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Abstract—Video delivery has been playing an essential role
in video services over edge networks. Although HTTP segment
based streaming, e.g., Dynamic Adaptive Streaming over HTTP
(DASH), has become the prevailing technique, it cannot pro-
vide guaranteed video playback in terms of bitrate to mo-
bile users. In essence, HTTP streaming downloads the video
segments in a best-effort fashion, i.e., passively responding to
the channel dynamics. This can cause instable playback with
frequent rebuffer and multi-client competition that degrades
network-wide performance. In this paper, we present GESH, a
network-assisted streaming framework for Guaranteed Playback-
Experience Streaming over HTTP that leverages the proactive
control of network resources and joint coordination among
multiple clients for service-aware network resource allocation.
Specifically, GESH is empowered by a new weighted proportional
fair scheduling without modifying existing cellular infrastructure,
a per-segment channel variation model, and a suite of algorithms
to seek the optimal weights for the scheduling. Extensive eval-
uations show that GESH can maximally guarantee the video
playback of multiple users, as well as significantly outperforming
conventional HTTP streaming and current DASH systems.

Index Terms—Guaranteed playback, HTTP video streaming,
mobile edge networks, resource allocation.

I. INTRODUCTION

THANKS to the explosion of mobile web access and
mobile social networks, mobile video services have been

boosted drastically [1]. Numerous applications providing vi-
sual content, such as video streaming, social video sharing,
and mobile video surveillance, have gained broad popularity
and significantly enriched the everyday life of mobile users.
Typically, these video services acquire source content from
video content producers, and then deliver the encoded video to
mobile clients through mobile edge networks. Considering the
ever-increasing compression ratio of advanced video coding
techniques, video delivery over mobile edge networks is now
becoming the key design issue in mobile streaming systems.
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HTTP segment based streaming has recently become the
dominant technology for video delivery due to its compatibility
with Internet’s hardware and software infrastructure. The video
source is encoded into small segments that can be decoded
individually. Thus the mobile client can playback the video
without downloading the entire video file.

In order to improve users’ experience in bandwidth-varied
mobile networks, dynamic adaptive streaming over HTTP
(DASH) has been widely deployed for various video ser-
vices. Unlike conventional HTTP segment based streaming,
the DASH source is encoded into multiple bitrate versions,
each of which is then divided into small segments. The client
adaptively requests the most appropriate segment at each
switching point based on its throughput measurement of the
mobile channel. That way, the user is expected to maximally
utilize mobile bandwidth and achieve satisfactory experience.

Despite the prevalence of DASH, we observe that current
HTTP streaming framework cannot provide mobile users with
guaranteed video playback, i.e., ensuring a higher video bitrate
than a certain threshold, which could significantly degrade
the user satisfaction. First, current video playback is unre-
liable since DASH bandwidth estimation is not accurate in
mobile edge networks with strong channel dynamics. The
DASH client using per-segment throughput based estimation
frequently overestimates its bandwidth share if the shared
channel has been exclusively used by itself [2], [3]. Bandwidth
underestimation will also occur if the download of a segment
does not saturate the entire bandwidth [2], [3]. Thus it is
unlikely to achieve stable playback without rebuffer, let alone
guaranteed video playback. Second, the client-driven nature
of current systems incurs intractable and poor performance
in the multi-client mobile edge networks. This is because the
mobile client has no knowledge of the other shared streams
in the same bottleneck. Even though a client might achieve
satisfactory playback through aggressive bitrate requests, the
bandwidth share of other competing clients would be squeezed
and their playback would not be guaranteed [4], [5].

In fact, the fundamental problem behind these issues is that
both traditional HTTP streaming and current DASH employ
a best-effort strategy, wherein they can only respond to the
channel dynamics passively in order to enhance the playback
performance of individual users. There is no proactive con-
trol of radio resources or joint coordination among multiple
clients in order to guarantee the playback of multiple users.
Therefore, the goal of this research is to provide guaranteed
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video playback performance to multiple users by leveraging
the centralized downlink resource allocation at the radio access
network (RAN). We aim at maximizing the system bandwidth
efficiency while guaranteeing the playback performance of
multiple HTTP streaming clients in one mobile cell. Note
that we guarantee the playback experience in terms of bitrate.
Although this is not equivalent to the subjective Quality of
Experience (QoE), it is the most fundamental factor that
contributes to the QoE. Guaranteeing the bitrate will lay the
foundation for the ultimate goal of QoE guarantee.

To achieve this goal, we face several technical challenges.

• Allocating radio resources in a service-aware manner
without modifying current cellular infrastructure: Propor-
tional fair scheduler (PFS) has been widely deployed at
the link layer of RANs [6]. How should the client-driven
application-layer video service interact with the network-
side PFS and guide the resource allocation based on the
service requirement is an essential yet difficult task. It is
necessary to feed this service information to the scheduler
while keeping the core PFS algorithm unchanged.

• Estimating the per-segment throughput of cellular chan-
nels: Although the instant channel rate of each radio
resource unit is available within the RAN (e.g., at the
base station), allocating appropriate amount of radio re-
sources in order to achieve a certain throughput during the
next segment is still non-trivial. This is because cellular
channels are extremely dynamic and thus it is challenging
to obtain the future channel rate. Furthermore, we would
not be able to know which exact resource units would
be assigned to a given user before performing the PFS
algorithm. Therefore, it is necessary to estimate the per-
segment throughput of a user deliberately.

• Guaranteeing the playback of multiple video users under
shared bottleneck: The service-aware downlink resource
allocation is fundamentally dependent on both channel
and playback conditions. Allocating more resource units
to a user with smaller instant channel rate may improve
the user’s playback, but will leave much less resource
units for other competing users with the same service
requirement. The playback status such as buffer size also
matters since a user with larger buffer may not need video
data as eagerly as those users with smaller buffer size.

To tackle these challenges, we present GESH, a framework
for Guaranteed Playback-Experience Streaming over HTTP in
mobile edge networks. GESH is a network-assisted streaming
framework, where the client-side information is communicated
to the RAN for service-aware resource allocation in a standard-
compliant way. To maintain current PFS infrastructure, we
propose to exploit a weighted proportional fair scheduling,
where the user weights are input parameters to the core PFS
algorithm. The weights can be dynamically adjusted based on
multiple users’ segment requests, buffer status, and channel
variations, which will accordingly guide the radio resource
allocation and guarantee the video playback.

To optimize the service-aware resource allocation in GESH,
we start with modeling the per-segment channel variation as a
Markov model by utilizing large-scale channel data. Based

on the channel model, we formulate a resource allocation
optimization problem that maximizes the throughput under the
constraints of segment requests, buffer occupancy and band-
width limit. We then design an optimal dynamic programming
algorithm and an efficient greedy algorithm that is proven
to be optimal in order to seek the optimal weights of users.
Extensive simulations under various settings show that GESH
can maximally guarantee the video playback of multiple users,
as well as significantly outperforming conventional HTTP
segment based streaming and current DASH systems.

To summarize, the contributions of this research include:
• A weighted proportional fair scheduling framework that

considers both channel and video service information
(Section III).

• A per-segment channel rate model and a suite of algo-
rithms that jointly achieve the optimal resource allocation
(Section III-IV).

• A demonstration of the effectiveness of the service-aware
GESH via systematic simulations (Section V).

II. RELATED WORK

A. DASH and Rate Adaptation

Recently, both MPEG [7] and 3GPP [8] have made tremen-
dous efforts towards the standardization of DASH, which indi-
cates the prevalent adoption of this technology in video indus-
try. DASH standard defines the media presentation description
(MPD), segment format, and implementation guideline of the
system. The specific rate adaptation strategies are not part of
the standard and are left to system designers.

Early works of DASH focused on the rate adaptation
algorithms for individual video client [9], [10], [11] to fill
in the gap of DASH standard. A survey of rate adaptation and
QoE for DASH was presented in [12]. In general, the client
dynamically estimates the maximum video bitrate supported
by the end-to-end bandwidth based on its local measurement,
e.g., using throughput and buffer status. However, all these
algorithms target the single-user client-side adaptation and
cannot guarantee the playback performance in multi-client
edge networks. In fact, playback instability and unfairness
have been commonly identified as among the weaknesses for
client-side adaptation in practical experiments where two or
more clients compete for the same bottleneck [4], [5], [13].

B. Video Delivery for Multiple Clients

Recently, there has been an obvious trend for the investi-
gation of multi-client HTTP streaming. MPEG has included
server and network-assisted DASH into its working draft [14].
Besides, 3GPP has pointed out the use cases of network
assistance in its latest specification [15], which indicates future
standardization for technical details.

To address the unfairness issue, backend server side traffic
shaping has been studied. In [16], the authors stabilized the
source traffic from the server for competing clients when
oscillations are detected. In another traffic shaping scheme
[13], the traffic of the client who enjoyed a higher qual-
ity would be firstly downgraded. These server-side schemes
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demonstrate the principle of centralized control. However, they
are not specifically designed for cellular edge networks. These
schemes work at the application layer and impose no constraint
on the physical-layer radio resources, which can lead to either
underutilized or overutilized bandwidth for video playback.
More importantly, such architecture requires to record server
states rather than using pure stateless HTTP, resulting in
scalability and reliability issues.

Little work has been carried out to design DASH over
multi-client edge networks. Most related schemes [4], [17],
[18], [19], [20], [21] aimed at jointly adapting the bitrate of
multiple users to optimize a certain utility, subject to instant
channel rate constraints. Although the requested bitrate is more
reasonable, the application-layer bitrate selection is oblivious
to downlink resource allocation. Consequently, the resulting
throughput that is an output of downlink scheduling may still
deviate from the selected bitrate significantly. More impor-
tantly, without the intelligent resource control, the client’s
playback performance solely relies on the channel conditions,
which provides no guarantee of playback performance. More-
over, there were other schemes [22], [23] that combined the
designs of rate adaptation and resource allocation in order to
allow service-channel-aware playback. However, they strongly
depend on the customized low-layer scheduler and require
the complete replacement of the standardized proportional
fair scheduler, which makes them difficult to be applied into
practice. It is also extremely difficult to evaluate their realistic
value. First, completely new architecture indicates a large
number of customized interfaces, modules, and self-defined
parameters. It is not yet clear how these settings would
impact the real-world cellular networks and what would be
the optimal configuration. Second, measuring the replacement
cost and compare it with the playback performance is also
non-trivial and needs a full-scale cross-discipline investigation
across business, product, and research teams.

C. Downlink Resource Allocation
Proportional fair scheduling algorithms [6], [24] have been

widely deployed to maximize the system throughput and
guarantee the fairness among multiple users. In each schedul-
ing cycle, PFS sequentially schedules a given resource unit,
e.g., a resource block in LTE, to the user who enjoys the
maximum ratio between instant channel rate and the average
past throughput. This process repeats until all radio resources
have been allocated. To accommodate heterogeneous downlink
channels, a PFS that dynamically monitors and adjusts the
scheduling metric was proposed in [25]. To satisfy the dif-
ferentiated requirement, a parameterized downlink scheduling
algorithm that seeks a flexible tradeoff between throughput
and fairness was proposed in [26]. These algorithms provide
the foundations of PFS downlink scheduling and resource
allocation. However, they focus on general data traffic and
do not consider the unique effects of video playback, which
can lead to unacceptable experience for the video users.

To address the time-sensitive issue of multimedia traffic,
maximum-largest weighted delay first [27] and logarithm-rule
[28] scheduling algorithms were proposed with the consid-
eration of delay constraints. They increased the priority of

Fig. 1. The system architecture considered in this paper.

delay-sensitive flows when their head-of-line delays were close
to a certain threshold. However, packet-level delay bound
may not necessarily have direct relationship with playback
performance. For example, even with some packets exceeding
the delay bound, a user can still achieve desired experience as
long as the player buffer is not underflowed. In [29], a joint
application, MAC and physical layer design was proposed for
video delivery over OFDMA networks. Recently, application
driven network [30] was proposed to address differentiated
application requirement by slicing the physical network into
different logically isolated subnetworks using independent pro-
tocols. Nevertheless, these designs need to completely replace
existing PFS infrastructure, which is relatively impractical.
More importantly, these resource allocation schemes are not
specifically designed for HTTP streaming and therefore the
reported results may not be consistent in DASH environment.

D. Summary

Indeed, these existing works provide important insights for
the design of the proposed GESH framework. However, the
objective in this research is fundamentally different in that
GESH aims at guaranteeing the video playback proactively
rather than improving the performance in a best-effort manner.
First, GESH strives to exploit the channel variation by estimat-
ing the per-segment achievable throughput that is the output
of the PFS rather than by directly using the instant channel
rate. Coupled with the application information, GESH further
adjusts the radio resource share (i.e., weights) of each user on
top of the standard PFS scheduler (instead of replacing it) in
order to maximally guarantee the video playback of multiple
users. Moreover, GESH is transparent to the rate selection in
HTTP segment based streaming. It simply intends to guarantee
the requested bitrate rather than modifying the bitrate requests.

III. SYSTEM MODELS

A. System Architecture

The system architecture under investigation is shown in
Fig. 1. The video server collects video sources from video
content producers for on-demand or live video services. The
source sequences will be transcoded into multiple bitrate
versions to provide different levels of video experience. Each
version of the video is split into multiple segments with the
same segment length. Note that, in the case of live videos, the
segments are prepared in real-time along with the live event.
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In this paper, we consider a single LTE cell. We assume
all the edge entities, e.g., the base station and PFS scheduler,
operate in the same way as current LTE networks. The key
intelligence lies in an additional module that calculates the
input parameters of PFS and thus guides the PFS resource
allocation. This allows us to explore the collective knowledge
of multiple streams for service-aware resource control. There-
fore, the network is expected to guarantee the segment requests
and the playback of different users. Such an architecture may
be utilized as advanced network configuration for any other
applications with relatively strict service requirements.

We consider a set of premium users subscribing to the video
service that promises guaranteed video playback. Depending
on the account priority, premium users may also have different
levels of guaranteed playback performance. For example, some
are guaranteed to enjoy smooth HD video services whereas
some others have smooth SD video services. Since we propose
to guarantee playback performance by downlink resource
allocation, the bitrate selection logic of these premium users
is to constantly request each segment at the bitrate to be
guaranteed, e.g., a HD version. Note that regular users who
receive video services in a best-effort fashion may coexist
with premium users in practice. There is no special treatment
of their resource allocation and thus no guarantee for their
playback performance.

The operations of the streaming system proceed as follows.
Initially, the video server broadcasts the MPD so that the
downlink scheduler (within the RAN) and the clients will
be aware of the available video bitrates versions. For each
switching period that equals to the segment length, the pre-
mium users request a segment at the bitrate to be guaranteed
based on their service priority. Unlike conventional downlink
resource allocation that is oblivious to these segment requests,
the network-assisted GESH system will perform service-aware
resource allocation based on the requested bitrate, the low-
layer channel status, and the high-layer playback information.
While the bitrate request and instant channel state are available
to the RAN by default in current standard, client playback
information, such as buffer status, needs to be embedded in
additional periodic feedback from clients. This is feasible as
3GPP has standardized the quality metrics reporting process
for clients and uses HTTP POST as the reporting protocol [31].
Note that the latency incurred by this buffer status reporting
process is minimal and can be ignored in model and algorithm
design. In fact, only a few bytes of data are sufficient to contain
the buffer occupancy information and thereby a negligible
delay will be introduced in a LTE environment with a ∼5
Mbps upload speed. In this way, the premium users are able
to enjoy the video with guaranteed playback performance
while neither the current infrastructure of PFS in cellular
edge networks and the standard request-response framework
of HTTP streaming needs to be modified. Moreover, GESH
does not impact the statelessness at the backend video servers
and preserves the system scalability.

B. Weighted Proportional Fair Scheduling
In this section, we introduce the proposed weighted propor-

tional fair scheduling framework for GESH, which enables the
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Fig. 2. The weighted proportional fair scheduling framework in GESH.

service-aware resource allocation without modifying existing
PFS infrastructure.

In LTE networks, time-frequency radio resources are di-
vided into resource blocks (RBs) as shown in Fig. 2. We first
consider the general PFS algorithm that computes a scheduling
metric ρ of the lth RB at the upcoming Transmission Time
Interval (TTI) t+ 1 for user i, i.e.,

ρil(t+ 1) = ωi
cil(t+ 1)

Ri(t)
(1)

where ωi is the weight for each user indicating its priority,
cil(t + 1) is the instant channel rate of user i under the lth
RB at TTI t+1, and Ri(t) is the smoothed throughput of the
user computed until current TTI t. The smoothed throughput
for user i can be computed as,

Ri(t) = αRi(t− 1) + (1− α)
L∑

l=1

δil(t)cil(t) (2)

where Ri(t− 1) is the computed throughput at TTI t− 1, L
is the total number of RB in one TTI, δil(t) (equal to 0 or
1) indicates whether or not the lth RB is assigned to user i
at current TTI t, and α is the smoothing factor that balances
the past throughput and the newly available channel rate. The
algorithm will then assign the given RB l at TTI t+ 1 to the
user achieving the maximum scheduling metric, i.e.,

argmax
i

ρil(t+ 1) (3)

It then updates ρil(·) continuously and repeats the RB assign-
ment for all RBs at each TTI. It has been proved that such a
PFS algorithm will asymptotically optimize the long-term log
utility of throughput [32], i.e.,

max
∑
i

ωi logRi (4)

and accomplish asymptotic throughput fairness, i.e.,

Ri

Rh
=
ωi

ωh
(5)

where h 6= i represents a different user from i. In classic PFS,
ωi is set to be equal to ωh, implying the same priority for
all users. Therefore, the long-term throughput of all users are
asymptotically equal and fair.

The proposed weighted proportional fair scheduling frame-
work shown in Fig. 2 is built upon the above analysis. Before a
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segment request, the input parameters of PFS, i.e., the weights
ωi of each user, are dynamically adjusted in GESH system
in order to guide the resource allocation during this segment
period. This will ultimately achieve a desired throughput that
is proportional to the weight and satisfy the requested bitrate
for each user. Specifically, the weights should be jointly
determined by the current buffer occupancy, segment request,
and channel condition, i.e.,

Ri

Rh
=
ωi

ωh
= f(r,B,C) (6)

where r, B and C are the vector of requested video bitrate,
buffer size in terms of seconds, and per-segment channel rate
for all users. Since GESH adjusts the weights to guarantee the
playback for every segment request, the throughput Ri in (6)
is re-defined as the throughput within one segment period.

C. Channel Modeling

Since the goal of GESH is to guarantee each segment
request by proper downlink resource allocation, it is imperative
to understand how the channel conditions vary from one
segment period to the other. Hence, we now model the per-
segment channel variation. In particular, we model the per-
segment channel rate Ci ∈ C when user i occupies all
radio resources during this segment. This way, the resource
allocation algorithm can decide how many percents of all
segment resources should be allocated to user i to meet
its throughput demand in one segment. Such a per-segment
channel rate differs for each user. The channel modeling is
proceeded by a data-driven method using large-scale traces.

We build the LTE cell using a 3GPP standard-compliant
LTE simulation environment [33] whose implementation and
setup will be detailed in Section V. In a given LTE cell
with N users, we aim at modeling the transition of per-
segment channel rate for an arbitrary user. In other words,
this modeling characterizes the overall channel condition of
this N -user cell. In one run, we measure the channel rate
of a user when she occupies all the resource blocks during a
segment period T , and we collect this per-segment channel rate
for all N users. Each run lasts for 600 seconds and generates
N 600

T samples. We then repeat this for 100 runs, wherein
the users are randomly distributed over the cell in each run
and thereby the channel conditions of a given user (e.g., user
#2) are different among the 100 runs. Under this given LTE
environment with N users, we can eventually collect a total
of N×600×100

T samples for the channel modeling.
We propose to model the per-segment channel rate variation

as a Markov model because cellular channels have been widely
modeled as Markov models and such a modeling has been
proven to be effective [34]. We divide the range of per-segment
channel rate into M states and each state is represented by
the median value of its rate range. For a particular per-
segment channel rate transition (i.e., from one state to another
state), we can obtain the transition probability by dividing
the number of such state transitions over the total number
of all transitions with the same starting state. As a result,
we can obtain a transition probability matrix P ∈ RM×M

at M ×M dimensions, which characterizes the per-segment
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Fig. 3. Transition probability matrix of the per-segment channel rate in a
10-premium-user LTE cell.

channel variations for an arbitrary user in such a LTE cell. By
repeating the above steps for other LTE cell environment, i.e.,
with different number of users, we can reach a set of transition
probability matrices under typical LTE cell configurations. An
example 3D-plot of the transition probability matrix under a
10-premium-user LTE cell is shown in Fig. 3. It is observed
from the figure that the per-segment channel rate of a user
is more likely to keep unchanged or transit to a neighboring
channel rate.

Given the per-segment channel rate of a user Ci,u during
the current segment and the transition probability matrix, we
can now easily derive the expected per-segment channel rate
during the upcoming segment Ci over all the possible rate
levels, i.e.,

Ci =
∑
v

p(u, v)Ci,v (7)

where u is the index of current rate state determined by Ci,u,
Ci,v is the representative median rate of a possible next state
v, and p(u, v) is the transition probability in the matrix P.

IV. SERVICE AWARE RESOURCE ALLOCATION

A. Problem Formulation

In order to achieve the desired proportional throughput in
(6) and satisfy the requested bitrate, we need to deliberately
configure the weights before every segment requests. Specif-
ically, we need to set the ratio between the weights of two
users as the ratio between their estimated throughput during
the upcoming segment, i.e.,

ωi

ωh
=

ni

KRi,seg
nh

K Rh,seg
(8)

where ni is the number of RBs allocated to user i in the
upcoming segment, K is the total number of available RBs
during one segment, ni

K represents the resource share of user i
within the upcoming segment, Ri,seg = g(Ci) is the estimated
per-segment throughput mapped from the per-segment channel
rate assuming user i takes all RBs of the entire segment, and
g(·) is a mapping function that maps the physical-layer channel
rate to the application-layer rate, accounting for the higher-
layer packet overhead, and it will be defined in Section V. In
a given system, K is a fixed number and the exact partition of
RBs in our evaluation will be introduced in Section V. Note
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that for different segment periods, the maximum channel rate
of the same RB may be different.

To derive the weights, we first seek the optimal resource
share in the upcoming segment, i.e., the optimal number of
RBs assigned to each user ni, by considering the following
constraints. First, a sufficient amount of video data should
be downloaded to guarantee the continuous playback of the
requested video. In other words, the total duration of the
streamed video and the buffered video should be longer than
the segment length T . On the other hand, the buffered data
should not exceed the maximum buffer size of the video
client in order to avoid buffer overflow. Otherwise, the newly
downloaded data would have to be discarded due to the lack
of storage space, which would consequently cause incomplete
playback or playback artifact as well as wasting network
bandwidth. Furthermore, the network provider will only assign
a limited bandwidth to this video service. If the total resource
share of all users is larger than the dedicated capacity, it may
conflict with the operator’s bandwidth management policy.

Since efficient utilization of radio resources can benefit
the entire streaming ecosystem, the objective of the resource
allocation is to maximize the total throughput of users un-
der the limited bandwidth. Building on the above insights,
we proceed by formulating the SERVICE-AWARE RESOURCE
ALLOCATION PROBLEM (SRAP)

Definition 1 (SRAP): Suppose an LTE cell has N premium
users that require guaranteed video service, each user with
maximum buffer size Bmax, a transition probability matrix
of per-segment channel rate P, and its current per-segment
channel rate. Given videos divided into T -second segments
and requested by user i at the bitrate ri, as well as a total of
K resource blocks, the problem is to determine the number of
allocated RB ni for user i such that the video throughput of
the cell is maximized without client buffer over/underflow or
exceeding the bandwidth limit for this video service.

Mathematically, we can formulate SRAP as,

max
∑N

i=1
niRi,segT

K

s. t. Ri,seg = g(IPCrep
T)

niRi,segT
riK

+Bi ≤ Bmax
niRi,segT

riK
+Bi ≥ T∑N

i=1 ni ≤ K

(9)

where I is a indicator vector that implies the state of the
current per-segment channel rate Ci,cur of user i and Crep

is a vector of the representative median rate of M states.
The first constraint defines the computation of the estimated
throughput of user i when taking the RBs of the entire
segment. The second and third constraints indicate the buffer
level should always be a proper value to avoid buffer underflow
and overflow. The final constraint bounds the RB assignment
under the given bandwidth.

The adaptation wisdom behind (9) is that more RBs are
generally allocated to those users who currently have a smaller
buffer occupancy and a worse channel condition, while ex-
cessive RB assignment that may cause buffer overflow shall
also be avoided. Consequently, we can not only guarantee the
playback, but also enhance the fairness among these users.

Note that the above formulation inherently considers non-
premium users. For a non-premium user with best-effort non-
guaranteed playback, the third constraint of buffer underflow
will be set to a special case, i.e., niRi,segT

riK
+ Bi ≥ 0. This

indicates that the playback of non-premium users can be
stalled (empty buffer). During the resource allocation, RBs
will be assigned to premium users first and the remaining
RBs will be allocated to non-premium users in a best-effort
way. To adjust the premium/non-premium ratio, the number
of premium/non-premium users considered in the optimization
can be changed accordingly.

B. Optimal Dynamic Programming Algorithm

We now propose a dynamic programming algorithm to
optimally solve the SRAP in (9). The system running this
algorithm will serve as the performance bounds. We will
compare different benchmarks against the performance bounds
in Section V. We first consider the subproblem of SRAP with
Ns(Ns < N) video users and Ks(Ks < K) RBs dedicated
to this video service. Let U [Ns][Ks] denote the maximum
utility, i.e., the maximum throughput for Ns users under Ks

RBs. The optimal U [Ns][Ks] of the subproblem should be the
summation of the optimal throughput for Ns−1 users and the
throughput of the Nsth user. Thereby, we have the following
iterative formula.

U [Ns][Ks] =max

{
U [Ns − 1][Ks −m] +

mRNs,segT

Ks

∣∣∣∣
where m ≤ Ks, nNs,min ≤ m ≤ nNs,max

}
(10)

where m is the number of RBs allocated to the Nsth user, m
Ks

represents the percentage of RBs allocated to the user, RNs,seg

is the per-segment throughput of the Nsth user when it uses
up all resources in the segment, and nNs,min and nNs,max are
the lower bound and upper bound of m, respectively. The two
bounds are derived from the second (buffer overflow) and third
(buffer underflow) constraints in (9), i.e.,

ni,min =
(T −Bi)riK

Ri,segT
, ∀i

ni,max =
(Bmax −Bi)riK

Ri,segT
, ∀i

(11)

Note that ni,min is always set to be 0 for non-premium users.
By substituting Ns = N and Ks = K, we can iter-

atively solve the SRAP in (9) starting from a single user.
The optimal dynamic programming algorithm is summarized
in Algorithm 1. We first calculate the optimal utilities and
allocations when there is only one user and the total number
of RBs ranges from K to zero. We then repeat this procedure
by increasing the number of users from 1 to N . That way, two
2D matrices recording the optimal utilities and allocations for
different number of users and RBs can be obtained. Finally,
we can go through the matrices to identify the optimal solution
that generates the maximum utility. By substituting n in (8)
with the optimal outputs, we can eventually configure the
optimal weights of each user in the upcoming segment and
achieve desired amount of guaranteed throughput in GESH.
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Algorithm 1 Dynamic Programming Allocation Algorithm
1: Compute Ri,seg , ni,max, ni,min, ∀i, according to (9) and

(11).
2: U [0][k]← 0, ∀k
3: for i = 1 to N do
4: for k = K to 0 do
5: U [i][k]← maxm{U [i−1][k−m]+

mRi,segT
k | ni,min ≤

m ≤ ni,max,m ≤ k}
6: n∗[i][k] ← argmaxm{U [i − 1][k − m] +

mRi,segT
k | ni,min ≤ m ≤ ni,max,m ≤ k}

7: end for
8: end for
9: Backtrace the 2-D matrix n∗[·][·] to obtain optimal number

of allocated RBs for each user that yields U [N ][K]

Since the initialization of Algorithm 1 takes O(N) time and
we have NK sub-instances that each consumes O(K) time,
we can arrive at the following proposition regarding the time
complexity of the algorithm.

Proposition 1: The proposed optimal dynamic program-
ming allocation algorithm (Algorithm 1) can solve SRAP in
O(NK2).

C. Optimal Greedy Algorithm

As K can be a huge number, Algorithm 1 may need
excessive execution time, impairing the real-time requirement
of resource allocation. In this section, we propose an optimal
greedy algorithm to efficiently solve for SRAP. The basic idea
is that, after meeting the minimum allocation requirement of
each user, the user with highest Ri,seg will obtain its maximum
possible RBs and this process repeats until all the remaining
RBs are assigned.

The proposed algorithm is summarized in Algorithm 2.
At the initialization stage, the users are sorted based on
their estimated throughput when taking up the entire radio
resources. That is, the sorted user index i satisfies R1,seg ≥
· · · ≥ Ri,seg ≥ Ri+1,seg ≥ · · · ≥ RN,seg. Furthermore, the
lower bounds and upper bounds of allocated RB are computed.
We then initialize the number of allocated RBs as the lower
bound and update the remaining bandwidth. The algorithm
then loops from user 1 to N and at each iteration we assign
as many as possible of the remaining RBs to the given user.

In terms of time complexity, the proposed algorithm takes
O(N) to initialize the parameters and spends O(N logN) to
sort the user index. Due to the constant number of operations
within each iteration of the algorithmic loop, we can reach the
following proposition for Algorithm 2.

Proposition 2: The proposed optimal greedy allocation
algorithm (Algorithm 2) can solve SRAP in O(N logN).

Therefore, Algorithm 2 is much more efficient than the
Algorithm 1 and is preferred in practice.

To prove the optimality of Algorithm 2, we have scruti-
nized the SRAP problem in (9) and arrived at two important
conclusions in the following.

Lemma 1: If
∑N

i=1 ni,max ≥ K, all optimal solutions will
take up the entire radio resources exactly.

Algorithm 2 Optimal Greedy Allocation Algorithm
1: Sort the user index such that R1,seg ≥ · · · ≥ Ri,seg ≥
Ri+1,seg ≥ · · · ≥ RN,seg

2: Compute ni,max, ni,min, ∀i according to (11)
3: Krem ← K −

∑N
i=1 ni,min

4: for i = 1 to N do
5: if Krem ≥ ni,max − ni,min then
6: n∗i ← ni,max

7: Krem = Krem − (ni,max − ni,min)
8: else
9: n∗i ← ni,min +Krem

10: Krem = 0
11: end if
12: end for
13: Return n∗ . user index is sorted

Proof: Assume there exists an optimal solution x such that∑N
i=1 xi < K. Since

∑N
i=1 ni,max ≥ K, we can find those

users satisfying xi < ni,max and assign them the unused
RBs. Thereby, the throughput utility of the new assignment
will always be increased, which contradicts the optimality
assumption of x.

Lemma 2: Denote n∗ = {n∗1, · · · , n∗N} as the solution
generated by the proposed greedy algorithm in Algorithm 2.
Let j be the first index such that n∗j 6= nj,max, i.e.,

n∗i = ni,max, if i ∈ [1, j)

n∗i ∈ [ni,min, ni,max), if i = j

n∗i = ni,min, if i ∈ (j,N ]

(12)

If there exists an optimal solution x = {x1, · · · , xN} different
from n∗ and the smallest index d such that xd 6= n∗d, we have
xd < n∗d.

Proof: This lemma can be proved by considering three
different cases.

1) When d < j, n∗d = nd,max. Since xd 6= n∗d, we have
xd < n∗d = nd,max.

2) When d = j, we assume xd > n∗d. According to
(12), we have

∑j
i=1 n

∗
i +

∑N
i=j+1 ni,min = K and

xi = n∗i for all 1 ≤ i < j. Therefore, we can derive∑j
i=1 xi +

∑N
i=j+1 ni,min > K. However, we have∑N

i=1 xi = K by Lemma 1, which is a contradiction.
Therefore, the assumption of xd > n∗d is wrong. Since
xd 6= n∗d holds, we can then prove xd < n∗d.

3) When d > j, we assume xd > n∗d. This case is similar
as Case 2 and we would have the same contradiction to
Lemma 1, i.e.,

∑N
i=1 xi > K.

By summarizing the three cases, Lemma 2 can be proved.
We are now ready to prove the optimality of the proposed

Algorithm 2.
Theorem 1: Algorithm 2 is optimal for SRAP in (9) and can

maximize the throughput.
Proof: Given n∗, the output of Algorithm 2, we assume

there exists an optimal solution x and a smallest index d that
differs in n∗ and x. According to Lemma 2, we also have xd <
n∗d. Suppose we increase xd to n∗d and decrease as many of
{xd+1, · · · , xN} as necessary in order to keep the total number
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TABLE I
EDGE NETWORKS CONFIGURATION

Parameter Value Parameter Value
Channel model Urban/Suburban Macrocell MIMO mode 2×1

Multi-path gains 6 paths (-3 dB∼ -18 dB) Multi-path delay spread 6 paths (0.5 µs∼2.5 µs)
Carrier frequency 2000 MHz Inter-site distance 1000 m

eNodeB height 25 m UE height 1 m
DL transmit power 46 dBm Antenna gains eNodeB: 18 dbi, UE: 0dbi

of assigned RBs unchanged. Consequently, we can obtain a
new solution y = {y1, · · · , yN} with yi = n∗i for 1 ≤ i ≤ d.
When i > d, this new solution y satisfies:∑

d<i≤N

(xi − yi) = yd − xd (13)

By replacing T
K = β, the total throughput utilities achieved

by y can be derived as,∑
1≤i≤N

yiRi,segT

K
= β

∑
1≤i≤N

yiRi,seg

= β

[ ∑
1≤i≤N

xiRi,seg + (yd − xd)Rd,seg

−
∑

d<i≤N

(xi − yi)Ri,seg

]
≥ β

[ ∑
1≤i≤N

xiRi,seg +Rd,seg

(
(yd − xd)

−
∑

l<i≤N

(xi − yi)
)]

= β
∑

1≤i≤N

xiRi,seg

(14)

where the inequality follows by Rd,seg ≥ Rd+1,seg ≥ · · · ≥
RN,seg.

Therefore, U(y) ≥ U(x), where U(·) represents the
throughput utility of a RB allocation solution. We now discuss
the two possible cases.

1) U(y) > U(x). It indicates that x cannot be optimal,
which contradicts the assumption that x is an optimal
RB allocation. Hence, n∗ is an optimal solution.

2) U(y) = U(x). It implies that we made the xd in
the optimal solution equal to the n∗d in the proposed
greedy solution without loss of the overall utility. We
can proceed by treating y as a new optimal solution that
is modified from x. We then make yd+1 equal to n∗d+1

and carry out the entire procedure in the above. After
repeating this process for n∗d+1, · · · , n∗N , we will either
exit through the contradiction in Case 1), or eventually
end up with an optimal solution that is exactly the same
as n∗, in which case n∗ is an optimal solution.

In summary, the theorem is proved.

V. EVALUATION

We have built a system-level simulation environment that
includes video servers, core networks, RAN networks with
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Fig. 4. Total available bandwidth of the cell versus time.

the proposed GESH and multiple mobile clients, based on the
architecture in Fig. 1. We use the video sequences “Big Buck
Bunny”, “Touchdown”, “Tear of Steel”, and “Johnny”, and
encode them into H.264/AVC videos. The segment length T
is 1 second and the frame rate is 24 fps. The reported results
are the average over all video sequences.

We construct a MIMO-OFDM LTE air-interface. The sys-
tem bandwidth is fixed at 10 MHz and there are 10 resource
units to be scheduled at each TTI. Considering that the
scheduling procedure is invoked at the beginning of a TTI and
each TTI lasts for 1 ms, there are a total of 10000 resource
units (K = 10000) for a 1-second segment to be allocated.
We assume the mobile users are uniformly distributed in the
cell. The instant channel rate is determined by both large-scale
and small-scale fading, where the propagation pathloss follows
COST 231 Hata Model and the small-scale fading follows
Rayleigh fading model [33]. Other detailed parameters of the
LTE network are shown in Table I. Since non-premium users
are a special case of premium users with ni,min = 0, they do
not place any pressure on the resource allocation algorithms
and the system capacity. Therefore, we focus the experiments
on premium users only. By setting the channel rate state into
M = 150 levels (0 to 75Mbps) and varying the number
of premium users N from 10 to 30 with increments of 5,
we can obtain a set of per-segment channel variation models
under different cell environments using the methodology in
Section III-C. We assume the premium users subscribe to the
service of guaranteed bitrate at 630 Kbps and the lower layer
overhead function g(·) is a fractional function with factor 0.9.
The maximum buffer size Bmax is set to be 12 seconds and
the throughput smoothing factor α is set to be 0.7. Each of
the following simulations runs for 600 seconds.

We bound the number of users at 30 because this setting
can saturate the cell capacity and effectively evaluate GESH.
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In Fig. 4, we show the total available bandwidth of the 30-UE
cell (after considering the 10% overhead). It can be seen that
the average total cell bandwidth is 16.41 Mbps, which is less
than the total rate requirement (30×630 Kbps = 18.9 Mbps).
Such a user density setting also accords with related works
[19], [22] and ITU recommendation [35].

We compare the proposed optimal dynamic programming
algorithm (referred as GESH-DP) and optimal greedy algo-
rithm (referred as GESH-Greedy) to existing systems with
different combinations of scheduling and streaming strategies.
We first implement a conventional system using the default
PFS resource allocation and HTTP streaming (referred as
PFS). It essentially means that the input weights of users for
the core PFS algorithm at the RAN are all set to be identical
and the bitrate request is fixed. Furthermore, we also build a
typical DASH system using the default PFS method and the
basic throughput-based adaptation (referred as DASH), where
the client selects the highest bitrate that can be supported by
the smoothed per-segment throughput. Moreover, we evaluate
an advanced DASH system [4] using PFS scheduling and a
multi-client channel-aware adaptation (referred as Prius). For
DASH and Prius, the source video is transcoded into 10 bitrate
versions, ranging from 64 Kbps to 2000 Kbps.

A. Channel Modeling Results

We first evaluate the proposed per-segment channel variation
model. In particular, we present the accuracy of the Markov
model by measuring the estimation error between the esti-
mated per-segment channel rate and the actual per-segment
channel rate (obtained from periodic feedback in RAN). We
show the cumulative distribution function (CDF) of the overall
estimation error for all users under all requests in Fig. 5.

We learn from the results that around 83% of the estimations
arrive at an estimation error less than 10%. Such an accuracy
is promising for edge networks and outperforms the existing
estimation methods in DASH, e.g., around 80% cases present
a estimation error less than 10% using a HSDPA dataset [36].
This is attributed to the large-scale channel data (millions of
data samples for one single environment) for modeling and the
effectiveness of applying Markov model in cellular edge net-
works [34]. Therefore, the per-segment channel variation and
the per-segment throughput can be approximated accurately,
which further improves the efficacy of service-aware resource
allocation optimization.
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B. Playback Rebuffer Results

In this section, we evaluate the playback rebuffer events of
GESH and the reference systems. We inspect the buffer evo-
lution trace of all clients at each TTI. If the buffer occupancy
is zero at a specific TTI, then a rebuffer event occurs. By
diving the number of rebuffer events by the total number of
inspection, we can derive the rebuffer ratio of a system.

We show the results under different cell environments, i.e.,
different number of users, in Fig. 6. It can be seen from the
figure that GESH system (either GESH-DP or GESH-Greedy)
outperforms the reference systems significantly when the UE
number is larger than 10. At a mobile cell with less than 10
users, the system bandwidth is more than sufficient to support
all users and eventually there is almost no rebuffer event for
all systems. As the UE number increases, the rebuffer ratio of
GESH-DP and GESH-Greedy still keeps at a relatively stable
level. Even when the UE number reaches 30, the rebuffer
ratio is only around 3%. This is because GESH proactively
and dynamically adjusts the resource allocation based on the
channel conditions and buffer occupancy. If a user is suffering
a bad channel and a low buffer level, GESH will assign
this user a relatively high weight that is required for the
guaranteed bitrate, which allows her to obtain more RBs and to
quickly boost the buffer level. In the reference systems using
proportional fair scheduling, however, the resource allocation
weights are equal and fixed for all users. Consequently, users
with better channel conditions will generally achieve a higher
throughput regardless of their buffer level. Thus those users
suffering the temporary channel degradation would drain their
player buffer and experience playback rebuffer.

We can also observe that the rebuffer ratio of these systems
increases as the UE number increases. This is attributed to
the more intense competition for system bandwidth within the
cell. When the UE number reaches 30 (cell capacity saturated),
the rebuffer ratio of GESH clearly starts to increase. If the
UE number further increases, the GESH performance would
continue to degrade since the system simply cannot support a
rate demand significantly larger than its capacity.

C. Playback Smoothness Results

We proceed to evaluate the temporal variation of playback
quality in mobile video streaming systems, i.e., how smooth
is the video playback. We employ a metric, called playback
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Fig. 7. Playback smoothness of streaming systems.

smoothness (PS) [9], which is defined as the expected length
of one playback round (in number of frames) without level
change or rebuffer. Mathematically, we express PS as follows.

PS =

√√√√ Z∑
z=1

(n2z)/Z (15)

where the continuous playback of one bitrate level or contin-
uous rebuffer is defined as one round. There are a total of Z
rounds and each round consists of nz frames.

We report the UE-averaged PS under different number of
users in Fig. 7. As shown in the figure, both GESH-DP
and GESH-Greedy achieve a very smooth playback with a
large number of frames continuously playing. This stems from
the similar reason explained above. Thanks to the service-
aware resource allocation and such network assistance, GESH
can proactively rather than passively respond to the channel
dynamics and thus keep a stable buffer. Furthermore, given
that the streamed video is fixed at a bitrate in GESH, the
playback smoothness is very high. On the other hand, DASH
and Prius dynamically change the bitrate requests based on
the channel variation, which results in an extremely instable
playback with frequent bitrate variations. Prius has a slightly
better performance since it aims for a fair rate adaptation for
multiple users, which limits the rate variation to some extent.
Although the playback of traditional PFS usually stays at a
certain level for a long time, it actually spends a large portion
of the time on rebuffer events. In other words, the playback
of PFS is stable in a negative sense.

D. Playback Rate Results

We now evaluate the actual video playback rate averaged
over multiple users and video sequences, and the standard
deviation of the average playback rate. When a user is re-
buffering, the playback rate is considered as zero.

It can be seen from Fig. 8 that the proposed GESH systems
satisfy the 630 Kbps requirement for premier users in all
cases without many fluctuations, except when the user number
is 30, the playback rate is marginally below the threshold.
This results from aforementioned benefits of GESH, especially
the goal to guarantee the target rate. On the other hand,
best-effort driven reference systems cannot always support
the playback rate requirement due to their failure to provide
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service-aware network resource allocation. Furthermore, the
reference systems show significant fluctuations in the playback
rate. This is because of the rate adaptation in DASH and Prius,
and the frequent buffer underflow in PFS.

E. Example Performance of Specific Users

We have evaluated the playback performance of the entire
mobile streaming system. In this section, we present the
example performance of certain specific users in order to
illustrate the effectiveness of GESH. We show the buffer
evolution and the corresponding evolution of the input weights
to the resource allocation of two users in Fig. 9. In such a 30-
UE environment, user #4 has a dynamic and generally worse
channel whereas user #8 enjoys a stable channel condition.

We can observe that user #4 in GESH systems (both
GESH-DP and GESH-Greedy) achieves a considerably better
performance than that in Prius, DASH or PFS. Especially,
when the channel condition fluctuates and the buffer level
decreases suddenly for three times during the 300th second
to the 450th second (Fig. 9a), the weights of GESH-DP and
GESH-Greedy always quickly boost up at the corresponding
moments (Fig. 9c) in order to assign more RBs to user #4 and
thus increase its buffer level. In contrast, Prius, DASH and
PFS without service-aware resource allocation apply an equal
weight for all users. Therefore, user #4 cannot obtain resource
priority when the channel rate is mitigated, which leads to the
frequent rebuffer shown in Fig. 9a.

User # 8 who enjoys a good channel condition accomplishes
a satisfactory playback in general. The only playback rebuffer
occurs in the DASH system. This is because the bitrate is dy-
namically adjusted based on the estimated throughput. Due to
the throughput overestimation problem in the highly dynamic
cellular channel, the player would suffer buffer underflow.
Prius does not observe this effect since it generally applies
a more conservative rate adaptation for user fairness.

F. Execution Time Results

We have shown that GESH-DP and GESH-Greedy achieve
a similarly satisfactory performance in different cell environ-
ment. In this section, we compare the execution time com-
plexity of the two systems in order to validate the theoretical
analysis in Proposition 1 and 2.
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Fig. 9. Evolutions for the bad-channel user’s (#4) a) buffer level and c)
allocation weights, as well as the good-channel user’s (#8) b) buffer level and
d) allocation weights.

We measure the actual elapsed time of different algorithms
for deriving the weights using a Intel Core i7 machine with 2.1
GHz CPU and 8 GB RAM. It can be seen that the execution
time of GESH-DP increases significantly with the number of
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TABLE II
REBUFFER RATIO OF 30 UE FOR DIFFERENT VIDEO CONTENT

Bunny Touchdown Tear Johnny
GESH-DP 3.02% 4.12% 3.71% 2.15%

GESH-Greedy 3.06% 4.21% 3.74% 2.15%
Prius 14.98% 18.95% 16.62% 9.45%

DASH 21.34% 27.54% 26.46% 18.02%
PFS 22.64% 30.26% 27.68% 17.98%

users in the cell. In the end, the more-than-3-second execution
time in 30-UE case would make the algorithm unlikely to
apply in real-time video streaming systems, which requires
the algorithm to be executed at least within the segment period
(i.e., 1 second in our experiments). Fortunately, the proposed
GESH-Greedy algorithm achieves a stable and negligible time
complexity, ranging from 380 µs to 900 µs. This demonstrates
the advantages of time complexity for GESH-Greedy. Con-
sidering more powerful computing in actual schedulers, real-
time performance can be achieved easily. Therefore, we can
conclude that GESH-Greedy is preferred to be implemented
in the real-world mobile streaming systems.

G. Impacts of Video Content

We now proceed to evaluate the impacts of video content on
playback performance. We present the example performance
of rebuffer ratio under the 30-UE case. As shown in Table II,
“Touchdown” and “Tear” have a generally higher rebuffer
ratio, compared to the other two video sequences under all ref-
erence systems. This is because, as a sports video and a sci-fi
movie, respectively, “Touchdown” and “Tear” have more mo-
tions than the other two videos which are a cartoon and news
video, respectively. More motions imply more fluctuations in
the temporal characteristics of the video and that more video
segments may have an actual bitrate higher than the average
bitrate used by the streaming algorithms. In this case, it is
more likely for the streaming algorithms to underestimate the
bitrate requirement and allocate insufficient network resources,
which leads to rebuffer and performance degradation. On the
other hand, if the video content is relatively stable, such as the
news video “Johnny”, it is easier for the streaming systems to
satisfy the required playback rate.
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VI. DISCUSSION

Channel Models. To enhance the accuracy of the per-
segment channel model, one may introduce more channel
states and address a tradeoff between the accuracy and the
computation of offline modeling. Besides, designing a online
updating process of the model parameters might enable a
quick capture of the channel variation. However, the proposed
per-segment channel models has already shown robust perfor-
mance under different user environments. We can also easily
obtain the channel models under other number of users by
adopting a similar modeling methodology.

Network Assistance. In this paper, we have shown the
performance gains of network assistance in terms of service-
aware downlink resource allocation. It is expected that other
types of network assistance can further improve the video
streaming performance over edge networks. For example,
network-side rate adaptation on top of the proposed weighted
PFS scheme can guide the traditional client-driven bitrate se-
lection. Furthermore, moving the Markov channel models that
are trained within the RAN to the clients can provide an more
accurate scheme for bandwidth estimation in traditional client-
driven DASH. Some full-scale investigation will be needed to
justify the feasibility of these network-assisted designs.

Guaranteed Playback. Note that when the number of users
in a cell is considerably large, the system bandwidth may
be insufficient to guarantee the playback of all users. GESH
would then attempt to guarantee the playback of as many users
as possible. It is important to reiterate that the key innovation
of GESH is to proactively guarantee the playback performance
under a reasonable traffic load, which significantly outper-
forms existing best-effort systems that passively react to the
channel dynamics.

Business Incentives. There are strong incentives for differ-
ent parties involved to adopt the GESH framework. Users who
require better and smoother video experience are now able to
enjoy such an experience via content providers through sub-
scription, membership, direct payment, etc. Similarly, content
providers can receive financial benefits from premier users and
attract more diverse users via quality-differentiated services.
Finally, network providers can also obtain significant profit by
reaching an agreement with content providers and providing
them with better network resources than regular best-effort
Internet traffic. Recently, the network neutrality law has been
repealed in the U.S., which removes the legal barrier for
services such as GESH using network differentiation. A real-
world deal for service-aware resource allocation has been
completed between Netflix and Comcast [37].

VII. CONCLUSION

In this paper, we have presented a new investigation of
guaranteed video playback in mobile edge networks. The pro-
posed GESH framework utilizes the network-assisted service-
aware resource allocation to proactively guarantee rather than
passively improving the playback performance in the clients.
GESH adopts the weighted proportional fair scheduling frame-
work without modifying current cellular infrastructure. At the
same time, the input weights to the core PFS algorithm can be

dynamically optimized based on the segment request, buffer
status, and channel conditions. The optimization framework is
empowered by a set of optimal algorithms. We conclude from
the extensive evaluations that the proposed greedy algorithm
can efficiently seek the optimal resource allocation with neg-
ligible time complexity and can achieve a guaranteed video
playback which significantly outperforms the conventional
HTTP streaming and DASH systems.

We would like to emphasize that the proposed GESH
framework can be applied into virtually any HTTP-segment-
based video delivery applications, e.g., traditional video on-
demand delivery or the relatively new multi-camera streaming.
Future work shall be focused on including human perception
driven or crowdsourced QoE model into the mobile streaming
systems, which will connect the system metrics to real-world
user experience directly. Furthermore, detailed investigation on
the impact of content dynamics on streaming performance can
be conducted as future work. If content related parameters such
as encoding method, content type, temporal/spatial complexity
can be identified as critical factors, content-aware scheduling
can be designed on top of GESH to accommodate the content
dynamics in addition to the channel dynamics.
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