keys as a baseline and
utilize this baseline mapping to infer the victim’s keystrokes.

(a) Left channel – user #1 (b) Left channel – user #2

(c) Right channel – user #1 (d) Right channel – user #2

Fig. 3: VR keystroke sounds are distinct for keys “M” and
“P”, but remain consistent between two users.

Our study with 30 users validated the correlation between a
keystroke sound and its respective key as well as the cross-user
similarity of this correlation. Figure 2 depicts the controller
3D positions of 30 users (one circle per user) while typing
26 English letters and 10 digits (one color per key). We
observe that the controller position is constrained to a small
area for each key, incurring the unique keystroke sound. The
positions of different users are closely clustered, as verified
by a Silhouette Score of 0.64 via the K-means analysis (with
a score of 1.0 indicating all samples are within their clusters)
[52]. While nearby keys might share similar sound sources, the
keystroke sound can be mapped to the closest cluster to iden-
tify the most probable key. Figure 3 further exemplifies two
keystroke sounds “M” and “P” typed by two users, including
the acoustic signals of both left and right channels recorded by
the proposed directional microphones (§V). We observe that
different keystroke sounds demonstrate distinguishable shapes,
whereas the shapes of the acoustic signals from the same
keystroke are consistent between different users.

C. Challenges

While the principle mentioned above is straightforward,
there are practical challenges that hinder the realization of
the attack. First, modern smartphones are only equipped with
omnidirectional microphones and cannot record the differen-
tiable directional signals illustrated in Figure 3. Second, the
smartphone-user placement in the attack may be different from
the placement when attackers pre-collect keystroke sounds,
invalidating the mapping between a keystroke sound and a
key. Third, sometimes different keystrokes may be generated
at similar controller positions (overlapping clusters in Figure 2)
because user hand rotation may lead to insignificant hand
translation movement, causing mapping errors. In this paper,
we strive to overcome these challenges.
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Fig. 4: The architecture of Heimdall.

(a) Public attack – a library (b) Insider attack – a laboratory

Fig. 5: Sample attack scenarios.

III. THREAT MODEL

We consider a scenario where a victim is typing sensitive
input in VR using a controller. For example, the victim enters
passwords or answers to security questions to log in to a
medical therapy account. Meanwhile, a malicious smartphone
is placed near the victim to record the keystroke sounds and
infer the respective keys. This includes two representative
scenarios, (a) public attack – the attacker places the smartphone
in a public place, e.g., on a shared table in a library or
airport (example shown in Figure 5a), and (b) insider attack
– the victims know the attacker so that they (un)knowingly
allow the attacker to put the smartphone near them, e.g.,
in an office or lab (example shown in Figure 5b). Similar
attack scenarios were validated in acoustic keystroke attacks
on physical keyboards and touchscreens [32], [6], [2], but our
VR scenario is stealthier since the victim’s eyes are covered
by the HMD, making them less vigilant about the proximity,
and thus the attacker has more flexibility in choosing how to
place the smartphone.

Besides the access to the place where the victim enters VR
inputs, we assume that the attacker knows the type of VR HMD
the victim is using, which is straightforward to obtain since the
attacker can visually recognize these commercial off-the-shelf
devices. The HMD type information can determine the virtual
keyboard layout and support the keystroke inference.

We do not assume any other capabilities for the attackers.
Unlike existing VR keystroke attacks utilizing videos or
wireless signals [31], [40], [69], [1], we do not require the
attackers to have a line-of-sight view of the victim’s HMD
and handheld controller, i.e., hand and body movements may
partially or completely obstruct the controller. We also do
not require setting up a precisely aligned pair of wireless
transmitter and receiver on both sides of the victim. Hence,
countermeasures aimed at positioning users in a secure

layout, e.g., in a corner, or steering users away from potential
directions of the malicious camera capturing or wireless
sensing, would not be effective against our attack. Our
malicious smartphone can be positioned or oriented anywhere
surrounding the victim, making the attack more flexible with
the physical layout and victim pose. This flexible placement of
the malicious recording device is also more practical than prior
acoustic attacks that rely on the microphone being situated
beneath a touchscreen [72], [34] or immediately adjacent
to physical keyboards [6], [73], [32], [13]. Furthermore, the
attackers do not have the capability of tricking the victim into
installing malware on the HMD, making our attack easier to
deploy than the other thread of VR keystroke attacks [35], [70],
[62], [68] that depend on malware accessing raw HMD data.

IV. SYSTEM OVERVIEW

As shown in Figure 4, Heimdall employs three modules
to address the three challenges discussed in §II-C. In §V, we
propose a directional acoustic signal acquisition framework,
where Heimdall records and segments keystroke sounds via
easily-customized smartphone microphones. In §VI, we utilize
the direction of arrival (DOA) to identify keystroke sounds
and develop an adaptive DOA-Key mapping scheme, where
Heimdall adapts the DOA-Key mapping pre-collected in the
baseline placement to the actual attack and then maps victim
keystrokes’ DOAs to the respective keys. In §VII, we devise an
inter-key relation-based calibration model, where Heimdall
uses the time interval and controller moving direction between
two keystrokes for a Hidden Markov Model to generate a list
of input candidates and enhance the attack performance.

V. DIRECTIONAL ACOUSTIC SIGNAL ACQUISITION

A. Microphone Customization

Modern smartphones are equipped with two omnidirec-
tional microphones, one at the bottom of the device for regular
phone calls and the other at the top for the speakerphone
mode. These microphones capture acoustic signals with equal
magnitude regardless of their directions of arrival (DOAs). By
comparing the signal phases captured by the two microphones
and analyzing the time difference of arrival, acoustic attacks
were performed on physical keyboards placed on the same
2D plane [73], [32]. However, signal phases alone cannot
differentiate VR keystroke sounds in a 3D space because the
virtual keyboard, sound source (controller), and microphones
are not confined in a 2D plane [10]. To record VR keystroke
sounds with distinguishable phases and magnitudes as shown
in Figure 3, a new signal acquisition method is needed.

Inspired by how human ears localize sound sources and
how sounds travel through ear canals, we posit that if the two
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(a) The structure and porous
appearance of the tube.

(b) The smartphone with cus-
tomized microphones.

Fig. 6: The recording prototype of Heimdall.

smartphone microphones are directional, differentiating the VR
keystroke sounds is possible. Similar to human ear canals, di-
rectional microphones capture acoustic signals with maximum
gain from the primary axis while depressing signals arriving
from other directions. When a keystroke sound from a certain
DOA arrives at the capsule of a directional microphone, it gen-
erates a group of sub-signals with different phases at the side
slots of the capsule. These sub-signals travel along multiple
paths within the capsule to reach the electronics at the end of
the microphone. They interfere and sometimes cancel out each
other, producing a uniquely-distorted recording with a distinct
phase and magnitude [38]. Hence, we propose to convert off-
the-shelf smartphone microphones into directional ones.

Heimdall requires a simple microphone conversion de-
sign that does not require advanced crafting techniques and can
be launched by someone without a computing or engineering
background. The directional microphones must also be im-
plemented without drastically changing the smartphone. For
example, separating the microphones with a sound-blocking
barrier plate is not appropriate [16].

Directional microphones sense the directionality of sounds
via an encapsulating tube with uniformly distributed side
slots [38]. Based on this structure, we attach a 5-centimeter
porous tube to both microphones that are embedded in the
smartphone. As shown in Figure 6a and Figure 6b, the side
slots are pierced over the entire tube with a 5-millimeter
spacing, enabling the recording of uniquely-distorted signals
from different DOAs. Such a centimeter-level porous tube has
been shown to be sufficient to generate the unique responses
of a directional microphone [4]. We choose plastic tubes for
their easy accessibility and prepare them using a 3D printer.

To record the VR keystroke sounds using our customized
hardware, we configure the smartphone microphones in stereo
audio recording mode with a 48 kHz sampling rate so that
the directionality of the sound can be perceived maximally
[28]. As the left and right microphones record the keystroke
sound independently, Heimdall can theoretically differenti-
ate a minimum distance of 7 millimeters between two sound
sources, given that the speed of sound is 340 m/s.

B. Keystroke Sound Recognition

Background Noise Removal. After recording raw acoustic
signals, Heimdall removes background noise that can dis-
tribute over a wide frequency band, including people talk-
ing and walking by. As these noises may overlap with the

Fig. 7: Signal spectrograms – background noises of the original
signal (left) are removed in the denoised signal (right), but the
controller clicking sounds are preserved.

frequency band of the keystroke sound, using a bandpass or
bandstop filter for noise removal may also remove the desired
acoustic signals. Therefore, wavelet denoising is employed to
remove background noise, as it was proven effective at isolat-
ing transient, high-frequency sounds (like controller clicking)
and minimizing persistent, low-frequency noise (like human
speaking, computer humming, physical keyboard typing) [49].
Specifically, we use Maximal Overlap Discrete Wavelet Trans-
form [46] with a Daubechies 3 wavelet to decompose the sound
into 5 bands, i.e.,

αi
(J) =

∑
n∈Z

Xnḡ
(J)

n−2J i
βi

(j) =
∑
n∈Z

Xnh̄
(j)
n−2ji′ (1)

where αi and βi are the detail coefficients and the approxi-
mation coefficients, J ∈ Z, j ∈ {1, 2, ..J} are the levels and
ḡ, h̄ are the discrete orthogonal wavelet functions. We choose
this configuration since it effectively captures sharp, transient
acoustic features of controller clicking sounds. After decom-
posing, high-frequency controller clicks primarily appear in the
higher-level coefficients, whereas low-frequency background
noise falls into the lower-level coefficients. We then apply
thresholding to remove small-coefficient background noise
using BayesShrink, an adaptive method that determines op-
timal thresholds for each level based on signal variance and
estimated noise [49]. Finally, we reconstruct the acoustic signal
based on the updated coefficients using the inverse transform,

Xn =
∑
i∈Z

αi
(J)ḡ

(J)

n−2J i
+

(J)∑
j=1

∑
i∈Z

βi
(j)h̄

(j)
n−2ji′ (2)

Figure 7 shows that Heimdall successfully eliminates a
broad spectrum of noises (red dotted boxes) while retaining
the controller clicking sounds (white dotted boxes).

Controller Click Segmentation. Controller clicking sounds
only account for a small portion of the recorded acoustic
signal. After the noise removal, there is a significant portion of
irrelevant low-magnitude signal residuals that are non-clicking
signal segments. To identify the controller clicking segments,
we apply a magnitude threshold to the denoised signal because
the controller clicks are salient in magnitude. For those signal
periods exceeding the threshold, a peak within the period is
identified. Then a 200 ms of signal centered at the peak is
extracted as the controller clicking segment. To optimize the
threshold for the controller click segmentation, we conducted
a pilot study and utilized the data as ground truth. Five
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Fig. 8: Optimizing the threshold for click segmentation.

participants entered twice the sequence “GMPQZ” while we
recorded the acoustic signals one meter away by a Samsung
Galaxy S8 with the proposed directional microphones. We
compare the recognized controller clicks with the ground truth
and calculate the F1 score as the threshold varies from 0.01
to 0.1 in 50 steps. As shown in Figure 8, the highest F1 score
of 0.967 is achieved when the threshold reaches 0.028, which
is used for the click segmentation in Heimdall.

Keystroke Session Recognition. Apart from keystrokes, user
interaction with other VR content also involves clicking the
controller. In other words, not all controller clicks in VR are
keystrokes. Similar to the findings of a recent study [68],
we observe distinct patterns of inter-click interval in VR
keystroke sessions compared to other VR interactions using
controller clicks. Figure 9 depicts the controller clicks during
a sample use case when a user views a webpage and logs
into a private account. The keystroke session for entering the
password shows temporally-stable clicks, which differ from
other interactions with more sporadic clicks, such as launching
the web browser App from the VR Home page, navigating the
webpage via dragging, activating the virtual keyboard after
clicking the login button, and confirming the password.

The reason behind this phenomenon is that users tend to
move the controller around without a noticeable pattern when
interacting with and clicking non-keyboard content. This is
driven by the fact that non-keyboard VR content pops up or
refreshes constantly and it may appear in varying locations in
the virtual world. As a result, the sporadic hand movements
and controller clicks introduce a higher variance in the inter-
click interval between non-keyboard clicks. In contrast, the VR
keyboard is fixed in the virtual world and users are familiar
with its “QWERTY” layout. This constrains the movement
scale of the controller and leads to more stable time intervals
between keystroke clicks.

Given the similar observations, we apply the keystroke ses-
sion recognition approach [68] used in a recent VR keystroke
attack to differentiate the keystroke session from other VR
clicks. Specifically, the click frequency based approach in-
volves solving the optimization below,

argmax
ts,te

te − ts

s.t. fmin < Freq(ts, te) < fmax

tmin < te − ts

(3)

where ts and te are the start and end time of the keystroke
session, Freq(ts, te) is the controller clicking frequency in the

Fig. 9: The keystroke session presents distinct controller click
patterns from other activities.

keystroke session bounded by fmin and fmax, and tmin is the
minimum duration of the keystroke session. According to the
Word-Per-Minute (WPM) performance for VR input [7], we
configure fmin and fmax as 0.2 and 0.4. respectively. Since
we consider sensitive input of more than four characters in our
experiments, we set tmin to 7.5 seconds given fmax = 0.4.
Then ts and te can be derived.

We validate this approach in our study. Five users were
asked to enter three sets of keystrokes in three Apps – VR
Browser, VR shopping, and VR sightseeing, where they can
freely interact with the App and enter the keystrokes. The
keystrokes for the three Apps are the password of an existing
browser account, the password of an existing payment account,
and a video title to search, respectively. The average duration
of a study session is 3.5 minutes. We calculate True Positive
Rate (TPR) as the number of correctly recognized keystrokes
over the total number of keystrokes and False Positive Rate
(FPR) as the number of incorrectly recognized keystrokes over
the total number of non-keystroke clicks. The TPR of 0.98 and
FPR of 0.04 are consistent with the previous results in [68],
demonstrating the effectiveness of the approach.

VI. ADAPTIVE DOA-KEY MAPPING

A. Varying Sound-Key Mapping

Once differentiable acoustic signals are recorded and
keystrokes are recognized, attackers can pre-collect the
keystroke sounds for all target keys as a baseline. If the
microphone-user placement in the actual attack is similar to
the baseline case, attackers can utilize the baseline sound-key
mapping to map a victim’s keystroke sound to the respec-
tive key. This works well for traditional acoustic keystroke
attacks that assumed consistent placements, e.g., exploiting
compromised built-in smartphone microphones underneath a
touchscreen [72], [34] or microphones placed immediately
around physical keyboards [6], [73], [32], [13]. However, this
strong assumption mitigates the threat in practice. In this paper,
we consider the practical scenario where the microphone-user
position and orientation in a VR keystroke attack can vary
significantly from the baseline.

We validated the significant impacts of smartphone-user
placements in our pilot study. After obtaining the results in
Figure 3 by placing the smartphone one meter in front of the
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(a) Left channel – user #1 (b) Right channel – user #1

Fig. 10: Keystroke sound signal collected from user #1 in a
new smartphone placement is different from that in Figure 3.

user, we shifted the smartphone one meter to its right without
changing its orientation. As exemplified in Figure 10, the phase
and magnitude of the keystroke sound signals collected from
even the same user #1 can drastically change from the Figure 3
results obtained in the original placement, e.g., earlier phase
and higher magnitude for keystroke M in the left channel.
This is because the left microphone is now closer to the sound
source. The source of the keystroke sound is closer to the left
microphone than the right microphone.

It is clear that the baseline mapping between keystroke
sounds and keys pre-collected by attackers cannot be directly
used in the new placement of an actual attack. Due to the
altered spatial relationship between the victim and the smart-
phone, a keystroke sound may be mapped to a wrong key
or may even have no match. Since both the signal phase
and magnitude of the same key may change dramatically, no
well-defined signal features can be extracted to represent a
signal under different placements. Hence, we cannot use the
keystroke sounds directly to infer the keys.

However, we discovered that the varying direction of arrival
(DOA) of a keystroke sound presents a traceable pattern under
different placements. The DOA is defined by azimuth and alti-
tude [14] and is an indirect way to identify a keystroke sound.
Figure 11 shows the DOAs of two keystroke sounds from user
#1 in the original (M and P) and new placements (M’ and
P’). The new placement causes similar angular changes to the
DOAs. For example, the azimuth changes of keystroke sounds
M and P between two placements are both around 45◦ because
the smartphone microphones were moved to the right by 1 me-
ter. Given this noticeable pattern, we propose using DOAs to
identify keystroke sounds and build the baseline mapping. We
can then update the DOAs for target keys based on smartphone
displacement in the attack to infer victim keystrokes.

B. Adaptive Mapping Procedure

Heimdall first pre-collects the DOAs for all target keys
in a baseline smartphone-user placement, creating a DOA-
Key mapping. It then derives the DOAs of the recorded
victim keystroke sounds. Next, Heimdall updates the base-
line DOA-Key mapping based on the new spatial relationship
between the victim and smartphone in the attack. Finally, it
maps the DOA of the victim keystrokes to the respective key
via the updated DOA-Key mapping.

Fig. 11: DOAs collected from user #1 under two placements
present traceable changes, e.g., about 45◦ change in azimuth.

Step 1 – Collecting Baseline DOA-Key Mapping. In a
baseline placement, attackers can enter a key k and directly
access the coordinate of the controller in the VR OS. The VR
OS coordinate system can be easily converted to the attack
coordinate system with the origin point set at the center of the
fixed smartphone since the layout between the smartphone and
the attacker is known. Given the converted controller position
(xk, yk, zk), keystroke k’s DOA dk,base can be derived, i.e.,

dk,base = [φk θk],

φk = arctan(
yk
xk

),

θk = arccos(
zk
rk

)

(4)

where φk is the azimuth of the controller position, θk is the
altitude, and rk =

√
xk

2 + yk2 + zk2 is the distance between
the origin point and the controller. By repeating this process
for a set of keys K including 26 English letters and 10 digits,
we have the baseline DOA-Key mapping {k ∈ K, dk,base}.

Step 2 – Deriving DOAs of Keystroke Sounds in the Attack.
Since attackers cannot directly access the coordinates of the
victim keystroke sounds in the attack, we propose a method
to derive the DOAs. A keystroke sound interacts with the tube
structure of the directional microphones before being recorded.
The impulse responses of the left and right tubes Tl and Tr

affect the phase and magnitude of the recorded signal. Besides,
the signal propagation from the sound source to the left and
right microphones in the recording environment, characterized
by the environmental channel response El and Er, also affects
the recorded signal. Thus, the signal recorded by the left and
right microphone in the frequency domain, Yl and Yr, are

Yl = X · El · Tl,

Yr = X · Er · Tr
(5)

where X is the source sound signal. Since left and right
microphones are close to each other in the same environment,
El and Er are approximately equal [19]. Thus we have,

Yl

Tl
= X · El ≈ X · Er =

Yr

Tr
(6)

We then obtain the tube responses Tl(d), Tr(d) under
different DOAs d using the Maximum Length Sequence (MLS)
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method [51], a standard procedure for deriving impulse re-
sponse. Specifically, our smartphone is placed at the center
of an anechoic chamber to record acoustic signals, while a
segment of MLS signal is generated from a given DOA d
relative to the origin point. Without interference from the
environmental channel response, the MLS signal recorded by
the left microphone Y0,l(d) and right microphone Y0,r(d) can
be expressed in the frequency domain as,

Y0,l(d) = X0 · Tl(d),

Y0,r(d) = X0 · Tr(d)
(7)

where X0 is the known MLS signal. For each DOA d, we use
the Y0,l(d) and Y0,r(d) to obtain the tube responses, i.e.,

Tl(d) =
Y0,l(d)

X0
, ∀d

Tr(d) =
Y0,r(d)

X0
, ∀d

(8)

We can then obtain the DOA of a keystroke sound d∗ by
finding the d that maximally satisfies Equation 6, i.e.,

d∗ = argmin
d∈D

| Yl

Tl(d)
− Yr

Tr(d)
| (9)

where D is the set of possible DOAs. Since VR keystroke
sounds originate from a discrete number of DOAs, we consider
a finite set D where the azimuth of a DOA increases from 0◦

to 359◦ and the altitude of a DOA increases from 0◦ to 180◦,
both at a step size of 1◦.

By following the above methodology, attackers can obtain
the DOA of victim keystroke sounds in the attack. Given the
set of sensitive inputs S, e.g., an 8-key password, the DOA
ds,atk of a victim keystroke s ∈ S can be derived as,

ds,atk = argmin
d∈D

|Ys,l,atk

Tl(d)
− Ys,r,atk

Tr(d)
| (10)

where Ys,l,atk and Ys,r,atk are the victim keystroke sounds of
key s recorded by left and right microphones in the attack.

Step 3 – Updating DOA-Key Mapping. In the attack, the
relative position and orientation between the smartphone and
the user can differ from the baseline placement. This could
change the “supposed” DOA of a keystroke and may be caused
by the displacement of either the smartphone or the user. Note
that our design explores the relative position and orientation
between smartphone and user and thus is generic regardless of
which is displaced. Without loss of generality, we consider a
fixed smartphone to derive the displaced DOAs for all target
keys and update the DOA-Key mapping. Given a keystroke
sound originated at (xk, yk, zk) with the DOA of [φk, θk] in the
baseline placement, there are two basic types of displacement
in the attack, namely rotation and translation [67].

Rotation is the case when the user circles around the
smartphone while facing toward it at a fixed distance. Given
the DOA of a sample keystroke in the baseline placement in
Figure 12a, the DOA rotates around the z axis for a degree γ
as shown in Figure 12b. The DOA after rotation, dk(γ), can
be derived as,

dk(γ) = [φk(γ) θk],

φk(γ) = arctan(
yk
xk

) + γ
(11)

(a) DOA in the baseline place-
ment.

(b) DOA after rotation.

(c) DOA after translation. (d) DOA after rotation and trans-
lation.

Fig. 12: An illustration of the DOA displacement.

Translation is the case when the user moves to a new position
without changing her orientation. In Figure 12c, the DOA ex-
periences a shift of δx, δy and δz along the x, y and z axis, re-
spectively. The DOA after translation, dk(δx, δy, δz), becomes

dk(δx, δy, δz) = [φk(δx, δy) θk(δx, δy, δz)],

φk(δx, δy) = arctan(
yk + δy
xk + δx

),

θk(δx, δy, δz) = arccos(
zk + δz

rk(δx, δy, δz)
),

rk(δx, δy, δz) =
√
(xk + δx)2 + (yk + δy)2 + (zk + δz)2

(12)

Overall, any displacement of the DOA in the attack can
be represented by a combination of rotation and translation.
The example in Figure 12 shows that after being rotated
(Figure 12b) and translated (Figure 12c), the DOA is displaced
as shown in Figure 12d. To generalize, the displaced DOA of
a keystroke k in the attack placement dk,atk(δx, δy, δz, γ) can
be obtained by,

dk,atk(δx, δy, δz, γ) = [φk,atk(δx, δy, γ) θk,atk(δx, δy, δz)],

φk,atk(δx, δy, γ) = arctan(
yk + δy
xk + δx

) + γ,

θk,atk(δx, δy, δz) = arccos(
zk + δz

rk(δx, δy, δz)
)

(13)

Given the measured DOAs of the victim keystrokes ds,atk,
s ∈ S, and the displaced DOA expressions for all keys in
the attack dk,atk(δx, δy, δz, γ), k ∈ K, we aim to find the
displacement parameters δx, δy, δz, γ that allows a subset of the
displaced DOAs to maximally match with the measured victim
DOAs. This way, we obtain optimal displacement parameters
π and use π to update the baseline DOA-Key mapping to the
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attack DOA-Key mapping. The optimization is expressed as,

π = argmin
δx,δy,δz,γ

∑
s∈S

∆(dk,atk(δx, δy, δz, γ), ds,atk) (14)

where the function ∆(dk, ds) = mink∈K |φk −φs|+ |θk − θs|
identifies the displaced DOA that maximally matches with the
given victim DOA (one out of 36 in K) under a certain dis-
placement parameter and then returns the absolute differences
of azimuth and altitude between the two DOAs. By searching
a finite range of displacement parameters, with δx, δy, δz from
-1 meter to 1 meter at a step size of 0.05 meter, and γ from
0◦ to 359◦ at a step size of 1◦, we can solve Equation 14.
With the optimal displacement parameter π, we can obtain the
updated DOA-Key mapping in the attack {k ∈ K, dk,atk(π)}.

Step 4 – Inferring Keystrokes in the Attack. To infer a
victim keystroke s in the attack for a measured DOA ds,atk,
we simply retrieve the displaced DOA in the updated DOA-
Key mapping that is most similar to ds,atk and then return the
respective key, i.e.,

s = argmin
k∈K

|φk,atk(π)− φs|+ |θk,atk(π)− θs| (15)

By repeating this process for all s ∈ S, Heimdall can infer
a sequence of victim keystrokes.

VII. INTER-KEY RELATION-BASED CALIBRATION

After using the adaptive DOA-Key mapping scheme, we
found that keystroke mapping errors mostly occur when a
user drastically rotates her wrist and the controller while
navigating through an input sequence. This rotation leads to
a minimal up/down and left/right hand translation movement.
Thus the actual DOA of a keystroke sound may deviate from
the “typical” DOA we derived in the DOA-Key mapping,
failing keystroke mapping. It is even possible that the controller
remains in the same DOA while aiming at different keys.

Figure 13 visualizes the DOAs of keystroke sounds in
our pilot study. When users entered “GMPQZ”, the DOAs
of some “Z” samples were close to those of “Q” and would
be incorrectly mapped to “Q”. This is because, after hitting
“Q”, users sometimes rotated the controller down to aim at
“Z” rather than translating it down. This error pattern aligns
with our reasoning above. Such a one-to-multiple mapping
between the DOA and the key makes VR keystroke inference
more difficult than acoustic keystroke inference on physical
keyboards and touchscreens with a one-to-one mapping.

A. Modeling Keystroke Transition

In §VI, each key is recognized individually based on the
DOA of its keystroke sound. However, the transition between
two keystrokes has not been explored and will be utilized here
to correct the mapping errors. Specifically, even though hand
rotation incurs minimal controller translation movement and
DOA change, the time interval between two keystrokes still
depends on their inter-key distance on the virtual keyboard.
For example, after typing “P”, rotating the controller to hit “O”
takes less time than to hit “T”. Furthermore, the direction of
the controller’s movement between keystrokes relies on where
the key pair is located and does not deviate significantly from
the mapping result. For example, when entering “G” and “M”

Fig. 13: Mapping errors
caused by hand rotation, e.g.,
some DOAs of keystroke “Z”
are mapped to “Q”.

Fig. 14: Probability distribu-
tions of inter-key time for
46 keystroke transitions (one
Gaussian model per each).

successively, the DOA of “M” may be incorrectly mapped to
“N” due to the small controller translation movement, but the
inferred controller moving direction, i.e., bottom right, should
be correct, and is unlikely to be upward, e.g., to “T”.

Motivated by these observations, we propose to model the
keystroke transition as a Hidden Markov Model (HMM) [53]
and then predict extra input candidates to correct the mapping
errors. An HMM can be used to model a system where the
system states are unobservable (“hidden”) and there is an
observable process whose outcomes are influenced by and used
to infer the hidden state, HMMs have shown success in cases
similar to ours, e.g., speech and text modeling [18], [15].

HMM Modeling Overview. The problem we want to solve
is to predict the hidden state q that represents the transition
between a keystroke pair, e.g., “A → B”, based on observed
outcomes, the inter-key time interval o1 and controller moving
direction o2 that are available in the mapping result of §VI.
This meets the Markov properties because observations o1 and
o2 are highly dependent on q, and the probability of transition-
ing to another state relies on the current state. Moreover, the
probability distribution of o1 and o2 for each q only depends
on the current state.

To build the HMM, we must derive the start probability of
a hidden state P0(q), the transition probability among hidden
states P , and the probability distribution of the observed
process given a hidden state P (o1|q) and P (o2|q). Then, we
can easily calculate the probability of a keystroke transition
given our observations P (q|o1, o2) using Bayes’ theorem [53].

As the input sequence can start from anything in the 26
English letters and 10 digits, P0(q) = 1

(26+10)×(26+10) . The
probability of moving from one keystroke transition to the
other P is either 0 or 1

36 depending on if they share the same
“relaying” key. For example, given the current keystroke tran-
sition A → B (after entering “A” and “B” successively), the
next keystroke transition has to originate from “B”. Therefore,
the probability from “A → B” to “C → D” is 0, while the
probability from “A → B” to “B → C” is 1

26+10 .

Probability Distribution of Controller Moving Direction
Given a Keystroke Transition. We consider nine possible
directions: up, up-right, right, down-right, down, down-left,
left, up-left, and no-move. Given the direction of a keystroke
transition t⃗, four possible controller moving directions may be
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observed, including two that are 45◦ away from t⃗, one exactly
matching t⃗, and one without movement. Each of the four has a
probability of 0.25, which collectively represent P (o2|q). For
example, given the inferred transition in §VI being “G → K”,
the observed direction could be right, down-right, up-right, or
no-move with an equal probability of 0.25. Other directions
are considered impossible.

Probability Distribution of Time Interval Given a
Keystroke Transition. We propose deriving P (o1|q) from
a smaller set of representative keystroke transitions, rather
than collecting time interval data from all possible keystroke
transitions (36 × 36 = 1296 cases). The rationale is that the
time cost of a keystroke transition depends on the inter-key
distance. For example, the time interval of “Q → R” would
be similar to “W → T ”. We focus on 46 keystroke transitions
with distinct inter-key distances based on a measurement study
of keyboard inter-key distances [45]. The distance between
keys in the same row is directly measured, e.g., 5 between
“Q” and “Y”. For keys in different rows, we measure their
center-to-center distance and identify the most similar distance
between two keys in the same row. For example, the distance
between “Q” and “V” is the most similar to that between “Q”
and “Y”, i.e., 5 units. As the time interval of a keystroke
transition forms a Gaussian-like unimodal distribution [63],
we use univariate Gaussian distribution to model P (o1|q) for
the 46 values of q [63], as shown in Figure 14. The coverage
of the probability distribution functions indicates that the 46
keystroke transitions are representative.

B. Keystroke Mapping Correction

Given P (q|o1, o2) obtained in §VII-A, we can derive the
probability of a keystroke sequence given our observations.
The time interval of a keystroke transition o1 can be observed
from the recorded acoustic signals. The controller moving
direction o2 can be observed from the keystroke mapping result
obtained in §VI. To calibrate the keystroke mapping result,
our calibration step 1 is to generate an exhaustive list of all
possible keystroke sequences and rank them by their HMM-
derived probabilities in decreasing order.

As mapping errors do not always happen, a sequence
completely different from the mapping result is unlikely. Thus,
we prefer sequences with a high probability but also a high
similarity to the mapping result. Therefore, our calibration
step 2 is to remove from the list in step 1 those sequences
that have a large Hamming distance from the mapping result.
To configure the optimal Hamming distance for Heimdall,
we measure the password inference accuracy under varying
Hamming distances from 1 to 4 in our pilot study. We identify
the optimal Hamming distance of 2 and observe that the
accuracy variation among different Hamming distances is only
around 2%. The small discrepancy is attributed to the fact that
most of the high-probability calibrated sequences are similar
to the initial mapping result. Finally, we are able to output the
inference candidates, where the top-1 candidate is the mapping
result in §VI and the remaining candidates can be obtained
from the highest ranking sequences after step 2 above.

VIII. EXPERIMENT SETTING

Apparatus. Our prototype consisted of a smartphone with
the proposed directional microphones and a VR HMD under

(a) Various positions by transla-
tion

(b) Various orientations by
rotation.

Fig. 15: Top view of smartphone-user placements.

attack (Figure 5). As Heimdall does not have a real-time
requirement, we separated the acoustic signal acquisition and
the keystroke inference to minimize the workloads on the
smartphone and thus avoid potential battery outages during the
attack. We used a Samsung Galaxy S8 and a Google Daydream
as the main smartphone and VR HMD, respectively. We also
validated other devices in the robustness analysis.

Participants. We recruited 30 university students (18 males
and 12 females, aged from 19 to 30) for the study through
social media and campus email lists. Seven participants had
prior VR experience, while 23 had not used VR before. All
participants were informed that their VR keystroke sounds
would be recorded to infer their keystrokes. They signed a
written consent form in accordance with an IRB approval
which allows for recording human behavior in VR evaluations.
In a practice session, they were instructed to enter at least 10
keys until they became familiar with VR keystrokes.

Data Collection. We first developed a Unity App featuring
a standard QWERTY keyboard from Unity’s Asset Store. In
a single round of experiments, one participant acted as the
attacker and the remaining 29 were the victims. To derive the
baseline DOA-Key mapping, the attacker entered 26 English
letters and 10 digits for 10 trials in the baseline placement in
Figure 15 (marked by red). We collected the coordinates of the
controller through VR OS and calculated the average of the
10 trials for the derivation. For the HMM modeling in §VII-A,
the attacker entered 46 representative keystroke transitions for
10 trials.

To test the attack, each of the 29 victims entered a list
of 45 passwords in 7 different smartphone-user placements.
Since any relative position and orientation between the user
and the smartphone can be achieved by fixing one of them
and then translating and rotating the other, we considered
placing the smartphone with various translations and rotations
in Figure 15 in order to cover a diverse spatial relationship in
the attack. Note that Figure 15 is a top view. For example, the
user is facing toward the figure’s left in Figure 15a. From the
reader’s perspective, the left, up, right smartphones correspond
to smartphone placements in front of, on the right of, and
behind the user in the physical world. The “behind” and “on-
the-right-of” positions represent non-line-of-sight scenarios
where body and arm movements completely or partially block
the view between the smartphone and the VR controller. The
passwords were selected from the most common passwords
[60] consisting of 4 to 8 letters and digits. We repeated this
data collection for 30 rounds so that each participant was
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Fig. 16: Heimdall performs
well across all 36 characters
in the attacks.

Fig. 17: Inference accuracy
for passwords with different
lengths.

Fig. 18: Inference accuracy
for passwords with different
inter-key distances.

Fig. 19: Password inference
accuracy versus the number of
top candidates.

the attacker once. We conducted a total of 29 victims × 45
passwords × 7 placements × 30 rounds= 274, 050 attacks and
herein report the average results.

Evaluation Metrics. We use top-w accuracy to evaluate
password inference [31], [1]. It counts a successful inference
only if one of the w candidates exactly matches the entered
password (i.e., all inferred keystrokes of a password are
correct). We also evaluate the key inference accuracy
by retrieving the top-1 inference result and calculating the ratio
between the number of correctly inferred characters and the
total number of characters in all passwords.

IX. EVALUATION RESULTS

A. Performance of Keystroke Inference

Analysis of All Characters. As a benchmark study of the
keystroke inference, we first dissect the results and evaluate
the inference for each alphanumeric character on the virtual
keyboard. We use precision and recall instead of accuracy
because the dataset is unbalanced across these characters.
Figure 16 shows that Heimdall has a promising performance
for all characters. The average precision and recall across
characters reach 95.14% and 96.29%. As we will discuss later,
the more challenging task for Heimdall is to infer a random
password that has a sequence of characters.

Analysis of Passwords Details. To study the impact of
password lengths, we analyze top-w accuracy in Fig-
ure 17. We observe that top-1, 3, 5 accuracy initially increase
with password length. The maximum top-1, 3, 5 accuracy of
86.97%, 88.43%, and 91.58% respectively is achieved with six-
character passwords because more characters allow the DOAs

Fig. 20: Accuracy is stable under different smartphone-user
placements tested in Figure 15.

of victim keystroke sounds to better match with the displaced
DOAs in the updated DOA-Key mapping (Equation 14). The
accuracy does not keep increasing for passwords longer than
six characters since typing them introduces more hand rotation
and mapping errors. However, it is important to note that even
an 8-character password poses a legitimate threat, as top-5
accuracy of 85.14% can still be achieved.

Since the inter-key time is a major factor of the proposed
calibration, we investigate the performance for passwords with
different inter-key distances. The 45 passwords are categorized
into three groups (15 passwords each). Passwords only con-
taining inter-key distances of 5 characters or more are called
“Long”, while those only containing 5 or fewer are called
“Short”. “Mixed” passwords contain both long and short inter-
key distances. Figure 18 shows that the password inference
accuracy is stable across all three groups. This confirms that
Heimdall can address a wide variety of different random in-
puts thanks to the proposed keystroke mapping and calibration
schemes that explore the acoustic signal and inter-key relation
of VR keystrokes.

Analysis of More Inference Candidates. As the proposed
calibration model can generate more password candidates than
five, we study to what extent Heimdall can be improved
when more password candidates are included in the attack.
Figure 19 demonstrates that the password inference accuracy
quickly increases as the number of candidates increases.
Specifically, a password of 4–8 characters can be hacked with
the accuracy of 95% within 20 attempts. Hence, the time
complexity for brute-force attacks towards a VR system does
not appear to be a significant barrier for the attacker, making
Heimdall a serious threat to VR systems.

We also observe that the accuracy converges at 98%
with 50 candidates, i.e., when the HMM-generated candidates
correct all inference errors caused by wrist rotation. Compared
to 80% accuracy with one candidate when no wrist error is
corrected, we can derive that wrist rotation would make 18% of
inferences incorrect. The remaining 2% stems from inaccurate
DOA-Key mapping.

Analysis of Smartphone-User Placement. We analyze the
attack performance under various relative positions and ori-
entations between the smartphone and the victim as illus-
trated in Figure 15. The results in Figure 20 show that
Heimdall achieves consistent top-w accuracy (denoted
by “pwd top-w”) and key inference accuracy (de-
noted by “key”) across different smartphone-user placements
due to the proposed adaptive DOA-Key mapping scheme
that can handle an arbitrary spatial layout. This confirms
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Fig. 21: Heimdall is re-
silient to different attack en-
vironments.

Fig. 22: Accuracy under dif-
ferent smartphone recording
distances.

that attackers can utilize the pre-collected baseline DOA-Key
mapping to launch attacks in a placement-flexible manner,
posing greater threats than previous placement-sensitive VR
keystroke attacks.

We also observe that the non-line-of-sight scenarios where
body movement completely or partially obscures the direct
link between the victim and the controller, e.g., when the
smartphone is behind or on the right of the victim, achieve ac-
ceptable accuracy. For example, the “on-the-right-of” position
achieves key inference accuracy of 92.06%, a slight
decrease from 96.51% in the baseline placement. The “on-
the-right-of” position is more challenging than the “behind”
position because the DOAs of clicking different keys become
similar to, sometimes overlapping with, the orientation of the
smartphone. Consequently, the key differentiation becomes
more difficult.

B. Robustness of Keystroke Inference

We now perform a robustness analysis of Heimdall in
various practical scenarios introduced by attacker capabilities
and victim conditions. In each new scenario, five victims
additionally entered the 45 passwords while the keystroke
sounds were recorded in the baseline placement. For the
attack, we re-used the attack system obtained in §VIII without
collecting new system tuning data unless otherwise noted.

Impact of Attack Environments. We start with evaluating the
performance under different attack environments. We conduct
attacks in two rooms with different layouts and furniture
(a laboratory office and an open space in a library), and
tested two cases of background noise in each room – static
noise (desktop fans and air conditioners) and moving noise
(people talking and walking). Results are shown in Figure 21,
where we see that Heimdall performs stably despite different
attack environments. This is attributed to the wavelet denoising
scheme in §V-B that removes noise in the background. Further,
Heimdall can also address real-world environmental factors
including multi-path distortion because our frequency-domain-
division approach removes the environmental channel response
and preserve the microphone-recorded signals (Equation 5-9).

Impact of Recording Distances. We then evaluate
Heimdall under different distances between the victim and
the smartphone. Figure 22 shows that, as the distance increases
from 1 m to 2.2 m, key inference accuracy decreases
from 96.51% to 84.22%. The decrease in accuracy stems from

Fig. 23: Heimdall is ap-
plicable to different smart-
phones.

Fig. 24: Heimdall can be
generalized to different VR
HMD platforms.

the small signal strength when the distance enlarges. This
error accumulates for a password inference where multiple
keystrokes must be all correctly identified. Despite the degra-
dation, the key inference accuracy of about 85% at
2.2 meters can still expose significant information that might
be exploited by other systems to launch secondary attacks.
Attackers may balance attack performance and stealthiness by
varying the recording distance. They may improve the infer-
ence accuracy at a given distance through signal enhancement
algorithms [21].

Impact of Smartphone Models. Different smartphone models
may have different microphones and distances between the
dual microphones, but these factors do not necessarily affect
the quality of the recorded signal. The main factor that affects
Heimdall is the acoustic sampling rate. As some modern
smartphones only support a sampling rate of 44.1 kHz (lower
than the 48 kHz of Samsung Galaxy 8), we evaluate this case
on Google Pixel 1. As shown in Figure 23, the accuracy
decreases by about 1%. This indicates that a difference of
∼ 4 kHz in sampling rate is not enough to cause drastic perfor-
mance degradation, validating the applicability of Heimdall
across smartphone models.

Impact of VR HMD Models. The main difference between
attacking different VR HMD models is the virtual keyboard
layout. We evaluate Heimdall on additional VR platforms
including Samsung GearVR and Oculus Rift. In this evalua-
tion, we re-collected the attacker data for tuning the baseline
DOA-Key mapping and the calibration model before asking the
victims to use these new HMDs. As shown in Figure 24, we
observed a negligible difference in performance, confirming
that Heimdall can be generalized to various HMDs.

Short-term Performance. In addition to the factors of the
environment and the attacker, we are interested in the impact of
victim conditions on Heimdall. We first conducted a short-
term study to understand if the change of one’s physical state
during a day would affect the attack. We collected testing data
four times in a day from 10 AM to 6 PM since growing fatigue
may change user movement extent and speed. Figure 25 shows
that the fluctuation of inference accuracy is within 2% across
the day, suggesting that user fatigue does not significantly
change keystroke patterns in VR.

Midterm Performance. We also conducted a midterm study to
test Heimdall over a week, hypothesizing that user behavior
would change over time and affect inference accuracy. We

12



Fig. 25: Inference accuracy
within a day.

Fig. 26: Inference accuracy
over five days.

evaluated the performance once a day for five days, but no
significant variance was observed (Figure 26). The possible
explanation is that the participants became more familiar with
committing keystrokes in VR and thus their typing pattern
remained unchanged during this intermediate term. Hence, we
conclude that Heimdall can maintain its performance for a
reasonable period.

X. LIMITATION AND DISCUSSION

Multiple Displacement Solutions. When updating the DOA-
Key mapping for the attack placement, optimizing Equation 14
may lead to more than one displacement solutions. This
is because various subsets of DOAs may match with the
measured victim DOAs under a certain displacement. However,
the occurrence of multiple solutions is less likely with longer
passwords as the matching has to occur between more keys.
Our experiments only had five such passwords, all with a
length of four characters, resulting in an average of 5.6
solutions. These passwords typically have keys confined in a
small region, e.g., “QWAS”. For these passwords, we randomly
selected a displacement solution and achieved a negligible
effect on the top-5 and top-3 accuracy. To improve their top-1
accuracy and the overall performance of Heimdall, future
work should focus on formulating and solving a constrained
optimization problem to replace Equation 14.

Generalization. It is true that a user may occasionally have
non-regular hand motion, which can potentially invalidate the
attack. However, various VR keystroke attacks [35], [70], [62],
[68] based on raw sensor data have demonstrated a consistent
and traceable correlation between keystrokes and hand motion
across different users. To address potential non-regular behav-
ior in our scenario, Heimdall utilizes the HMM-based cali-
bration scheme to accommodate hand rotation. Our evaluation
involves 30 participants and 274,050 attack attempts, allowing
us to capture diverse typing behaviors and further validate the
overall threat to VR keystrokes.

Furthermore, Heimdall targets a single VR controller,
but some commercial VR HMDs support two-controller inter-
actions, which makes keystroke inference more challenging.
However, the insight of this research, such as DOA-Key map-
ping and inter-key relation-based calibration, can still apply
to a two-controller VR system. While the similar principle of
Heimdall should work, we believe that a full-scale study is
needed to explore this topic. Additionally, non-alphanumeric
keys such as caps lock and special characters may be typed.

To infer these keys, we can enlarge the DOA-Key mapping
and use a more sophisticated decision algorithm.

Prior VR Experience. We observed no significant difference
in results among participants with varying prior experience.
This is attributed to the pre-study practice session familiarizing
participants with VR navigation. Furthermore, the QWERTY
keyboard layout is well-known, making prior experience less
relevant.

Countermeasures. One method to prevent the keystroke in-
ference is to intentionally disrupt the correlation between
keystroke sounds and their respective keys. The victim may
achieve this goal by utilizing a randomized keyboard layout
for every single keystroke session [58]. However, this strategy
can be cumbersome. This functionality is also not natively
supported by VR OS, requiring users to possess advanced
programming skills to implement it. In fact, due to these
usability considerations, virtual keyboards used for entering
sensitive data on most mobile platforms such as HoloLens,
Android, and iOS still adhere to the “QWERTY” layout.

Another alternative countermeasure is to interrupt the con-
tinuity of the keystrokes and thus prevent the attack. The ratio-
nale is that existing keystroke attacks, including Heimdall,
assume the continuous typing of characters on the virtual
keyboard. The victim may conduct “fake” clicks outside the
keyboard in between actual keystrokes, or move around on a
large scale to switch the view of the virtual keyboard during
the keystroke session. While these methods may be effective
against keystroke attacks, they would disrupt the smoothness
of VR interactions and affect user experience in VR [54], [39].

Users may also mitigate the attack by eliminating keystroke
sounds through a mechanical keyboard. However, most VR
headsets lack native mechanical keyboard support. While a few
headsets support external keyboards, they require customiza-
tion, often unfamiliar or non-trivial to users [50]. It is also
important to note that using mechanical keyboards may expose
users to common shoulder-sniffing attacks [56], [11], as the
pressed keys are fully visible to the public.

XI. RELATED WORK

Acoustic Keystroke Inference Attacks. Keystroke inference
attacks have been conducted through side channels such as
network traffic [63], videos [56], [11], electromagnetic signals
[26], device motion [64], [37], [33], and ambient light variation
[55]. Acoustic attacks are practical due to their stealthiness and
easy access to sound signals. They collected acoustic signals by
one or more smartphones and inferred keystrokes by analyzing
language models [2], [6] or signal properties [73], [32], [13],
[74], [3]. Similar efforts were made on touchscreens [72], [12],
[61], [34], [44], e.g., using near-ultrasonic signals for finger
tracking and keystroke inference. These attacks inspired the
Heimdall design. However, prior systems cannot be applied
to VR due to the unique VR keystroke modality relying on a
moving controller in a 3D space. This paper presents the first
acoustic keystroke attack on VR devices.

Attacks on Virtual Reality. Research has been conducted to
attack VR systems. Previous attacks used video surveillance
[31], [40], [69] and wireless signal sensing [1]. However,
the video-based attack requires a line-of-sight view of the
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controller movement, and the wireless-based attack needs the
user to be positioned between the transmitter and receiver to
detect signal turbulence caused by hand movement. In contrast,
Heimdall can place the malicious smartphone surrounding
the victim in any orientation and position, even in non-line-of-
sight scenarios. This flexibility makes the attack more practical
to deploy as it is not heavily constrained by physical layout and
victim poses. Attackers have also exploited raw motion data
from HMDs for keystroke inference [35], [70], [62], [68], but
they rely on the assumption of malware deployment on the
target device for data collection. There is another line of work
that disrupts user experience and causes motion sickness in
VR by jamming or manipulating user tracking with infrared
light [48] or malware [9], [43].

Sound Localization. Sound localization has been studied
[5], [65]. Some systems used a microphone array pointing
360◦ around to sense the magnitude of incoming sounds and
infer the azimuth of the sound source [27]. Others detected
the sound source azimuth by a directional microphone [19].
However, these methods only localize the sound source in a
2D surface and are not suitable for VR. Some works achieved
3D sound source localization using multiple omnidirectional
[25], [23], [66] or directional microphones [30], [71], but they
require more than two microphones from multiple smartphones
or a specialized microphone array. Instead, Heimdall strikes
a balance between hardware setup and localization precision.

XII. CONCLUSION

We present Heimdall, a placement-flexible acoustic
keystroke inference attack in VR. Heimdall can differen-
tiate VR keystroke sounds introduced along with the victim’s
hand translation and rotation movement and map them to the
respective keys in any smartphone position and orientation
with respect to the victim. Compared with prior keystroke
inference attacks, Heimdall is more practical to launch due
to the blocked vision of VR users and the elimination of strict
placement requirements for the malicious recording devices.
Extensive evaluations validate that Heimdall achieves the
key inference accuracy of 96.51% and the top-5
accuracy from 85.14% to 91.22% for inferring passwords
with 4–8 characters. Moreover, Heimdall is robust under
various impacts of attacker capabilities and victim conditions.
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