
Ghost-Probe: NLOS Pedestrian Rushing Detection with
Monocular Camera for Automated Driving

ABSTRACT
One of the most serious factors compromising driving safety is
when people in drivers’ non-line-of-sight areas rush out suddenly.
Existing studies on non-line-of-sight imaging rely on expensive
equipment or are limited to severe laboratory conditions (e.g., mas-
sive planar reflectors and controlled illumination), rendering these
technologies inapplicable in complex driving scenarios. In this pa-
per, we propose a non-line-of-sight moving obstacle detection sys-
tem Ghost-Probe, which can provide an advanced driver assistance
system (ADAS) with sufficient time to respond and stop safely. We
design a shadow signal discriminator to assess the weak shadows
created by a moving obstacle, such as pedestrians in the blind area,
while simultaneously filtering out the impacts of other complicated
illumination. Note that we merely use commercial monocular cam-
eras and our system is robust to a wide range of lighting scenarios
and planar reflectors. We evaluate the generalizability of our ap-
proach using the datasets collected in real-world driving scenarios
with a variety of road surface and lighting circumstances. The re-
sults indicate that our system can detect the moving pedestrian in
the non-line-of-sight area at a distance of 20 meters and offer the
ADAS system advance warning to keep a safe distance.
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(a) Diagram of the Ghost rush (b) Scenario with Ghost-Probe

Figure 1: Scenes at a multi-directional intersection. Scenes at
a multi-directional intersection. White car stops temporarily
while waiting for a red light and blue car turns left according
to regulations. (a) A schematic of Ghost rush accident. A
pedestrian rushes out of the blind region. The blue vehicle
lacked reaction time and braking distance to cause a collision.
(b) A schematic of Ghost rush accident with Ghost-Probe.
With Ghost-Probe, pedestrians moving in the blind region
can be detected from a distance, warning the driver or ADAS
system in advance to reduce speed and avoid collisions.

1 INTRODUCTION
Driving safety is one of the most critical aspects of vehicle safety
configurations, with a wide range of research prospects. According
to the World Health Organization (WHO) [40], over 1.3 million
people die annually in road accidents, with nighttime driving being
particularly hazardous. While just one-quarter of our driving at
night, 50% of traffic deaths happen during this period [25], with
the majority of them being "Ghost rush" [35], which are caused by
pedestrians suddenly emerging from areas outside the driver’s line
of sight, as shown in Fig. 1 (a). Ghost rush incidents have become
one of the greatest risks to road safety due to their suddenness and
unpredictability. Compared to pedestrians darting out from behind
trees or walls at the roadside, the risk is significantly elevated when
they emerge abruptly from in front of stationary vehicles. This is
primarily due to the nature of the blind spots they create. Blind
spots formed by roadside obstructions generally exist at a greater
distance, providing drivers with ample reaction time. Conversely,
the blind spots created by stationary vehicles in adjacent lanes are
larger and proximate, leaving drivers with considerably less time
to react to emergent situations.

Because of the high risk of such mishaps, researchers have made
great efforts to prevent such accidents. A new strategy on the in-
ternet of vehicles, vehicle to X (V2X) or vehicle to vehicle (V2V)
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[49], has emerged to deal with them. Nonetheless, it necessitates
extensive infrastructure development in both onboard and roadside
sensors and complex communication protocols with huge amounts
of data, which raises enormous financial and technological imped-
iments, prohibiting it from being extensively deployed in a short
period time [2]. A more pragmatic approach is non-line-of-sight
(NLOS) imaging, which pays more attention to recovering occluded
objects around the corner. Researchers utilized laser [5, 16] or co-
herent light sources [7, 20] to capture scatter patterns, including
information about hidden objects from the reflected surface to re-
construct the original images. Nevertheless, the hardware is too
expensive to deploy on a large scale and requires the assistance
of a trained technician. In comparison to the active NLOS imag-
ing technology, the passive imaging technique [32] just requires
a commercial camera without an active light source, thereby de-
creasing the cost of the necessary gear. However, it requires strict
elaborate laboratory illumination, which may not be available
in a realistic driving scenario with complex variables. Woodford
et al. [42] investigate the use of a new class of reflectors to accom-
plish NLOS object detection by utilizing several curved reflectors
to offer complete coverage of vital sites near intersections. But not
all scenes happen to be arranged with planar reflectors.

To advance Ghost rush prevention in real-world driving scenar-
ios without the need for high-cost and specially installed equip-
ment, we aim to leverage existing onboard monocular cameras and
non-supplementary facilities to detect non-line-of-sight objects.
According to the observations in Section 3.2, a moving object in
the blind area creates a shadow signal in the line of sight, even
if it is very faint (as seen in Fig. 2 (c)). We find that it’s plausible
to design a system capable of detecting NLOS moving pedestrians
using these faint shadow signals. While constructing this system,
we confronted the following critical challenges:

Challenge 1: Discerning subtle shadow changes from a distance
for a fast-moving vehicle is a formidable task. The light alterations
triggered by swift vehicles considerably outpace the shadowmodifi-
cations caused by pedestrians inmotion. Consequently, the vehicle’s
movement can instigate substantial interference with the detection
of faint shadows.

Challenge 2: The complexity of illumination and the specificity
of the projection surface result in a low signal-to-noise ratio (SNR) for
shadows. The interplay of intricate urban illumination can easily
diminish the shadows cast by pedestrians. Additionally, we aim
to detect shadows projected onto the ground, not onto a plane
perpendicular to the light source, which further reduces the SNR
for shadows and intensifies the detection challenge.

This paper principally presents a system capable of detecting
moving pedestrians beyond the line of sight in real-world driving
scenarios with intricate lighting conditions. Operating solely on
the commercially available ADAS monocular camera on board, it
requires no additional large, planar, vertical reflectors. This system
supports both drivers and prevalent ADAS systems, aiding in early
decision-making to prevent collisions.

To tackle the challenge 1, we initially employ a dynamic buffer
to capture and process images in real time. These images are then
aligned to the first frame using a homography matrix, significantly
reducing the computational complexity of subsequent operations.

Leveraging 3D vehicle detection technology, we accurately iden-
tify the area encompassing the shadows cast by moving obstacles.
We then devise an algorithm for region of interest (ROI) extrac-
tion, which effectively filters out the pronounced noise from faint
shadows introduced by rapidly moving vehicles.

In response to Challenge 2, dealing with the low signal-to-noise
ratio of faint shadows, we design a dynamic weak shadow dis-
criminator. This method amplifies weak shadows and analyzes the
dynamic changes of pixels utilizing a causal temporal filter and
camera-specific dynamic thresholds. Ultimately, we discern the
presence of moving obstacles outside the line-of-sight position by
examining dynamic pixels. The effectiveness and applicability of
our approach are validated through an extensive evaluation using
real-world datasets, ensuring robust performance in actual scenar-
ios. Our contribution to this work is three-fold:
•We explore the potential of leveraging subtle shadow signals to

identify pedestrians moving beyond the field of view. Our findings
suggest that these minor shadows preceding the vehicle can shed
light on the presence of moving obstructions within the blind spots.
•We design Ghost-Probe, a system for implementing early warn-

ing of moving pedestrians in blind areas by identifying dynamic
shadow signals with low SNR by detecting pixel changes. We val-
idate our system by conducting extensive experiments with real-
world datasets. The results indicate that it can detect moving pedes-
trians in the blind area at a distance of 20 m and alert ADAS systems.
•We expand the application scenario of non-visual range imag-

ing to overcome the challenge of detecting moving targets in non-
visual range states in complicated situations, as well as providing
novel active defensive driving protection for the ADAS.

2 RELATEDWORKS
2.1 None-line-of-sight Detection
Time-of-Flight-based (TOF) NLOS imaging [17, 19, 26, 33] has re-
cently attracted substantial interest. Due to the method’s suscep-
tibility to interference from other unpredictable light sources, a
tightly controlled laboratory environment is required. Felix et al.
proposed a method to detect shadow signals on a moving platform
[24] that uses AprilTag for image registration alignment, deter-
mines whether there are moving objects around corners by detect-
ing shadow changes in front of the moving platform, and achieves
convincing results in the ground and corridor light environments.
However, in the actual nighttime driving situation, the signal-to-
noise ratio of the shadow signal is greatly lowered due to the ex-
tremely complicated lighting conditions. Moreover, it is impractical
to apply AprilTag on actual roads, thus the technology remains
limited to the laboratory. Woodford et al. [42] investigated a method
that involves using radar to gather information from blind spots
by reflecting signals off surfaces around roadside corners (such as
utility poles or building walls). However, this approach demands a
specific signal emission angle and it is challenging to find suitable
reflecting surfaces at the required positions and angles in realistic
driving environments.

2.2 Moving Object Detection
Conventional target detection techniques, such as YOLO [3], faster-
RCNN [29], and other detectors, merely identify the object category
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Figure 2: (a) Shadow projection schematic. (b) Shadow casted
by pedestrian with a close up view. (c) A rear view of shadow
casted by pedestrians.

and flag it, without analyzing the object’s motion. In advanced
driving assistance systems (ADAS), moving obstacle detection and
prediction [22] are crucial for driving decision systems because the
next decision for emergency braking and high-precision naviga-
tion heavily depends on the state and location of moving objects
on the road and makes decisions accordingly to avoid possible
collisions. In the field of object movement detection, the method
represented by optical flow (FlowNet [15]) detects the intensity
of image pixels over time and infers the speed and direction of
object movement. However, if the photographer’s movement is
too great, a stationary object can be misclassified as a moving one.
MSFgNet [27] presents an end-to-end neural network for extracting
moving objects from films by differentiating the foreground from
the background. FisheyeMODNet [45] presents a CNN architecture
that employs a lightweight encoder for the detection of moving
objects in an autonomous driving environment. However, these
methods can only identify items that are easily identifiable from
the background, such as vehicles and people.

2.3 Shadow Handling
Shadow detection is a common research area in computer vision,
and themajority of current shadow detection research focuses on its
elimination [10, 18]. Detection methods have also gradually shifted
from prior feature-based approaches [11, 13] to those based on deep
learning [8, 14, 38, 48]. However, the strategy based on networks
severely restricts the system’s detection time. Current shadow iden-
tification approaches, on the other hand, concentrate on a single
image and a single image’s content, and the bulk of shadow detec-
tion scenarios occur during well-lit daylight [37, 38, 48], making
it easier to detect shadow images with big deviations from the
background and obvious edges. Nighttime shadow identification is
currently difficult due to the lighting situation’s complexity and the
lack of distinction between the shadow foreground and backdrop.
Our method requires only deep learning to aid in localization and
no network involved in the detection process, which significantly
enhances the detection rate.

Figure 3: (a) The ROI of the camera. (b) The result of shadow
analysis with still camera aroung dark corner. (c) The result
of shadow analysis with moving camera around dark corner.
(d) The result of shadow analysis with still camera around
bright corner.

Figure 4: Schematic diagram of the experimental setup.

3 PRELIMINARY STUDY
In this section, we first analyze why existing shadow detection
techniques cannot be used directly and then present a real-world
experiment to verify the feasibility of NLOS pedestrian detection
through its shadow signal.

3.1 Concept classification of shadows
The shadow status is strongly correlated with many factors, such as
the relationship between the relative position of the light source and
the projection surface, the distance between them as well as the type
of light source, etc. As shown in Fig. 2 (a), the shadows occluded by
people under the sun have distinct boundaries, which we refer to as
hard shadow. The light source approximates parallel light and it can
delineate the edge of the obstructing because the distance between
the occluder and the projection surface is significantly shorter than
that between the light source and the occluder [41]. Currently, a
considerable study is devoted to the detection and eradication of
such shadows [8, 11, 37, 38, 48] using their easily distinguishable
hue and edges. However, there is another type of shadow that is
more difficult to manipulate, and it is known as soft shadow. When
the distance between the point light source and the occluder is less
than or approximates the distance between the occluder and the
projection surface, the shadow becomes divergent, which makes
it hard to distinguish the occluder’s edge. In real-world driving
scenarios, the blind region often arises 1-3 meters in front of the
vehicle, and the shadows caused by pedestrians in this area are
often divergent and (Fig. 2 (b)), especially when viewed from a
distance (Fig. 2 (c)). Due to their blurred edges and faint shadow
signal, the prevailing shadow detection techniques are unable to
detect such soft shadows.

3.2 Feasibility and challenges
To achieve the NLOS pedestrian detection, our intuitive idea is
to detect the soft shadow cast by moving pedestrians in the ROI.
We design an experiment to verify the feasibility and show the
challenges of our solutions.

Experiment setup. We chose a dark corridor with a corner
where we could control the illumination condition, as shown in
Fig. 4. We switch off all lighting systems except for the vehicle-
specific light on the wall, which is mounted 1.4 meters above the
ground. One experimenter moved within an area of 3 meters in
length and 1.5 meters from the wall where the lights were installed.
We use the leopard camera (see Section 5.1) to record a 4-second
video for each scenario while the experimenter moves in the same
route.

Scenarios.We set up three different experimental scenarios to
extensively verify the feasibility of the scheme. (S1) The camera
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Figure 5: An overview of a potential moving obstacle detection system Ghost-Probe

remains positioned 1 meter from the corner. The illumination facil-
ities are kept off except for the light on the wall. (S2) The camera is
moving behind the corner from a position of 3 meters at a speed of
0.5 m/s to 1 meter. The illumination facilities is kept off except for
the wall light. (S3) The camera remains positioned 1 meter from the
corner. Turn on the LED lighting equipment and maintain uniform
light in the experimental area.

Results.We use inter frame difference method [23] to analyze
the video captured by the camera in three different scenarios, and
the results are shown in Fig. 3. When the camera is motionless and
captures the video in a dark environment, the moving shadow in
the ROI can be detected. Comparing Fig. 3 (b) and Fig. 3 (c), when
capturing moving video, we find that the existing solution failed
to detect any shadows because the change of the surrounding
environment is far greater than the motion of faint shadows.
Moreover, if we capture video in a well-lit environment, the shad-
ows will be obliterated by other light. Consequently, its signal
power is further diminished. Considering the complex illumina-
tion and moving scenes in a real-world driving scenario, detecting
a faint shadow signal casted by pedestrians is a big challenge.

4 SYSTEM DESIGN
4.1 System Overview
In this work, we propose Ghost-Probe, a system that detects poten-
tially hazardous moving pedestrians in the driver’s blind region.
As seen in Fig. 5, the Ghost-Probe system consists of two phases:
shadow region localization and moving obstacle detection.

Shadow Region Localization. To meet challenge 1, we aim to
extract ROI in real-time with the interference of complex scenes
and design two phases: ROI localization and dynamic buffer update
to deal with it. We employ 3D vehicle detection technology to locate
the vehicle that creates a blind area in the driver’s field of view.
Upon completion of the 3D vehicle detection procedure, we can
receive the 3D bounding box of the target vehicle, which allows
us to gain the spatial mapping of the 3D object in the 2D frame.
We can then analyze the actual road direction in the 2D image.
Using the bounding box and orientation, a region of interest can
be computed. To the best of our knowledge, this is the first work
that uses the geometric relationship of 3D target detection results
to locate the ROI. As 3D detection requires computer resources, we
construct a dynamic image buffer to reduce future computational
complexity, greatly enhance system efficiency and accomplish real-
time processing. A buffer eventually is used to convey a succession
of photos to the future phase.

Moving Obstacle Detection. To address challenge 2, we do
a lot of research on how to detect potentially moving obstacles
under influence of complex conditions. We designed a moving
obstacle detection model consisting of the following steps: (1) patch
standardization, (2) shadow enhancement, and (3) dynamic pixel

detection. Patch standardization tries to increase the difference
between frames while also filtering the influence of ambient light
variations on the target signal. Then a shadow enhancement model
is implemented to boost the SNR of the shadow signal. Finally,
the dynamic pixel discriminator determines if there is a potential
moving obstacle beyond the line-of-sight region.

4.2 Shadow Region Localization
4.2.1 Image Registration. Image registration refers to the process
of converting several photographs into the same coordinate system.
We use it to align two frames to reduce the complexity of interest
region selection computation by a significant margin, as described
in Section 4.2.3. This process is often split into three steps [50]:

(1) Feature detection. There are numerous methods for feature
detection, including scale-invariant feature transform (SIFT) and
speeded-up robust features (SURF). To satisfy our objectives, our
system employs oriented FAST and rotated BRIEF (ORB) [31]. ORB
algorithm mainly improves the real-time performance of main-
stream algorithms such as SIFT and SURF. Our choice of the ORB
algorithm is primarily motivated by two conditions:
• The ORB algorithm achieves a better balance between effec-

tiveness and performance than others.
• The actual road situation, which will be used to test our system,

offers a great deal of distinguishing feature points, which makes
the work of the ORB algorithm easier.

(2) Feature matching. After this preliminary processing, we can
obtain a sequence of picture key points and descriptors.Wemeasure
the similarity between two feature descriptors using the hamming
distance. We locate similar features in the two photos, arrange them
according to their similarity scores, and retain a tiny fraction of the
initial matches. By utilizing these matched points, we can derive
the H.

(3) Estimating the homography. The H matrix refers to the ho-
mography which transforms points of two planes with 8 Degrees
of Freedom (DOF):

𝑠


𝑥 ′

𝑦′

1

 = 𝐻

𝑥

𝑦

1

 =

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33



𝑥

𝑦

1

 , (1)

where (𝑥,𝑦) represents the image in the original view and (𝑥 ′, 𝑦′)
stands for the original image in the new perspective. Before esti-
mating H, it must be noted that despite the ORB algorithm’s best
efforts, there will undoubtedly be a large number of wrong matches.
Random Sample Consensus (RANSAC) [12] is an iterative approach
to estimating parameters of a mathematical model from a set of ob-
served data that contains outliers. We use it to construct an accurate
H matrix based on a sequence of key point matches.

After obtaining an accurate homography matrix (H), we can
align the newly acquired frame with the reference frame, thereby
eliminating the need for the recalculation process outlined in the
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Figure 6: Randomly select 40 consecutive frames to calculate
the 𝐻𝑠𝑐𝑜𝑟𝑒 change curve.

interest region selection (Section 4.2.3). It is worth noting that
the movement of people within the frame does not impact the
calculation of the H matrix, as the majority of feature points remain
stable.

The Ghost-Probe detection method proposed in this research
operates in real-time. Therefore, we construct a dynamic picture
buffer to to balance performance and efficiency. It is assigned to
pre-process newly added photographs and temporarily store the
images to be detected. When the onboard cameras work, there is
a series of photos awaiting processing. It is inefficient to process
each frame since the content of two consecutive frames may not
vary significantly. In this case, when a new image is loaded into the
buffer, image registration is utilized to align it with the first frame.
The buffer capacity is set to a variable value to support the update
frequency of the image buffer at various vehicle speeds. A faster
vehicle speed results in more change between frames, necessitating
more frequent buffer updates, and vice versa. We define a threshold
called 𝐻𝑠𝑐𝑜𝑟𝑒 to determine when the buffer should be updated.

The homography H matrix computes the𝐻𝑠𝑐𝑜𝑟𝑒 value. Referring
back to Section 4.2.1, we know that the 8-DOF H matrix may con-
vert the points of two planes. Therefore, the H matrix represents
the degree of transformation. When a new frame is about to be
appended to the buffer, it will be aligned to the head of the sequence
and the H matrix obtained from image registration will be saved.
The 𝐻𝑠𝑐𝑜𝑟𝑒 can then be expressed using the following formula:

𝐻𝑠𝑐𝑜𝑟𝑒 =
∑︁
𝑖

∑︁
𝑗

|𝐻 (𝑖, 𝑗) | . (2)

To demonstrate the validity of 𝐻𝑠𝑐𝑜𝑟𝑒 , we randomly selected 40
consecutive frames from a video shot during typical vehicle opera-
tion and aligned each frame to the first image while computing the
𝐻𝑠𝑐𝑜𝑟𝑒 . Fig. 6 depicts the transformation of each frame’s 𝐻𝑠𝑐𝑜𝑟𝑒 to
the first one. In the first 34 frames, H steadily increases as the gap
between the viewpoints of the current frame and the first frame
grows. Due to the viewpoint difference, the current frame is too
different from the first frame after 34 frames, leading to a significant
shift in key points and dramatic oscillations in H.

4.2.2 Dynamic Image Buffer. Through extensive experiments, we
set a threshold: 𝐻𝑠𝑐𝑜𝑟𝑒 = 600. A new image will be appended to
the buffer if the current 𝐻𝑠𝑐𝑜𝑟𝑒 <= 600, or the buffer will be reset
otherwise. In this way, homography transformation accuracy can
be guaranteed and the system does not affect operational efficiency
by processing redundant images in the buffer.

4.2.3 Interest Region Selection. After picture registration, the most
likely possible danger regions in each frame must be extracted for

Figure 7: The process of selecting potential shadow Region.
The blue box is generated by 3D vehicle detection and the
yellow one is our selection target area.

targeted detection. This section explains how we identify interest-
ing regions for the subsequent stage of detection. In addition, we
devised a two-step method for progressively locating regions of
interest, from big targets to small regions.

3D Vehicle Detection. Locating potentially hazardous sites to be
detected directly from the entire content-rich image is computation-
ally complex, and uneven selection of areas as the vehicle travels
may directly lead to larger detection result mistakes. Therefore, we
decide to start by locating the vehicle responsible for the blind area
in our field of view. It will be more stable than determining the
soft shadow region and effectively eliminating the complex influ-
ence in the driving scenario. The 3D vehicle detection approach
proposed byWang et al. [39] is used to collect information about
the location and orientation of automobiles and roadways in the
real world from photographs. It is based on FCOS and regresses
the boundaries of the 2D frame to the six faces of the 3D frame.
It’s a simple yet efficient one-stage 3D object detection algorithm
that uses only a monocular camera without any 2D-3D correspon-
dence priors. There are amount of 3D vehicle detection techniques,
but they are not the subject of this investigation. The result of the
aforementioned 3D vehicle detection algorithm is a 3D bounding
box of autos.

Regional Orientation. Using the above-described 3D vehicle de-
tection, we can obtain 8 vertices of the 3D bounding box, as shown
in Fig. 7. Next, we will utilize the Algorithm 1 to pick the latent
shadow region. The workflow is introduced as follows:

First, we extend line 𝐴𝐷 , 𝐵𝐶 to 𝐺 . In the real world, our area
of interest is on the ground, hence we choose point 𝐴∼𝐷 since
the wheels in the actual world are all on the same plane (on the
ground). In actuality, the points of lines 𝐴𝐷 and 𝐵𝐶 lie on the road
plane. Then, let the line 𝐵𝐺 intersect 𝐸𝐷 at the point 𝐹 . Line 𝐸𝐷
is the vehicle’s front edge, as well as the blind area delineation
line. In other words, the region to the right of this line is where
the prospective moving obstruction appears, and the region to the
left is the latent zone of shadow signal produced by the vehicle
headlights. Extend 𝐶𝐷 to 𝐻 such that 𝐷𝐻 equals 𝐶𝐷 . The line 𝐶𝐷
represents the set distance to the front wheels in the real world. We
employ it to limit the extent of the zone of interest and guarantee its
stability. Finally, make 𝐹𝐼 parallel to𝐶𝐷 and intersect𝐷𝐺 at 𝐼 . Then
extend 𝐹𝐼 to point 𝐽 such that 𝐽 𝐹 is equal to 𝐶𝐷 and connect point
𝐽 , 𝐻 . This above allows us to pick a stable latent shadow region
with high signal-to-noise ratio (SNR) and obtain the coordinates of
points 𝐽 , 𝐹 , 𝐻, 𝐷 .
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(a) (b)
Figure 8: (a)Latent shadow region patch captured from 10
meters distance. (b)The patch after shadow enhancement.

(a) (b)
Figure 9: The result of dynamic obstacle detection. (a) The
patch contains no moving obstacle beyond line of sight re-
gion. (b) The patch contains obstacle movement.

Considering diverse driving characteristics and situations (e.g.,
Right-hand drive vehicles), vehicles causing blind spots may not
always stop on the right side in real-world scenarios, such as at
intersections. To address this issue, it’s essential to establish the
relative positioning of the vehicles. We assume that the vehicles
are traveling in parallel directions on the same section of the road.
In this case, we found experimentally that the 3D bounding box
of the vehicle parked on the right side of the road is located in
the right area of the 2D image, the opposite is true for vehicles on
the left. According to this, when the vehicle is parked on the right
side of the road and its 3D bounding box is in the right half of the
frame, we will use Algorithm 1 to select the shadow area. On the
other side, we mirror-flip all operations of Algorithm 1 to obtain
the potential shadow region.

4.3 Moving Obstacle Detection
After obtaining a sequence of frames that have been processed
by the preceding processes, we need to determine if there is a
moving impediment in the area that might endanger driving safety.
We propose an algorithm for detecting potential moving obstacles
based on shadows projected by dangerous sources. We focus on the
ROI selected in Section 4.2.3 where potential moving objects are
physically capable of casting shadows. Due to its fragility, it may
not be detected by drivers or standard ADAS detectors.

Algorithm 1 Shadow region selection

1: Initialization: get points 𝐴(𝑥𝐴, 𝑦𝐴), 𝐵(𝑥𝐵, 𝑦𝐵), 𝐶 (𝑥𝐶 , 𝑦𝐶 ),
𝐷 (𝑥𝐷 , 𝑦𝐷 ), 𝐸 (𝑥𝐸 , 𝑦𝐸 ) from 3D vehicle detection.

2: The parameters of line 𝐵𝐶 : 𝑎1 ← 𝑦𝐶 −𝑦𝐵, 𝑏1 ← 𝑥𝐵 − 𝑥𝐶 , 𝑐1 ←
𝑥𝐶 × 𝑦𝐵 − 𝑥𝐵 × 𝑦𝐶 .

3: The parameters of line𝐴𝐷 : 𝑎2 ← 𝑦𝐷 −𝑦𝐴, 𝑏2 ← 𝑥𝐴−𝑥𝐷 , 𝑐2 ←
𝑥𝐷 × 𝑦𝐴 − 𝑥𝐴 × 𝑦𝐷 .

4: 𝑥𝐺 ← (𝑐2 ×𝑏1 − 𝑐1 ×𝑏2)/(𝑎1 ×𝑏2 − 𝑎2 ×𝑏1), 𝑦𝐺 ← (𝑐1 × 𝑎2 −
𝑐2 × 𝑎1)/(𝑎1 × 𝑏2 − 𝑎2 × 𝑏1).

5: 𝐹 ← 𝐵𝐺
⋂
𝐸𝐷 .

6: Extend 𝐶𝐷 → 𝐻 such that 𝐷𝐻 = 𝐶𝐷 .
7: Make the line 𝐹𝐼 // 𝐶𝐷 and intersecting 𝐷𝐺 at point 𝐼 .
8: Extend 𝐹𝐼 → 𝐽 such that 𝐽 𝐹 = 𝐶𝐷 and connect point 𝐽 , 𝐻 .

Output: Points 𝐽 , 𝐹 , 𝐷, 𝐻 .

(a) (b)

Figure 10: (a)The relationship between threshold and amount
of dynamic pixels when there is no obstacle in the blind
area. (b)The relationship between threshold and amount of
dynamic pixels when there is a pedestrian in the blind area.

4.3.1 Region Standardization. In every computation cycle, we can
obtain a sequence of ROI patches from the picture buffer that is
processed by the aforementioned procedures. To standardize image
characteristics, we downsample each frame to a 100 × 100 patch
using bilinear interpolation. Inspired by the widespread usage of
mean image subtraction for a single image in the deep learning
pre-process, we construct a global mean image during the dynamic
buffer that is averaged for each channel of all patches individually
and generates a new image.

𝑉 (𝑥,𝑦, 𝑐) = 1
𝑛

𝑛∑︁
𝑖=1

𝑉𝑖 (𝑥,𝑦, 𝑐), (3)

𝑓𝑖 = 𝑉𝑖 −𝑉 , (𝑖 = 1, 2, ..., 𝑛), (4)

where 𝑛 stands for the frame number in the buffer and 𝑐 is the color
channel for each patch. Regarding the effect of other light sources,
such as street lights or opposing headlights, our insight is that their
effect on luminance is global and that changes in the patch’s global
luminance have few effects on changes in the image’s finer details.
Therefore, we remove the global mean patch from each frame in the
current sequence to reduce the impact of global brightness changes
on local patches.

4.3.2 Shadow Enhancement. While eliminating the effect of global
brightness, mean image subtraction significantly reduces the signal-
to-noise ratio (SNR) of the shadow signal. Therefore, we must im-
prove it to guarantee the validity of following detection. Before
enhancing the shadow, a Gaussian low-pass filter (GLPF) is imple-
mented. In a word, we compute

𝑔𝑖 = |G(𝑓𝑖 , 𝑘, 𝜎) · 𝛿 | , (5)
where G is a linear blur filter of size 𝑘 , which using isotropic
Gaussian kernels with covariance matrix 𝑑𝑖𝑎𝑔(𝜎2, 𝜎2). Because
of the sensitivity of the weak shadow detection process to tiny
perturbations in pixels, we use GLPF to filter out high-frequency
signals while avoiding the "Ringing Effect". With the help of re-
search on image blur[4], we set 𝜎 depending on 𝑘 , which is 𝜎 =

0.3 ∗ ((𝑘 − 1) ∗ 0.5 − 1) + 0.8. At the same time, 𝑘 is set to 3 based
on empirical observation. 𝛿 is an enhancement parameter that is
computed with the help of the mean image of Eq. (4), that is

𝛿 =

√√√
1

𝑝 − 1

𝑝∑︁
𝑖=1
(𝑓𝑖 (𝑥,𝑦) − 𝑓𝑖 )2, (6)

where 𝑝 is the pixel number of the patch and 𝑝 = 𝑥 ∗ 𝑦. It seeks to
raise SNR in order to increase the detectability of a shadow, even if
the signal’s origin is invisible to human sight.
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Table 1: Profile of the dataset

Properties Condition Settings
Light Condition (a) The dark road (b) The road with streetlights (c) Opposite direction lights
Road Surface (a) Wet tarmac road (b) Dry tarmac road (c) Wet+Dry (d) Sprayed crosswalk (e) Epoxy-paint garage floor
Obstacle Type (a) Adult walk (b) Child rush (c) Elderly stumble (d)Ride a bike
Vehicle Speed (a) Uniform speed 10 km/h (b) Uniform speed 30 km/h
Equipments (a) Leopard Image Camera (b) Huawei Mate 30 Pro cellphone (c) Canon camera

4.3.3 Dynamic Obstacle Discriminator. According to shadow en-
hancement, obstructions in front of the vehicle cast a succession of
patches with high SNR shadows. Throughout a series of patches in
chronological order, the change of pixels at the same location on
different patches has a temporal link. In other words, the state of a
pixel at time 𝑡 depends on its state at time 𝑡 − 1. Then, a causal tem-
poral filter is used to establish a connection between two moments
of a pixel, resulting in a new sequence of patches.

𝐶 (𝑥,𝑦, 𝑡) = 𝑔(𝑥,𝑦, 𝑡) + 𝛼 · 𝑔(𝑥,𝑦, 𝑡 − 1), (7)

where the the filtered result 𝐶 (𝑥,𝑦, 𝑡) at time 𝑡 depends on the
input patch at time 𝑡 and the output at the previous time instant
𝑡 − 1 multiplied by a parameter 𝛼 which is set to 0.3 based on
empirical observation. Then, each pixel is evaluated to see if it is
a dynamic pixel caused by the moving obstacle. We are inspired
by [43], in which a "dynamic threshold" is used to adjust to varied
light situations in various traffic scenarios.

𝑃𝑖 (𝑥,𝑦) =
{
0, |𝐶 (𝑥,𝑦, 𝑖) −𝐶 (𝑥,𝑦, 𝑖 − 1) | ≤ 𝜔 · 𝜎 (𝐶𝑖−1)
1, |𝐶 (𝑥,𝑦, 𝑖) −𝐶 (𝑥,𝑦, 𝑖 − 1) | > 𝜔 · 𝜎 (𝐶𝑖−1)

, (8)

where 𝜔 is an adjustable parameter that depends on the image
noise and we set 𝜔 = 2 for all our experiments. All pixels with a
change bigger than the mean squared difference are assigned to
1, or "dynamic," while the rest are set to 0. To minimize noise and
improve motion pixel performance, we compute

𝑃𝑖 • 𝐾 = [∪ {(𝐾)𝑧 | (𝐾)𝑧 ∩ 𝑃𝑖 = ∅}]𝑐 (9)
where 𝐾 is a morphological ellipse element with kernel size 2. 𝑧
means a set of dynamic pixels and (𝐾)𝑧 stands for the translations
of 𝐾 , which are contained in 𝑃𝑖 . After that, we sum up all dynamic
pixels of the sequence and compare it with aDynamicTHR computed
as below.

𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑇𝐻𝑅 = 100𝑝𝑥 × 100𝑝𝑥 × 𝑁 × 𝑁𝑅, (10)
where𝑁 is the number of patches in the current sequence, and 100×
100 × 𝑁 pixels are available to determine whether it is a dynamic
(value=1) or static (value=0). 𝑁𝑅 is a Noise Rate parameter that
depends on the camera’s resolution and noise level. The higher the
noise levels, the higher the misclassification rates, hence we set 𝑁𝑅
as a noise tolerance to improve the system’s robustness. Ultimately,
a potential moving obstruction is detected when dynamic pixel sum
surpasses the camera-specific threshold.

5 EVALUATION
5.1 Equipment Setup
To statistically evaluate the performance of the system, we col-
lect real-world datasets under a variety of scenarios with different
equipment. We also hold an active institutional review board (IRB)
approval for collecting action data from participants for driving
safety research. All the evaluations tightly follow the rule of IRB
regulation.

Vehicles: We collect data using two vehicles on a straight road
with realistic urban night lighting conditions. Vehicle A is a Cadillac
xt5 with a height of 1.68 meters and a width of 1.9 meters. Because
of the perspective, it can completely obscure adult pedestrians (with
a height of 1.7 meters) in front of the car so that oncoming traffic
from behind is invisible to the front of the car and vice versa. Vehicle
A remains at a critical stop with headlights on, acting as a sight
barrier between pedestrians and vehicle B. Vehicle B is an XPeng P5
with a height of 1.53 meters and a width of 1.84 meters. It is coming
from the rear of the adjacent lane as Vehicle A at a fixed speed with
headlights on. We installed the camera in the middle-top position
of the windshield, which represents the mounting height of most
ADAS cameras. During the experiment, the experimental vehicle
kept the low beam lights on to simulate the real driving situation.

Dummy pedestrian: Pedestrians are the main danger element
in Ghost rush and our detection target. We loaded the dummy onto
a remotely controllable moving platform to simulate a pedestrian
moving in front of the vehicle. During the experiment, the vehicle
will travel at a fixed speed, and the above settings can minimize
the safety risk to the experimenters.

Cameras: Due to the remote location of the filming vehicles
and the complex lighting conditions on the road, different filming
qualities can produce large differences in the source data.We choose
two types of cameras to ensure the diversity of the raw data and
collect source frames.

(1) Leopard Image LI-IMX490 is an autonomous driving cam-
era module with 120◦ FOV lens, widely used by manufacturers such
as Apollo and Nvidia. The framerate is set to 20 fps, using RGB888
ISP to process the raw data. The videos were saved as uncompressed
AVI which has complete pixel and color information.

(2) Canon M50 with the 18-150 mm lens: the framerate was set
to 30 fps and isolation 1920 × 1080. The videos were finally saved
as .mp4 format.

Computers: During data collection, we use a Lenovo laptop
which has an R7-6800H core and 16GB RAM to control the Leopard
Image camera. After that, a desktop computer which has an i7-
10700 core, 32GB RAM, and a server with an Nvidia 3090 graphics
card are used to process images.

5.2 Evaluation Scenario and Data Collection
According to the research about road safety [1], driving scenar-
ios at night are specifically dangerous and drivers’ inadequate
surveillance is the main culprit that caused almost half of the
crashes. As such, according to reports from the National Security
Council(NSC)[25], we design a realistic driving scenario to support
our following experiments, as shown in Fig. 11.

The Vehicle A temporarily stops at a city roadside with street
lights and a pedestrian walks out from 1.5 meters in front of the
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Figure 11: (a) Rear view of Vehicle A. The pedestrian positioned ahead of Vehicle A remains invisible to the direct line of sight
from Vehicle B. (b) Side view of the experimental scene. (c) Schematic diagram of the experimental scenario.

Figure 12: Trend of dynamic
pixels at different cameras.

Figure 13: The Detection dis-
tance with different camera.

Figure 14: The detection pre-
cision of different camera.

Figure 15: The detection FNR
of different camera.

Vehicle A. Vehicle B is in the adjacent lane as Vehicle A, coming
from 50 meters behind it at a speed of 10 km/h. In this process, the
experimenter and Vehicle B are invisible to each other due to the
obstruction of Vehicle A.

We use the equipments described in Section 5.1 and capture a
series of videos in our evaluation scenarios with different conditions.
As seen in Table 1, we collect our data in 5 different attributes and
several settings are arranged in each of them. We set "the dark
road + dry tarmac road + adult walk + uniform speed 10 km/h"
as the baseline and select 10 scenario conditions through control
variates. For each condition setting, we use our equipments for data
acquisition, taking five videos of each device. Totally, we collect
100 videos of about 1.2 hours, which can be split into 90000 frames.
Of these, 70% were adults walking, 15% were seniors hobbling, and
15% were children rushing. As our detection phase does not utilize
deep learning, the entire dataset serves as the test set. It’s worth
noting that our data collection site was an open road. The frequent
vehicular traffic during the data collection process enhanced the
diversity and authenticity of our dataset.

5.3 Evaluation Metrics
We verify our novel approach in a real-world scenario expressed
above and evaluate it through three aspects:

(1) Detection distance: at what distance can we detect poten-
tially moving obstacles beyond our line of sight. In order to obtain
more accurate results, we use frames of the video we captured to
calculate the detection distance: 𝐷𝑑 = 𝐷 − 𝑓 𝑟 ∗ 𝑛, where 𝐷 is the
distance between the start line and Vehicle A which is set 50 meters
in our experiment scenario. The Vehicle B will go through the start
line at a preset speed and keep it stably during our video. The 𝑓 𝑟 is
the frame rate of the capture equipments and 𝑛 is the consumption
of frames when the hidden obstacle is detected.

(2) Detection efficiency: The detection efficiency in our system
is defined as the time gap from acquiring the frame to obtaining
the result. Note that we calculate the detection time without the

time to load the model because this part is already included in the
vehicle initialization [46] in the real world.

(3) Detection stability: After the algorithm detects a potential
hazard in a video frame, it is very important to be able to detect
the hazard consistently and correctly in subsequent frames. It is
defined as the detection stability which stands for the capability
of the algorithm to maintain detection precision. We opt to use
Precision and False Positive Rate (FNR) to quantify the stability of
Ghost-Probe. Precision represents the probability that an unseen
shadow signal casted by moving obstacle beyond line of sight can
be correctly recognized, which can be calculated by: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝐹𝑇𝑃/𝐹𝑎𝑙𝑙 , where 𝐹𝑇𝑃 refers to the quantity of frames that were
correctly identified and labeled as positive. 𝐹𝑎𝑙𝑙 is the number of
all testing frames after the first detected frame. FNR stands for the
algorithm’s capacity to accurately predict the positive sample and
avoid injustice, which can be calculated by: 𝐹𝑁𝑅 = 𝐹𝑒𝑟𝑟 /𝐹𝑁−𝑎𝑙𝑙 .
𝐹𝑒𝑟𝑟 is the number of false positive frames and 𝐹𝑁−𝑎𝑙𝑙 is the total
number of ground truth negative frames. The higher 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and
lower 𝐹𝑁𝑅 indicates a more stable detection and higher confidence.

5.4 Overall Performance
5.4.1 Detection distance. To show the validity of the Ghost-Probe
system, we calculate its detection distance which is the significant
evaluate factor of ADAS. According to the research about braking
distance [9], a car driving at 40km/h on an wet ordinary tarmac
road (friction coefficient ` = 0.5) has a braking distance of about
12.6 meters in an emergency, which includes the driver’s reaction
time and braking time. Higher coefficient of friction and slower
speeds will result in shorter braking distances. Our system can de-
tect potencial moving obstacle beyond line of sight through its faint
shadow signal. We can observe in Fig. 12 that the dynamic pixels
begin to rise 21 meters away from the hazard and surpass the thresh-
old at approximately 20 meters. Specifically, the leopard camera, a
commercial camera for autonomous driving, recognized a distance
of more than 20 meters. Because it had the highest resolution and
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Table 2: Detection efficiency results of each phase

Frame Type SRL DBU SSD Totally

Normal Fr. 2.467 ms / 4.467 ms 6.934 ms
Buffer Update Fr. 2.358 ms 90ms 7.065 ms 99.423 ms

Table 3: Comparison result on moving object detection

Methods Detection Distance

YOLO V4 [3] 2.75 m
Faster-RCNN [29] 3.15 m
BorderDet [28] 2.9 m

Ours 20.1 m

the least loss of pixel information without video compression. Al-
though the presence of random errors lead some fluctuation in the
detection distance (as shown in Fig. 13), their detection distances
were all higher than the safe braking distance of 12.6 m, and the
average detection distance reached 19.2 meters. These results above
demonstrate that our approach establishes a safety margin that
provides sufficient distance between the car and an impending ob-
struction in front, allowing sufficient time for the ADAS to react
and stop safely.

5.4.2 Detection efficiency. Our detection process is delineated into
three distinct stages: shadow region localization (SRL), dynamic
buffer updates (DBU) and shadow signal detection (SSD) to evaluate
the time consumption separately. Likewise, we divide the frame
types into two: the normal frame and the buffer update frame.

When a frame is loaded into the buffer, we align it with the first
frame and calculate the 𝐻𝑠𝑐𝑜𝑟𝑒 to determine whether it is necessary
to update the buffer. If the buffer is unnecessarily updated, then
the frame is a normal frame and will go directly to the subsequent
process. Instead, the frame is a buffer update frame. As we can see
in Table 2, shadow region localization and shadow signal detection
during the whole process achieve better efficiency. The reason
for the larger time consumption of the buffer update frame is that
the dynamic buffer update phase requires running the 3D target
detection module. We run python programs with a cluster server
equipped with an Nvidia 3090 and the system processing efficiency
was stable at 10 fps. This signifies that our algorithm can make
judgments within 0.1 seconds, implying that at a vehicle speed of
40 km/h, it can make a decision within 1 meter, which adequately
meets the needs of the driving environment. Comparatively, the
refresh rate of commercial LiDAR systems typically stays within
the range of 5-10 fps. With the enhancement of computational
capabilities in vehicles, image processing modules have become
commonly integrated into current vehicles, such as Tesla Autopilot.
Commercial in-vehicle computing platforms often deeply optimize
the detection algorithms used, thereby achieving detection speeds
even faster than those possible with an Nvidia 3090 GPU.

5.4.3 Detection stability. To evaluate the detection stability of our
algorithm, we conduct two sets of experiments using videos cap-
tured by different types of equipment.

E1: The frame where the dynamic pixel value in the region of
interest exceeds the threshold is selected as the starting frame, and
the detection precision is calculated during all subsequent frames

Table 4: Comparison experiments on shadow detection

Approach Shadow
Type

Detection
Rate

Duration
(ms/frame)

Gryka et al. [13] Hard 0 % 5.185
Finlayson et al. [11] Hard 1 % 60
Zheng et al. [48] Hard 2 % 215
Wang et al. [38] Hard 5 % 487

Ours Soft 98.5% 2.467

until the pedestrian in the blind area appears in the line of sight.
For each equipment, we randomly select 10 videos and calculate
their 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 averages.

E2:We capture several vedios where there is no any pedestrians
in front of the car. And we randomly select 10 videos and calculate
their 𝐹𝑁𝑅 averages.

As we can see in Fig. 14, the detection precision of Ghost-Probe
using Leopard camera and Canon camera is maintained at 86%
and 80%, respectively. Fig. 15 shows that the average detection
𝐹𝑁𝑅 with different types of equipments is maintained at 4.5%. In
autonomous driving, tolerating a modestly higher false positive
rate (FPR) in detection algorithms is reasonable, given the emphasis
on safety. A prudent approach can boost system performance and
lower accident risks. For a binary classification issue, we observe
that our algorithm performs strictly better than random no matter
using each equipment.

5.5 Comparison Experiments
5.5.1 Shadow signal enhancement. The method proposed in this
paper detects potentially moving pedestrians by detecting changes
in faint shadow signals. Actually, shadow detection has been ex-
tensively studied in the field of computer vision. So we conduct
this saliency experiment using two types of recent approaches for
shadow detection, one is for deep-learning based [38, 48] and the
other is feature-based [11, 13]. We choose 200 images that contain
shadows casted by pedestrians moving in front of the vehicle and
send them to five detectors. The results are shown in Table 4.
Traditional feature-based shadow detection algorithms [11, 13]
are incapable of detecting any shadows because the faint shadow’s
edge is insufficiently distinct from the background. Similarly, ap-
proaches based on deep learning [38, 48] can only detect a few
random shadow instances and most of them are not generated by
moving pedestrians. Shadow detection focuses mostly on shadows
under parallel light (such as sunlight), whose hue and luminance
are easily identifiable from the backdrop. As depicted in Fig. 10 (a),
the complicated lighting and blurred edges in our scenario make
it difficult to discern the shadows cast by nighttime pedestrians
walking in front of vehicles from their surroundings. Our method
has achieved state-of-the-art performance in terms of detection rate
and detection time by focusing primarily on these faint shadows
that can be difficult for the human eye to perceive.

5.5.2 Potencial moving obstacle detection. The Ghost-Probe we
proposed aims to detect moving obstacles thus preventing Ghost
rush described in Fig. 1. Researchers have proposed many excel-
lent algorithms in the field of object detection, such as YOLO and
R-CNN. These methods are also widely used to obstacle avoidance
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Figure 16: Three types of illumination situation: (a) Dark, (b) Opposite lights, (c) Road lights.

Figure 17: Five types of road surface: (a) wet tarmac road: after rained moderately, (b) dry tarmac road, (c) tarmac road not
completely dry: two hours after moderate rain at 30 ◦C, (d) crosswalk, (e) garage floor with epoxy paint.

Figure 18: Detection distance
under different illumination
conditions.

Figure 19: Detection distance
on different status of road
surface.

Figure 20: Trend of dynamic
pixel count at different
speeds.

Figure 21: Trend of dynamic
pixel changes due to different
obstacle types.

and hazard warning [21, 34]. We choose three of the latest object
detection algorithms with strong performance for our comparison
experiments, as they represent the most widely used and commer-
cially available detectors currently. We do not choose the NLOS
object detection method because of its requirement of strict labora-
tory environmental control and the difficulty of applying it in real
driving scenarios. We use 10 videos captured in the same scenario
described in Section 5.2 and four methods work on them. The de-
tection distance is calculated as a measure of the performance of
the algorithm.

Due to limitations within their line of sight, the currently em-
ployed object detectors have poor detection distances, as shown in
Table 3. When the moving pedestrian is detected, he actually has
appeared in the driver’s line of sight. At the same time, the head
of the vehicle has traveled to the rear or even the middle of the
vehicle that constitutes the blind area. With the help of the faint
shadow signal process and dynamic pixel analysis, our system can
detect the pedestrian moving in front of the vehicle at a greater
distance (20.1 m). It will give more time to react thus reducing the
probability of collision.

6 INCLUSIVENESS STUDY
Any perturbation such as complex light conditions will make the
existing approaches unavailable. In this section, we consider several
factors that could affect the performance of Ghost-Probe. For the
following evaluation, we collect data under different conditions to
verify the robustness of the Ghost-Probe we proposed.

6.1 Impact of Light Conditions
It is well known that driving at night not only has poor visibility
conditions but is also disrupted by different lights. We evaluate our
system in three distinct night-driving scenarios:

(1) Dark. We captured our video on a straight road without
any lighting facilities except vehicles’ headlights (Fig. 16 (a)). In
this scenario, the shadow signals will not be perturbed by other
illumination.

(2) Opposite lights. The data is gathered at an intersection,
with two vehicles stationed in the opposite lane, their headlights
activated (Fig. 16 (b)). In such circumstances, the ground shadow
signals can be largely obliterated by the headlights of other vehicles,
leading to a significant loss of information.

(3) Road lights. Data is gathered on a standard urban road,
equipped with streetlights, to emulate nighttime driving conditions
(Fig. 16 (c)). This represents a common nocturnal driving scenario
where streetlights affect road surface shadows. The intensity of this
impact is directly linked to the relative positioning of the street-
lights and pedestrians. The closer they are, the more severe the
annihilation of shadows by the lights, and vice versa. In our experi-
ments, we opt for the most challenging setup, where the streetlight
is situated directly above the pedestrians.

As seen in Fig. 18, our system has a detection distance of over
20 meters due to the fact that the shadow signals generated by
obstacles can be captured more easily without the interference of
other light. When the headlights of oncoming traffic cause serious
interference in our detection area, we can still detect a moving
pedestrian in front of the car through a faint shadow signal at
a distance of 15 meters. In the scenario with street lighting, our
system can detect NLOS hazards at a distance of 19 meters, even
when the most demanding conditions were set.

6.2 Impact of Road Surface
We obtain the obstacle signal with the help of the road surface,
which makes the road surface a significant factor in the perfor-
mance of the approach. We collect real-world datasets on the dry
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(a) (b)

Figure 22: (a) A schematic of Ghost rush during daytime. (b)
A schematic of Ghost rush during nighttime without head-
lights. As analyzed in Section 3.1, when the light source is
distanced from the obstruction (the pedestrian) and directly
faces the projection surface, it results in a hard shadow.

tarmac road (Dry), the wet tarmac road (Wet), the tarmac road not
completely dry (W+D), the garage floor with epoxy paint (Epo) and
the spray-painted floor with crosswalks (Cro), as seen in Fig. 17. The
result in Fig. 19 shows that, of the four different states of tarmac,
the dry pavement reflects the shadow signals better and allows us
to identify possibly moving pedestrians at a distance of 20.5 meters.
Wet pavement poses a detection challenge due to reduced contrast
between shadows and the road surface. Nonetheless, our detector
managed to recognize shadows at a distance of 15.6 meters in these
conditions. In contrast, crosswalks, which are more visually distinct,
had a minimal impact on our system’s detection performance. On
epoxy-painted surfaces with their high reflectivity, our algorithm
was able to capture shadow signals as far away as 20 meters. These
findings substantiate that our system maintains considerable ef-
fectiveness on a range of common road surfaces and is capable of
providing safety warnings in diverse scenarios.

6.3 Impact of Vehicle Speed
As introduced in Section 2.1, when the recording device and the
detection target are moving at the same time, the light changes
caused by fast-moving vehicles are far greater than the shadow
alterations caused by moving pedestrians. Therefore, the vehicle’s
motion can cause strong interference on the transition of faint
shadows. Considering Ghost-Probe applied on the vehicle in motion,
we need to explore the effect of movement speed on the perfor-
mance. We drove Vehicle B at 10 km/h and 30 km/h, and the other
experimental settings were the same as in Section 5.2. A reasonable
and legal speed for a vehicle to travel through an intersection is
no more than 30km/h, which is why we chose this speed for our
assessment. In addition, we need to consider the safety of people
in the experiment, even in closed roads. All assessment programs
must tightly follow the rule of IRB regulation. We can see the result
in Fig. 20, our system can capture the faint shadow signal at 20
meters when 30 km/h and 19.2 meters when 10 km/h. This is at-
tributable to the fact that as the vehicle’s speed increases, the time
interval between successive frames will be longer. Consequently,
if there are shadow signal variations within the Region of Interest
(ROI), the magnitude of these signal changes will be significantly
greater than at lower speeds. It means that higher vehicle speeds
correspond to longer detection distances, which is in line with our
hopes. Because higher speeds require longer braking distances and
longer detection distances give the driver and the ADAS plenty of
time to react and make decisions.

6.4 Impact of Obstacle Types
During our solution on moving object detection beyond line-of-
sight position, the signal casted by the obstacle is the indispensable
element. Since different types of obstacles produce different signals,
we invited different experimentalists to simulate kids, adults, the
elderly and cyclists to validate the robustness of the system and the
result is shown in Fig. 21. We used an adult of 1.7 meters in height
and 1.2 m/s in walking speed as a baseline and it can be detected at
a distance of 20 meters. The elderly had a slower movement speed
(0.8 m/s) compared to adults but they are not far from the detection
distance of adults. We observed that when a kid (1.5 m/s) walks
around in the blind area, a longer detection distance is required.
Because the child’s height is much lower than an adult’s (about
1.3 m) and his head is roughly flush with the headlights. When
he moves, the area blocking the light is smaller, thus producing a
fainter shadow signal and making it more difficult to detect. On
the contrary, when a biker moves around in the blind area, a larger
area of shadow can be created because of the larger size. So that
we can distinguish a potential moving biker at a greater distance.

6.5 Daytime Scenario
As described in Section 1, Ghost rush accidents frequently occur
during nighttime conditions when sufficient illumination is lacking.
However, this does not imply that such accidents do not occur
during the daytime, even if the probability is reduced due to clear
visibility. Therefore, we have conducted evaluations of our system
under well-lit daylight conditions, as seen in Fig. 22 (a).

We gathered data during daytime using the identical experimen-
tal configurations as outlined in Section 5.2. The outcomes demon-
strate that our system is capable of detecting potential moving
pedestrians at distances exceeding 30 meters, a significant improve-
ment over the results observed in the nighttime scenario. This is
primarily due to the single source of light (sunlight) in the well-lit
daytime conditions, which reduces interference. Moreover, as men-
tioned in Section 3.1, given the substantial distance between the
light source and obstructions, the light rays can be approximated as
parallel, resulting in sharp, well-defined shadows, known as hard
shadows. This makes it relatively straightforward for existing al-
gorithms to detect them. Consequently, it becomes evident that
detecting Ghost rush incidents during night, under complex lighting
conditions using soft shadows, presents a substantial challenge.

6.6 Alternative Light Sources
We have proposed a novel method for detecting pedestrians sud-
denly emerging from in front of temporarily parked vehicles at
night by identifying the soft shadows cast by the vehicle’s head-
lights. However, the method we proposed is not confined to using
the subtle shadows cast by vehicle headlights. When a pedestrian
darts out from the front of a roadside parked vehicle with the head-
lights off, we can also opt to use the most prevalent light source in
nighttime driving scenarios - streetlights, as seen in Fig. 22 (b).

We conducted an evaluation of our system under actual night-
time driving conditions using streetlights as the light source. The
results demonstrated that our system could detect potential moving
pedestrians within a distance exceeding 19 meters, virtually on par
with the detection range when using vehicle headlights as the light
source. While streetlights are positioned farther away from the
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obstructions compared to headlights, their luminosity is higher and
the illumination range is wider, resulting in more distinctly defined
shadow boundaries.

7 DISCUSSION
7.1 Multi-vehicle Strategy
In an effort to maintain precision and control over the variables
within our experiment, we decided to focus on using a single vehicle
as the view obstruction for the initial phase of this study. However,
it is important to acknowledge that real-world driving scenarios
present a more complex environment, typically involving multiple
vehicles. These blind areas, particularly those generated by vehicles
in close proximity to us, pose a substantial risk.The inherent danger
lies in the fact that the blind area created by the nearest vehicle
allows for a smaller margin of error, demanding a shorter braking
distance upon the detection of a potentially hazardous impediment
such as a pedestrian unexpectedly entering the roadway. To tackle
this, we have devised a detection strategy that prioritizes immediate
risks. In scenarios where multiple vehicles are present, our 3D dis-
criminator identifies the closest vehicle for detection. This strategy
ensures that we are constantly alert to potential pedestrian threats
in the blind area closest to us. This strategy, in essence, balances
efficiency and safety, providing an effective solution to the problem
of detecting pedestrians in a blind area in multi-vehicle scenarios.
By focusing on the closest threat, we can respond promptly to
possible immediate dangers, thereby enhancing overall safety.

7.2 Extreme Scenarios
Autonomous driving scenarios present a diverse range of complexi-
ties, which represent significant challenges for this field [47]. To en-
sure our system’s robustness, we evaluated it across various lighting
and pavement conditions. However, our limited experimental data
made it difficult to assess performance in certain extreme weather
and road surface conditions such as dense fog, heavy rain, sand-
storms, or icy roads. These scenarios could influence the reflection
and propagation of faint shadow signals, potentially affecting the
system’s performance. However, driving in such extreme conditions
is inherently hazardous, and many Advanced Driver-Assistance
Systems (ADAS) [30, 36] disallow their use in such environments.
Nonetheless, Under the circumstance allowed by ADAS, our system
effectively detects Non-Line-of-Sight (NLOS) moving pedestrians.
Like other novel approaches, it cannot fully address all the corner
case challenges on autonomous driving. As we continue to refine
the system, we anticipate an improved ability to cope with a broader
range of conditions.

7.3 Limitations
According to relevant research [1, 25], we’ve conducted extensive
investigation into nighttime scenarios and also evaluated daytime
situations. The results demonstrate robust performance of our ap-
proach across these different conditions. Our experiments have
covered a wide spectrum of real-world driving scenarios. However,
due to the ’long tail’ problem inherent in autonomous vehicles, our
algorithm has not yet been reliably tested in rainy conditions. This
constraint arises from safety considerations during experiments,
as the experimental data is collected from vehicles in operation on

open roads. During rainy weather, due to slick road conditions and 
impaired visibility, it is not feasible to collect reliable data without 
compromising safety. Maciej et al. [13] give an exciting perspective 
on weak shadow capturing. They proposed that weak shadows 
can be segmented, and therefore edited, by learning a mapping 
function for image patches that generate shadow mattes. Wu et 
al. [44] create a new soft shadow detection approach and design a 
reasonable supervision strategy to alleviate the effect of annotation 
noises. On the other hand, various local governments have enacted 
laws requiring vehicles to keep headlights on during rainy weather 
[6] to ensure their own safety and the surrounding vehicles. We can 
use this light source for detecting moving objects in blind spots.

7.4 General Applicability
Indeed, the Ghost-Probe system’s versatility extends beyond the 
scenarios presented in this study. As urban landscapes grow in-
creasingly intricate, marked by a surge in overpasses, the presence 
of numerous supporting pillars introduces a host of blind spots 
in our driving environment. These blind spots, particularly preva-
lent at intersections, significantly escalate the safety risks in urban 
driving scenarios. To curb potential mishaps, a simple yet effec-
tive solution could involve installing basic lighting facilities on 
these pillars. Once these illumination aids are in place, vehicles 
fitted with the Ghost-Probe system could effectively detect pedes-
trians hidden within these blind spots, providing enough time for 
decision-making and evasive maneuvers. The merits of such infras-
tructural development are two-fold. Not only do these pillars create 
vision barriers, but they also contribute to poor illumination in their 
immediate vicinity, especially during nighttime. The introduction 
of additional lighting solutions would substantially alleviate this 
deficiency. Similarly, our system could be leveraged to mitigate 
collision risks in any driving scenario marred by blind spots.

8 CONCLUSION
Ghost rush refers to a specific type of accident where pedestrians 
unexpectedly emerge from blind areas beyond the driver’s line of 
sight. The practical application of existing NLOS imaging methods 
has been hindered due to factors such as the expense of necessary 
equipment and stringent implementation conditions. Addressing 
this issue, we introduce Ghost-Probe, an innovative system meticu-
lously designed to detect moving obstacles located in blind spots 
under complex lighting conditions. Remarkably, this system em-
ploys standard ADAS monocular camera technology, eliminating 
the need for any additional reflectors. To validate our system, we 
have thoroughly tested it in an array of real-world driving scenarios, 
with diverse lighting circumstances and varying road conditions. 
The promising results demonstrate the system’s robust capacity to 
provide ample reaction time for both drivers and the existing Ad-
vanced Driver-Assistance Systems (ADAS), effectively mitigating 
the risk of accidents.
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