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Embedding Pose Information for Multiview
Vehicle Model Recognition

Ye Yu, Haitao Liu, Yuanzi Fu, Wei Jia, Jun Yu and Zhisheng Yan

Abstract—Vehicle model recognition is a typical fine-grained
classification task that has a wide range of application prospects
in safe cities and constitutes a research hotspot in the field of
computer vision. Vehicles in images can appear at various angles,
resulting in large differences in appearance. The existence of
“multiviews” renders vehicle model recognition challenging. Re-
cent research on vehicle model recognition has not fully explored
the pose information of vehicles in different images, resulting in
low model performance. In this study, we use vehicle pose in-
formation to solve the multiview vehicle model recognition (MV-
VMR) problem and design a convolutional neural network (CNN)
model with embedded vehicle pose information, known as the
embedding pose CNN (EP-CNN). The proposed model includes
two subnetworks: the pose estimation subnetwork (PE-SubNet)
and vehicle model classification subnetwork (VMC-SubNet). PE-
SubNet extracts the vehicle pose information, including the pose
features and vehicle viewpoint. In VMC-SubNet, considering the
scale variation of vehicles, an improved squeeze-and-excitation
(SE) block, named the MultiSE block is implemented. We embed
the vehicle viewpoint into the MultiSE block, which reweighs
each channel such that the extracted features elicit different
responses to different viewpoints. Subsequently, the pose fea-
tures and classification features are integrated for classification.
Experiments are conducted on the benchmark CompCars web-
nature and Stanford Cars datasets. The results demonstrate that
the proposed EP-CNN method can achieve higher recognition
accuracy than most classic CNN models and several state-of-the-
art fine-grained vehicle model classification algorithms. Code has
been made available at: https://github.com/HFUT-CV/EP-CNN.

Index Terms—Convolutional neural network, fine-grained clas-
sification, vehicle model recognition, pose estimation, scale-aware
features.

I. INTRODUCTION

W ITH the continuous development of cities and in-
creasing urbanization, traffic management and public

security have become increasingly important. Since expanding
the police force is a costly and inefficient solution, the concept
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of safe cities, which emphasizes scientific and technological
methods, has emerged as an important means of solving this
problem. Computer vision and pattern recognition are notable
technologies in safe cities. In the recent two decades, the
recognition of vehicle attributes such as license plates [1] [2],
vehicle logos [3] [4] and vehicle types [5] in an image has been
extensively studied and applied to traffic flow, road condition,
and traffic violation detection systems.

However, these information sources play a limited role in
safe cities. For example, vehicle license plates and logos are
easily falsified and occluded. Vehicle types provide limited
information in the investigation of traffic and security inci-
dents. It is thus necessary to extract finer and richer vehicle
feature information from images and videos to facilitate safe
cities. Vehicle model recognition (VMR) has emerged as a key
task because it can assist the discovery and tracking of traffic
violations such as hit-and-run accidents and fake license plates.
These factors are of practical significance for maintaining
traffic, decreasing the crime rate, and constructing a safe city.

Fig. 1. Various models of vehicles. (a) Left to right: Audi A3L, Audi A4L,
Audi A6L, and Audi A7. (b) Vehicle images obtained from different angles.
(c) Vehicles appear in different scales.

The term “model” refers to the name used by a manufacturer
to market a range of similar cars, such as “Volkswagen
Passat, 2017 model” [6]. VMR is generally a challenging
problem because although a large number of vehicle models
are available, many vehicle models, especially those by the
same manufacturer, are only slightly different. For instance,
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in a medium city, the number of vehicle models on the road
may be greater than 2,000. As shown in Fig. 1(a), Audi A3L,
Audi A4L, Audi A6L, and Audi A7 are different vehicle
models with similar appearances, and it is difficult to visually
recognize their differences.

Another notable challenge for VMR is that vehicle images
captured by different city surveillance systems are obtained
from different angles. Thus, one vehicle model may appear
completely different in different images (Fig. 1(b)). A vehicle
is a rigid body, and its front, side and rear structures often
exhibit substantial differences in appearance. When captured
at random angles, the same vehicle exhibits different poses,
which further complicates VMR. The vehicle’s varying scale
in the captured images poses another challenge (Fig. 1(c)).
Small-scale vehicles tend to have subtle features compared to
the complex background information, which is not conducive
to recognition. In contrast, large-scale vehicles occupy almost
the entire image. Such multiscale variation in vehicles render
their recognition difficult.

The VMR task based on images captured from different
angles is referred to as multiview VMR (MV-VMR). Recent
efforts toward VMR do not satisfactorily address the MV-
VMR problem. Part-based methods [7] [8] aim to detect
distinct vehicle parts and differentiate different vehicle models.
However, these methods require manual annotation of vehi-
cle parts and are infeasible for large city-scale datasets. In
contrast, attention-based methods [9]–[12] exploit the visually
attractive region of a vehicle to classify models. However,
an attention region in one image may be different in an-
other image captured from a different shooting angle. In
addition, considering the scale variation of vehicles in the
captured images, most researchers [13]–[15] have conducted
experiments on datasets with bounding box annotations. These
frameworks generally remove the background from the images
and retain only the vehicles to ensure that all the vehicles in
the dataset have equivalent scales. This approach can alleviate
the negative impacts of different scales of the vehicles on the
final VMR performance; however, it does not fundamentally
solve the problem. Overall, the existing VMR methods do not
fully explore the pose information and multiscale information
of vehicles in different images, corresponding to an inferior
model performance.

In this paper, we leverage the vehicle pose information to
solve the MV-VMR problem. A novel convolutional neural
network (CNN) model known as the embedding pose CNN
(EP-CNN) is proposed. EP-CNN is the first method capable
of extracting pose information and embedding it into the
classification network to realize MV-VMR. EP-CNN has the
following characteristics.

1. EP-CNN is a two-stream network that includes a pose
estimation subnetwork (PE-SubNet) and vehicle model
classification subnetwork (VMC-SubNet). PE-SubNet ex-
tracts a vehicle’s pose information, including the vehicle
viewpoint and pose features. VMC-SubNet embeds the
pose information into the classification.

2. Vehicle pose information is extracted as auxiliary infor-
mation for MV-VMR and acquired based on the you only
look once (YOLO) object detection model [16]. In this

model, the anchor box dimension clustering strategy and
loss functions are enhanced for viewpoint prediction and
pose feature generation.

3. In VMC-SubNet, a new embedding block termed Mul-
tiSE is incorporated into the residual block to address
the scale variation in vehicle models. Moreover, a novel
fusing strategy is proposed to fuse the pose and classi-
fication features based on the hard attention mechanism,
with attention masks generated based on the confidence
information generated from PE-SubNet.

The remainder of the paper is organized as follows. Section
II presents a brief review of related work on VMR. Section III
presents the details of the proposed EP-CNN model. Section
IV describes the experimental results and the analysis. Section
V presents the concluding remarks.

II. RELATED WORKS

VMR is a fine-grained recognition problem that aims to
identify the vehicle model. In this section, we summarize the
existing fine-grained recognition methods, including general
and specific methods focused on VMR.

A. General Fine-Grained Object Recognition

The challenge of fine-grained recognition mainly lies in the
small interclass variances caused by highly similar subordinate
categories and large intraclass variances in poses, viewpoints
and occlusions. Many methods have been proposed to address
these two challenges. We divide these methods into several
categories, as they usually share certain common traits.

1) Methods Based on Constructing Label Structures: For
the fine-grained recognition problem, a subcategory is often
subordinate to a large category; thus, there must be a certain
correlation between these subcategories. Therefore, several
methods utilize the structural correlation between category
labels and construct multilevel coarse-to-fine label structures
to address the problem of large intraclass variances and small
interclass variances in fine-grained recognition. For example,
Zhang et al. [17] embedded label structures such as the hierar-
chy or shared attributes into the framework by generalizing the
triplet loss. Moreover, Zhou et al. [18] detailed an approach
to exploit the rich relationships through bipartite-graph labels.

2) Methods Based on Metric Learning: The purpose of
metric learning is to cluster samples from the same class
and push those from different classes apart via learning and
embedding. Qian et al. [19] proposed a multistage metric
learning framework that can be efficiently applied to tasks with
large-scale high-dimensional data. Zhe et al. [20] reported a
loss function based on the von Mises–Fisher distribution for
metric learning to learn an embedded probability space on a
hypersphere.

3) Methods based on Extracting Fine-Grained Features:
These methods consider that the rigid and nonrigid body
transformations of an object cause large intraclass variances.
The approaches attempt to extract fine-grained features to
capture subtle interclass variances. For example, Zhao et al.
[21] proposed a diversified visual attention network to maxi-
mize the collection of discriminative fine-grained information.
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Wei et al. [22] described a four-stream Mask-CNN model
that segments the head, torso and object of birds using a
fully convolutional network and simultaneously aggregates
the selected object and part-level features. Lopez et al. [23]
proposed a modular attention mechanism that is applied to the
convolutional feature activations and can successfully find the
most discriminative regions of the image.

4) Limitation of General Fine-Grained Object Recognition:
Although the abovementioned methods are useful for general
fine-grained object recognition, they cannot be applied directly
to the MV-VMR problem to achieve satisfactory results.
Several methods have not been trained using vehicle model
datasets. Moreover, even the methods that have been trained
on the vehicle model dataset do not consider the characteristics
of vehicles and influence of the “multiview” problem, which
limits their MV-VMR performance and leads to suboptimal
results.

B. Fine-Grained VMR

Several methods have been proposed for fine-grained VMR.
These methods leverage the distinct characteristics of vehicles,
e.g., rigidity and distinguishable parts (headlights, grille, etc.).
Vehicle recognition methods can be divided into the following
three categories.

1) Part-Based Methods: Part-based methods detect dis-
criminative parts, such as the headlamp and grille, to obtain
expressive appearance features. Krause et al. [7] proposed an
object representation model that detects important parts and
describes fine-grained appearances. He et al. [8] proposed
a framework in which cars are first detected using a part-
based detector before VMR. Although most of these methods
can achieve a high recognition accuracy, they are heavily
dependent on artificial annotations such as part annotations
and bounding boxes. Hence, these methods are labor-intensive
for MV-VMR.

2) Methods Using Attention Mechanisms: To avoid the high
costs associated with artificial annotation, many researchers
have employed attention-mechanism methods in recent years.
Zheng et al. [14] proposed a multiattention CNN (MA-CNN)
method that learns part information through a multiattention
network without any bounding box or part annotation. Yu
et al. [24] proposed two attention mechanisms by modeling
the human visual system to achieve VMR. Zhang et al.
[25] applied a gradient-based attention module to extract the
attention region and transform the training data into a new
set for the experts. Ji et al. [26] used the attention transformer
module to force the network to capture discriminative features
in their proposed attention convolutional binary neural tree
method. Sun et al. [27] introduced diversification blocks that
function as an attention mechanism and mask out the salient
features. In this manner, the network can search for subtle
differences between similar-looking categories. Ding et al. [28]
proposed a dynamic perception framework that achieves fine-
grained recognition by adopting adaptive effective receptive
fields and applying channel attention and spatial attention
mechanisms. In contrast to the aforementioned methods, we
combine the attention mechanism with the vehicle viewpoint

to find discriminative features for MV-VMR according to the
current vehicle viewpoint.

3) Methods Using Viewpoint Information: Although the
vehicle viewpoint is of significance to solve the VMR problem,
few studies of VMR have applied this information, probably
because its importance is not fully recognized. To the best
of our knowledge, the only research on incorporating the
viewpoint information is [29], in which the BoxCars dataset
is proposed. This dataset includes three-dimensional (3-D)
bounding box information, which is difficult to obtain to solve
for the MV-VMR problem. Due to the presence of the 3-
D bounding box, the viewpoint can be easily extracted and
encoded as three two-dimensional (2-D) vectors that express
the front/rear, side and roof or encoded by rasterizing bounding
boxes and passed to the net.

Moreover, viewpoint information has also been utilized in
vehicle Re-ID, which is a task similar to VMR. For example,
in [30], a viewpoint-aware network (VANet) was proposed.
VANet has two metric learning branches for different view-
point relationships, which creates two feature spaces for the
learning metric under an S-view (similar view) and a D-view
(different view) relationship.

However, the usefulness of the viewpoint is not fully ex-
plored in the context of the MV-VMR task. In this paper, we
comprehensively explore the effects of the vehicle viewpoint
and pose features.

4) Other Methods: Certain existing methods have been
inspired by the habits of human observation. For example, Hu
et al. [31] proposed a multitask CNN that localizes vehicles in
the first stage and recognizes subclasses in the second stage.
Several approaches utilize the vehicle 3-D information to
facilitate fine-grained VMR. Sochor et al. [29], [32] collected
a large fine-grained vehicle dataset with 3-D bounding boxes
and leveraged 3-D information to enhance the results for the
fine-grained recognition of vehicles. Other researchers focused
on applying new strategies to their network structure. For
example, Chen et al. [33] used multibranch CNNs with three
scale images as input and a local loss module after each branch
to simultaneously realize multiview vehicle type recognition
(VTR) and fine-grained VTR, i.e. VMR. Tian et al. [10]
proposed an iterative discrimination CNN (ID-CNN) approach
that iteratively applies CNN for multiconvolutional region
feature extraction. Chen et al. [34] introduced a destruction
and construction learning (DCL) stream to automatically learn
from discriminative regions.

5) Limitation of Fine-grained VMR: Although part-based
and attention-based methods have laid the foundation for
VMR, they cannot satisfactorily address the MV-VMR prob-
lem. Specifically, part-based methods require manually gen-
erated part annotations that are difficult to obtain, espe-
cially when multiview images are considered. Similarly, the
attention-based methods focus only on discovering attention
areas and extracting features in those areas. These approaches
do not consider the multiview information, which is essential
for MV-VMR, as highlighted in this work. In other words, the
existing VMR methods cannot achieve satisfactory results for
the MV-VMR problem, and there remains considerable scope
for improvement.
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Fig. 2. Main structure of EP-CNN model.

C. Summary

MV-VMR is a branch of fine-grained VMR methods in
which the adopted datasets contain vehicle images obtained
from many angles rather than those limited to the front/back
view. Therefore, MV-VMR focuses on the impact of different
viewpoints on the task of VMR. The proposed method builds
upon the idea of using visual attention to differentiate vehicles
in attention-based methods. However, instead of adding an
attention module, we introduce pose information to ensure that
the network can focus on discriminative features from a certain
viewpoint. Simultaneously, we adopt channel weights for use
in VMC-SubNet, such that the network can select features that
are conducive to MV-VMR.

III. METHODOLOGY

A. Concept

Vehicle viewpoint: Angle of the image obtained according
to the direction of the vehicle. In our method, we categorize
the vehicle images into five viewpoints (V = 5), i.e., front,
rear, side, front-side and rear-side, which are sufficient for
comprehensively describing the vehicle viewpoint.

Pose features: Features contained in the feature maps of PE-
SubNet. Since PE-SubNet is used for pose estimation, the pose
features can be obtained from feature maps of the network.

Pose information: The vehicle viewpoint and pose features
help address the MV-VMR problem.

B. EP-CNN Model Structure

Because the vehicle pose information is important for
solving MV-VMR, we design a novel CNN-based model
named EP-CNN. The core idea of EP-CNN is to embed pose
information into the pipeline of our deep learning model. As

shown in Fig. 2, the EP-CNN is composed of two parts: the
PE-SubNet and VMC-SubNet. The input image is propagated
into two branch networks in parallel.

PE-SubNet is a multitask model based on the enhanced
YOLOv3-tiny algorithm. The algorithm divides the original
image into N×N grids, and each grid cell predicts the vehicle
viewpoint, vehicle position coordinates, and possibility of it
containing a vehicle, i.e., the confidence. Using these informa-
tion, we can locate the vehicle by nonmaximal suppression. We
consider the viewpoint predicted by the grid with the highest
confidence as the vehicle viewpoint and the extracted features
as the pose features.

VMC-SubNet is a traditional CNN used to extract fine-
grained vehicle features. We propose an improved squeeze-
and-excitation (SE) block [35], namely, a MultiSE block, to
address the scale variation in vehicle models. The MultiSE
block is added to the residual block and forms MultiSE-
ResNet-50, which serves as the backbone of VMC-SubNet.
The pose features and vehicle viewpoint obtained from PE-
SubNet are incorporated in the VMC-SubNet to achieve su-
perior classification results. By embedding pose information
into the classification subnetwork, the MV-VMR problem can
be addressed.

C. PE-SubNet

PE-SubNet estimates the vehicle viewpoint and generates
pose features that represent the vehicle pose information.
Due to the complex background information contained in
the vehicle images, an object detection model must be used
to accurately locate the vehicle, eliminate background inter-
ference, and obtain an accurate viewpoint. Two-stage object
detection algorithms generally involve considerable training
and testing periods. YOLOv3-tiny is an innovative one-stage
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detection algorithm that facilitates and accelerates object de-
tection training and testing. This algorithm is a simplified
version of YOLOv3 [16], in which many convolution layers of
YOLOv3 are eliminated, and only two layers are retained for
prediction with less than 1/7 of the parameters. We conduct
several experiments to test the viewpoint prediction accuracy
of YOLOv3-tiny. The results indicate that if a vehicle can
be correctly detected, the viewpoint prediction accuracy is
99.8%. In other words, YOLOv3-tiny can effectively predict
the vehicle viewpoint with minimal cost. Thus, we selected
YOLOv3-tiny as the backbone of PE-SubNet.

To achieve the optimal result in our pose estimation task,
we optimize YOLOv3-tiny to render it more suitable for our
task. We improve YOLOv3-tiny in the following ways:

1) Anchor Box Dimension Clustering: We propose a new
anchor box dimension clustering strategy, which is k-means++
running on the vehicle-related subset of the COCO (VR-
COCO) dataset. This framework is different from k-means
running on the COCO dataset, which is adopted in YOLOv3-
tiny.

YOLOv3-tiny uses anchor boxes to predict the location of
the object bounding boxes. Specifically, the algorithm runs k-
means clustering on the bounding boxes of the COCO training
set to automatically obtain reasonable prior anchor boxes.
The clustering results of different k-means runs are different
because the initial points are randomly selected, which affects
the stability of the anchor box dimension clustering results.
To solve this problem, we use k-means++ instead of k-means
as the anchor box dimension clustering algorithm. Notably,
k-means++ can significantly decrease the final error of the
clustering results and calculation time. Although k-means++
requires additional time to calculate the initial points, the
selected initial points enable the algorithm to rapidly converge
during the iteration process; thus, k-means++ decreases the
calculation time. The number of clustering centers must be
specified in advance, and their positions must be verified.
Therefore, many other widely used clustering methods, such
as spectral clustering, MeanShift, affinity propagation, density-
based spatial clustering of applications with noise (DBScan),
and balanced iterative reducing and clustering using hierar-
chies (Birch), cannot be employed. K-means++ is a simple
yet effective solution.

To ensure that the clustering results are consistent with the
vehicle shape, we select the categories related to vehicles (i.e.,
car, bus and truck) in the COCO dataset as the training set.
This dataset is known as the vehicle-related subset of COCO
(VR-COCO). We run k-means and k-means++ clustering on
the training set bounding boxes for various values of k
and plot the average intersection over union (IOU) with the
closest centroid, as shown in Fig. 3. For different numbers of
centroids, the average IOU of k-means++ is generally higher
than that of k-means. Furthermore, for k-means++, k = 6
yields the correct balance of recall and complexity. On the
VR-COCO dataset, we can obtain the initial box dimensions
of 6 clusters, which are (13×8), (25×18), (46×31), (80×56),
(153×115) and (409×269), with an average IOU of 62.43%.
Thus, k-means++ can be applied on the VR-COCO dataset to
effectively match the vehicle shape and facilitate the learning

Fig. 3. Clustering box dimensions on the VR-COCO dataset.

process of the model.
2) Loss Function: YOLOv3-tiny is applied to estimate the

vehicle pose information, but not for classification. Therefore,
we add the viewpoint error to the loss function and eliminate
the classification error. The adjusted loss function is as follows:

Loss = coordError + confError + viewError (1)

The localization task of PE-SubNet is a simplified single
class localization task. Therefore, we set each grid cell to pre-
dict only one bounding box. The coordinate error is calculated
as:

coordError = λcoord

N×N∑
i=1

1obji

[
(x− x̂)2 + (y − ŷ)2

+ (w − ŵ)2 + (h− ĥ)2
] (2)

where 1obji = 1 if grid cell i falls in the object and zero oth-
erwise. We follow the setting of YOLOv3-tiny and set λcoord
as 5. Here, (x, y, w, h) represents the predicted object center
coordinates, width and height, respectively, and (x̂, ŷ, ŵ, ĥ)
represents the ground-truth object center coordinates, width
and height, respectively.

The confidence error indicates the probability that the grid
cell belongs to the object and accuracy of the predicted
bounding box. The detection error is calculated as:

confError =
N×N∑
i=1

1obji [− log(c)]

+ λnoobj

N×N∑
i=1

(
1− 1obji

)
[− log(1− c)]

(3)

where c represents the predicted confidence. The confidence
error may lead to class imbalance because most boxes do not
contain any objects; thus, we follow the setting of YOLOv3-
tiny and set λnoobj as 0.5.

The viewpoint prediction task is a multiclass classification
problem. The viewpoint is predicted only for the grid cell that
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Fig. 4. Diagram of the proposed MultiSE block architecture.

falls in the object. The viewpoint prediction error is calculated
as:

viewError =
N×N∑
i=0

1obji

∑
v∈views

[−p̂v log (pv)] (4)

where pv represents the predicted class probability for view-
point v, and p̂v represents the ground-truth probability of the
object.

The final output of PE-SubNet includes the vehicle’s posi-
tion (x, y, w, h) predicted by each grid cell, detection confi-
dence of each grid cell, and viewpoint of the vehicle predicted
by each grid cell. Therefore, the final output dimension of
our network is N×N × (1 + 4 + 5). We select the viewpoint
predicted by the grid with the largest confidence as the vehicle
viewpoint and choose the feature maps from YOLOv3-tiny
as pose features with the same size as the classification
features. PE-SubNet in the EP-CNN is pretrained to extract
pose information when training VMC-SubNet.

D. VMC-SubNet

VMC-SubNet embeds the vehicle viewpoint and pose fea-
tures extracted by PE-SubNet into its classification network
architecture to enhance the useful features that flow through
the network pipeline. We use ResNet-50 [36] as the backbone
network. First, we propose an improved SE block termed
the MultiSE block, which is proven to be more efficient
than the SE block [35] for VMR. Second, we embed the
vehicle viewpoint into the MultiSE block, which is proven to
enhance the MV-VMR results. Thrid, through the fusion of the
classification and pose features, the fine-grained features of the
vehicle model, which are proven to be more distinguishable
for MV-VMR, are enhanced.

1) MultiSE Block: The SE block, which explicitly models
the interdependencies between channels via the SE operation,
is proven to be efficient for object classification. Thus, the SE
block can enhance significant features and suppress features
that are not useful for the current task. In the MV-VMR task,
vehicles of different scales exist in different images (Fig. 1(c)).

Small-scale vehicles tend to have subtle features compared to
complex background information, which is not conducive to
recognition. In contrast, large-scale vehicles occupy nearly the
whole image. Scale variation can affect the final recognition
accuracy. Inspired by TridentNet [37], which has a multibranch
structure to address the scale variation problem, we combine
multibranch structures with the SE block and propose a new
MultiSE block. As illustrated in Fig. 4, three parallel branches
of dilated convolution with different dilation rates are adopted,
and the SE block is implemented after dilated convolution on
each branch. Scale-aware features are obtained by the fusion
of feature maps from three branches.

For the feature map X ∈ RH×W×C obtained from the
backbone network, we separately perform dilated 3×3 convo-
lution operations with dilation rates of 1, 2, and 3 at the three
branches, corresponding to receptive fields of 3 × 3, 5 × 5,
and 7 × 7, respectively. Subsequently, we implement batch
normalization and ReLU activation functions to generate three
scale-aware feature maps Xi ∈ RH×W×C , i = 1, 2, 3. To de-
crease the model complexity and obtain a more comprehensive
feature map, we employ grouped convolution with 32 groups,
as suggested in ResNeXt [38], for each branch.

The obtained feature maps X1, X2 and X3 are fused via
elementwise summation:

X = X1 +X2 +X3 (5)

where X ∈ RH×W×C aggregates multiscale information and
has rich features. X is input to the SE module and set as
discussed in [35]. Specifically, after global average pooling
(GAP), X is squeezed to z (z ∈ RC). After an excitation
operation, i.e., an operation involving two fully connected (FC)
layers with the softmax activation σ, the weight value s (s
∈ RC), which represents the importance of different channels,
is obtained.

Channel feature recalibration is performed based on the
obtained weight value, which is denoted as:

Xi,c = Fscale (Xi,c, sc) = scXi,c (6)
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where Xi,c denotes the c-th channel of the feature map Xi,
Fscale represents the channel feature recalibration operation,
and Xi,c denotes the c-th channel of the feature map Xi after
channel feature recalibration.

The feature maps obtained via channel feature recalibration
at three scales are fused via elementwise summation:

X̃ = X1 +X2 +X3 (7)

where X̃ is the output of the MultiSE block.
The performance of the MultiSE block is evaluated as

described in Section IV.D.1.

Fig. 5. Feature recalibration of different channels.

2) MultiSE Block with Embedded Vehicle Viewpoint: In the
MultiSE and SE blocks, the “squeeze” operation is aimed at
averaging the previous convolutional layer features according
to each channel and yielding a vector with a length equal to
the number of channels of the input feature map denoted as z,
with length n. The “excitation” operation uses two FC layers
with the squeezed vector as the input to obtain the weights of
different channel features.

In the MV-VMR task, the vehicle images obtained from dif-
ferent angles correspond to significantly different appearances,
and the features extracted from these images are considerably
different for different viewpoints. Since a convolutional kernel
usually focuses on only one feature, it is reasonable to choose
convolutional features according to different viewpoints. We
consider the vehicle viewpoint obtained from the image grid
cell with the highest confidence in PE-SubNet as the pre-
dicted viewpoint. This entity is a 5-dimensional vector, with
each dimension representing a direction. We consider the 5-
dimensional vector v and squeezed feature vector z as the
basis of generating channel weights. As shown in Fig. 5, the
concatenated n + 5 vector as input and two FC layers are
used for dimensionality-reduction mapping, i.e., the excitation
operation generates the weights of n channels. The generation
process of channel weights s can be expressed as:

s = σ (W2δ (W1(z ⊕ v))) (8)

where ⊕ represents concatenation, W1 ∈ R
C+5

r ×(C+5), and
W2 ∈ RC×C+5

r . δ and σ represent the ReLU and softmax
activation functions, respectively. s represents the weight of
each channel after the addition of the vehicle viewpoint.

3) Fusion of Pose and Classification Features: After adding
the MultiSE block with viewpoint information to the residual
block, the pose features P from PE-SubNet must be fused with
the classification features F from VMC-SubNet. As shown in
Fig. 2, we choose the feature maps from YOLOv3-tiny as the
pose features, which have the same size as the classification
features, to avoid losing useful information. In addition, we
generate a hard attention mask M based on the confidence
information C ∈ RN×N of the output of PE-SubNet. The
confidence indicates the probability of containing a vehicle in
this grid cell. The maximum value of confidence C is Cm,
and the generation of mask M is formulated as:

Mi,j =

{
1, Ci,j ≥ Cm − 0.1
0, otherwise (9)

where Ci,j denotes the value of index i,j of the confidence
matrix C, and Mi,j denotes the value of the index i,j of the
generation mask M .

Subsequently, as shown in Fig. 2, we perform the Hadamard
product operation between the hard attention mask M and
pose features P obtained from PE-SubNet, which can be
considered as a hard spatial attention mechanism to eliminate
the interference of image background information. The hard
attention operation can be expressed as:

P ′ =M � P (10)

In P ′, the grids with feature values of 0 are considered as the
background, and the grids with non-zero feature values are the
vehicle regions.

Next, the pose features after attention mechanism P ′ are
fused with classification features F based on the Hadamard
product operation:

F ′ = P ′ � F (11)

We argue that the remaining regions are likely to contain
the most discriminative and important features for recognition.
Finally, we use average pooling and FC layers to obtain the
classification result.

4) VMC-SubNet Loss function: In this section, we introduce
the objective function of VMC-SubNet, which enables the
model to focus on critical regions at different locations of the
image. To train our model, the overall loss function consists of
a cross-entropy loss (CE-Loss) and mutual channel loss (MC-
Loss) [39]. The CE-Loss encourages the network to extract
informative features focusing on the global discriminative
regions of the image. The MC-Loss guides the model to high-
light different local areas of the image and enables the network
to learn features that are simultaneously discriminative and
diverse.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We conduct extensive experiments to evaluate the proposed
neural network model (EP-CNN) on two fine-grained datasets.
We aim to demonstrate that combining the MultiSE block with
pose information, i.e., vehicle viewpoint and pose features, can
significantly increase the recognition accuracy of multiview
vehicle models.
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Since the vehicle viewpoint is labeled on the CompCars
web-nature dataset, we focus on comparing the results of state-
of-the-art methods, ablation studies, and other analyses on the
CompCars web-nature dataset. To prove that the proposed EP-
CNN model can also be applied to datasets without viewpoint
labels, we perform experiments on the Stanford Cars dataset
and compare our method with state-of-the-art methods.

A. Dataset and Experimental Environment

Dataset: The CompCars web-nature dataset [40] contains
52,083 multiview vehicle images of 431 models, all of which
contain the vehicle model, viewpoint, and bounding box label.
We use 70% of the images as the training dataset and the
other 30% as the testing dataset. The Stanford Cars dataset
[41] contains 16,185 images of 196 models, all of which
contain the vehicle model and bounding box label. We use
50% of the images as the training dataset and the other 50%
as the testing dataset. We conduct experiments on the datasets
without bounding boxes.

Experimental hardware environments: CPU: Intel Core i7-
9700KF; Memory: 32 GB; Graphics Cards: Dual NVIDIA
GeForce RTX 2080Ti; Video Memory: 11 GB.

B. Implementation Details

EP-CNN is implemented using the open-source PyTorch
framework with CUDA version 10.0. To stabilize network the
training, we implement the following training steps:

1. First, the original YOLOv3-tiny is pretrained on the VR-
COCO dataset, and MultiSE-ResNet-50 is pretrained on
ImageNet [42] with 1,000 classes of data. We resize
all samples to 256×256/512×512 and crop five images
of 224×224/448×448 from the center and four corners
of the image. We perform a mirroring operation on the
five images. Thus, for each sample, ten training images
are obtained. Finally, we subtract the mean of the entire
dataset for all input images.

2. We fine-tune PE-SubNet using the viewpoint and bound-
ing box labels of the CompCars web-nature datasets. We
do not augment training data in this case because the
existence of coordinate labels is expected to complicate
the augmentation process.

3. We use the finetuned PE-SubNet to generate the vehi-
cle viewpoint, which is required by VMC-SubNet, and
finetune VMC-SubNet using the training dataset. The
training data are augmented, as in step 1. The entire
network is comprehensively trained. We use the finetuned
PE-SubNet to generate the vehicle viewpoint, which is
needed by VMC-SubNet, and finetune VMC-SubNet us-
ing the training dataset. The training data are augmented,
as in step 1. The entire network is comprehensively
trained.

The hyperparameters and other settings in our experiments
can be described as follows. The experimental optimization
strategy is stochastic gradient descent, for which the initial
learning rate is 0.01, and the batch size is 32. The learning rate
is adjusted using a stepdown strategy such that the learning

rate is decreased by a factor of 10 per 200,000 iterations,
and the experiments are iterated 600,000 times. Moreover,
we adopt the repeated augmentation (RA) [43] method in
the training process. The proposed network EP-CNN does
not require special initialization or part or bounding box
annotations. Experiments are also verified using MindSpore.

TABLE I
COMPARISON OF RECOGNITION RESULTS ON THE COMPCARS

WEB-NATURE DATASET.

Method Size #P(M) GFLOPs Anno. Top-1

ResNet-50 [36] 224 25.5 4.1 × 94.0%

ResNeXt-50, 32×4d [38] 224 25.0 4.2 × 94.9%

SE-ResNet-50 [35] 224 26.9 4.1 × 95.1%

Res2Net-50,26w×4s [44] 224 24.5 4.3 × 95.2%

Res2NeXt-50,26w×4s [44] 224 23.5 4.2 × 95.4%

EfficientNet-B5 [45] 224 29.2 9.9 × 96.0%

FixResNet-50 [46] 224 25.5 4.1 × 97.0%

BoxCars [29] - - - X 84.8%

FM-CNN [33] 227 - - × 91.0%

Location-Aware [31] 400 - - X 94.3%

FR-ResNet [47] 224 >25.5 >4.7 × 95.3%

ABN [48] (ResNet-101) 323 62.5 16.0 × 97.1%

ID-CNN [10] 224 143.6 19.7 × 96.2%

ResNet152-CMP [15] 224 >59.0 >11.6 X 97.0%

DCL [34] (ResNet-50) 448 25.5 17.5 × 97.5%

EP-CNN(ours) 224 28.0 4.7 × 98.6%

EP-CNN(ours) 448 28.0 18.9 × 98.9%

C. Comparison with State-of-the-Art Methods

1) Results on the CompCars Web-Nature Dataset: We eval-
uate the performance of our method on the CompCars web-
nature dataset. The evaluation metrics include efficiency (i.e.,
network parameters and floating-point operations per second)
and effectiveness (i.e., top-1 accuracy). The essential setting
parameters are listed in Table I, including the input image
resolution (“Size”) and bounding box annotations (“Anno.”),
which significantly affect the VMR performance.

First, we compare our method with several classic state-of-
the-art CNN models, especially the models extended based on
ResNet-50, on the CompCars web-nature dataset. The results
are summarized in Table I. In the table, “-” indicates that the
information is not mentioned in the relevant paper, and the
network names in the brackets indicate the backbone network
used in the method.
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As shown in Table I, EP-CNN achieves 4.6% gains in
Top-1 accuracy versus the original ResNet-50 when the input
size is 224×224, with only a slight increase in the model
complexity. Compared with other models (i.e., ResNeXt-50,
SE-ResNet-50, Res2Net-50, Res2NeXt-50 and FixResNet-50)
that use ResNet-50 as the baseline, EP-CNN obtains superior
and competitive results with a similar model complexity.
Moreover, EP-CNN outperforms the advanced recognition
network EfficientNet-B5 by 2.6%.

In addition, we compared EP-CNN with several state-of-
the-art fine-grained VMR methods (i.e., BoxCars, FM-CNN,
Location-Aware, FR-ResNet, ID-CNN and ResNet151-CMP)
or fine-grained methods based on the CompCars dataset (i.e.,
ABN and DCL). We report the accuracies of these algorithms
on CompCars from the original papers or codes. For an
input image resolution of 224×224, the proposed EP-CNN
achieves higher recognition accuracy than BoxCars, ID-CNN
and ResNet152-CMP. Among these methods, BoxCars consid-
ers that the vehicle viewpoint information is useful for VMR,
but the encoded vehicle viewpoints input to the network cannot
efficiently enhance the final classification results.

When the input image resolution is 448×448, the proposed
method outperforms the DCL. Although the input image
resolutions of FM-CNN, Location-Aware and ABN are not
regular, the proposed method achieves a highter performance.
These results verify the efficiency and effectiveness of the
proposed EP-CNN method.

2) Results on the Stanford Cars Dataset: The EP-CNN
network can also be employed for datasets without the ve-
hicle viewpoint information. For these datasets, we pretrain
PE-SubNet using the CompCars web-nature dataset, fix the
network parameters and fine-tune only VMC-SubNet based
on these datasets.

Extensive experiments are conducted on the Stanford Cars
dataset, which does not contain the vehicle viewpoint infor-
mation. We use only the category label of the Stanford Cars
dataset to fine-tune VMC-SubNet.

The experimental results are listed in Table II. Compared
with the original ResNet-50 model, the EP-CNN achieves
5.7% gains in the Top-1 accuracy without a considerable
increase in the model complexity. Compared with other models
(i.e., ResNeXt-50, SE-ResNet-50, Res2Net-50, Res2NeXt-50
and FixResNet-50) that use ResNet-50 as the baseline, EP-
CNN achieves superior and competitive results with a similar
model complexity based on the Stanford Cars dataset. More-
over, EP-CNN outperforms the advanced recognition network
EfficientNet-B5 by 3.0%. Compared with state-of-the-art fine-
grained vehicle model classification methods (i.e., FR-ResNet,
ID-CNN and ResNet152-CMP) or other fine-grained methods
based on the Stanford Cars dataset in (i.e., FCAN, RA-CNN,
MA-CNN, MAMC, DFL-CNN, TASN, AKEN, BiM-PMA,
MOMN and BRAM), EP-CNN achieves competitive results.
We report the accuracies of these algorithms on Stanford Cars
from the original papers or codes.

D. Ablation Study
1) Ablation Study for EP-CNN Model: We analyze the

importance of each strategy employed in EP-CNN via the

TABLE II
COMPARISON OF THE RECOGNITION RESULTS ON THE STANFORD CARS

DATASET WITHOUT BOUNDING BOXES.

Method Size #P(M) GFLOPs Anno. Top-1

ResNet-50 [36] 224 25.5 4.1 × 87.8%

ResNeXt-50, 32×4d [38] 224 25.0 4.2 × 88.3%

SE-ResNet-50 [35] 224 26.9 4.1 × 88.2%

Res2Net-50,26w×4s [44] 224 24.5 4.3 × 89.8%

Res2NeXt-50,26w×4s [44] 224 23.5 4.2 × 89.1%

EfficientNet-B5 [45] 224 29.2 9.9 × 90.5%

FixResNet-50 [46] 224 25.5 4.1 × 91.2%

FR-ResNet [47] (ResNet-50) 224 >25.5 >4.1 × 90.6%

FR-ResNet (ResNet-50) 224 >25.5 >4.1 X 93.1%

FCAN [49] (ResNet-50) 448 >25.5 >16.4 × 91.5%

FCAN (ResNet-50) 448 >25.5 >16.4 X 93.1%

ID-CNN [10] 224 143.6 19.7 × 91.8%

RA-CNN [13] (VGG-19 [50]) 448 265.9 117.7 X 92.5%

MA-CNN [14] (VGG-19) 448 143.6 19.7 X 92.8%

ResNet152-CMP [15] 224 >59.0 >11.6 X 92.9%

MAMC [51] (ResNet-50) 448 434 192.8 × 92.8%

DFL-CNN [52] (ResNet-50) 448 29.8 20.5 × 93.1%

TASN [53] (ResNet-50) 448 40.7 25.6 × 93.8%

AKEN [54] (ResNet-50) 448 >25.5 >16.4 × 92.6%

BiM-PMA [55] (ResNet-50) 448 >25.5 >16.4 × 93.1%

MOMN [56] (ResNet-50) 448 32.1 20.7 × 93.2%

BRAM [57] (ResNet-50) 448 29.3 19.3 × 94.3%

EP-CNN(ours) 224 28.0 4.7 × 93.5%

EP-CNN(ours) 448 28.0 18.9 × 94.6%

ablation study. ResNet-50 is employed as the baseline of our
evaluation. The ablation study results are listed in Table III.
We analyze the results from the following aspects.

MultiSE block versus SE block: The MultiSE block is
embedded in ResNet-50 in the same way as the SE block.
As shown in Table III, the Top-1 accuracy of MultiSE-
ResNet-50 is 2.0% higher than that of SE-ResNet-50. This
phenomenon occurs because the MultiSE block can adaptively
select more favorable features for VMR at multiple scales.
After separately combining the vehicle viewpoint and pose
features, the MultiSE block can achieve an accuracy that is
1.5% and 1.6% higher than that of the SE block, respec-
tively. After combining the viewpoint and pose features, the
performance of the MultiSE block is 1.3% higher than that
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TABLE III
ABLATION STUDY FOR EP-CNN MODEL ON THE COMPCARS DATASET.

Baseline SE MultiSE
Pose information Top-1

AccuracyVehicle viewpoint Pose features

ResNet-50

94.0%

X 95.1%

X 97.1%

X X 96.5%

X X 98.0%

X X 96.3%

X X 97.9%

X X X 97.3%

X X X 98.6%

of the SE block. Regardless of the combination of viewpoint
and/or pose features, the performance of the MultiSE block is
always higher than that of SE block. These findings prove the
efficiency of the MultiSE block.

Effectiveness of pose information: As mentioned, the pose
information includes the vehicle viewpoint and pose features.
First, we combine the vehicle viewpoint with MultiSE-ResNet-
50 and SE-ResNet-50. The Top-1 accuracies are increased by
0.9% and 1.4%. Second, we combine pose features with the
two models. The Top-1 accuracies are separately enhanced by
0.8% and 1.2%. These results prove that the vehicle viewpoint
and pose features are useful information for our MV-VMR
task, and either of them can enhance the recognition accuracy.

We simultaneously combine the vehicle viewpoint and pose
features, as listed in Table III. The Top-1 accuracies are higher
than those obtained by combining either the viewpoint or
pose features or neither the viewpoint nor pose features. This
result proves that both vehicle viewpoint and pose features are
complementary, i.e., the pose information is effective for the
MV-VMR task.

TABLE IV
RESULTS OF DIFFERENT ANCHOR BOX DIMENSION CLUSTERING METHODS

ON COMPCARS DATASET.

Anchor box dimension
clustering settings

Detection
accuracy (mAP)
of PE-SubNet

Top-1 accuracy
of EP-CNN

K-means(COCO) 97.4% 97.7%

K-means(VR-COCO) 98.7% 98.4%

K-means++(VR-COCO) 99.0% 98.6%

2) Ablation Study on Anchor Box Dimension Clustering:
We perform experiments to prove the effectiveness of the
anchor box dimension clustering methods. Table IV shows that
in the configuration with k-means++ run on the VR-COCO

dataset, the mAP of detecting the viewpoints in PE-SubNet is
enhanced by 0.3% and 1.6%, and the final Top-1 recognition
accuracies are increased by 0.2% and 0.9%, compared with k-
means run on VR-COCO and COCO datasets, respectively.
These experimental results prove the effectiveness of our
anchor box dimension clustering strategy.

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY WITH DIFFERENT LOSS
FUNCTIONS FOR EP-CNN ON THE COMPCARS AND STANFORD CARS

DATASETS.

Loss function CompCars Stanford
Cars

Center Loss [58] 96.5% 92.3%

A-softmax Loss [59] 98.2% 93.4%

CE Loss 98.7% 94.1%

CE Loss + MC Loss [39] 98.9% 94.6%

3) Ablation Study on Loss: Table V presents the experi-
mental results of using different classification loss functions
in VMC-SubNet on the CompCars and Stanford Cars datasets.
The methods use the same experimental settings with an image
input size of 448×448. As shown in Table V, CE-Loss outper-
forms Center Loss and A-softmax Loss. The combination of
CE-Loss and MC-Loss achieves the highest Top-1 accuracy,
which is 0.2% and 0.5% higher than that achieved using
only CE-Loss on the CompCars and Stanford Cars dataset,
respectively.

TABLE VI
RESULTS OF DIFFERENT MULTISE BLOCKS FOR EP-CNN.

Method
Branch

numbers

Dilation

rate
#P GFLOPs

Top-1 Accuracy

(EP-CNN)

MultiSE block

2 1,2 26.3M 4.5 98.3%

2 1,3 26.3M 4.5 97.8%

3 1,2,3 28.0M 4.7 98.6%

4 1,2,3,4 29.8M 4.9 98.5%

4) Evaluation of the Number of Branches for MultiSE
Block: In this section, we explain why three branches are
adopted in the MultiSE block based on the experimental
results. If we only choose one branch, the MultiSE block is the
same as the SE block, and the experimental results in Section
IV.D.1 prove the effectiveness of MultiSE over the SE block.

Therefore, we consider the case of two or more branches.
First, we separately choose two branches with dilation rates
of 1, 2 and 1, 3. The results listed in Table VI prove that the
corresponding Top-1 accuracies are 0.3% and 0.8% lower than
those of the three branches, but the numbers of parameters
and GFLOPs are slightly lower. Next, we set four branches
with dilation rates of 1, 2, 3 and 4. As shown in Table
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Fig. 6. Four vehicle models with the lowest area under the curve (AUC) values: (a) Class 319, (b) Class 330, (c) Class 345, and (d) Class 384.

VI, the Top-1 accuracy is slightly decreased and the number
of parameters and GFLOPs increase, which means that a
large number of branches cannot ensure a higher recognition
accuracy. Moreover, the computation costs increase.

To achieve a balance between the recognition accuracy and
computation cost, we choose three branches for the MultiSE
block. In this case, the highest recognition accuracy can be
achieved at only a slight computation cost overhead.

E. Failure Cases Analysis

1) Analysis from the Perspective of Dataset: To evaluate the
performance of the EP-CNN method, we analyze the reasons
for failed cases. We calculate the recognition accuracies of all
classes and choose four classes of samples with the lowest
recognition accuracy from the CompCars web-nature dataset.

By observing the datasets of these four classes, we can
derive the following conclusions:

1. The training and test samples are not uniform. As shown
in classes 330 and 384 in Fig. 6, the problem of uneven
samples in the CompCars web-nature dataset is twofold.
There exist considerably fewer samples in one class than
in other classes. The training set in the CompCars web-
nature dataset contains 36,456 vehicle images of 431
classes, with an average of 84 images for each vehicle
model. However, only 30 and 17 images are present in
classes 330 and 384, respectively, considerably fewer than
the average value. Moreover, the intraclass distribution of
images from different viewpoints is uneven. The images
of classes 330 and 384 in the training set are focused on
the side, front-side, and rear-side images. Consequently,
the model has difficulity to recognize the front and rear
vehicle images in the test set.

2. The appearances are only slightly different. As shown in
Fig. 6, the vehicles in classes 319 and 345 appear similar
to other vehicles of the same brand or other brands,
leading to identification failure.

2) Analysis from the Perspective of Viewpoint: In Fig. 7, the
rectangle represents the whole dataset. The two areas marked
with different shades of blue represent success and failure
cases with the viewpoint. The areas inside and outside the
red ellipse represent the success and failure case without the
viewpoint, respectively. Based on the statistical data of these
areas, we can infer the area of A and B. A represents the
cases in which using the viewpoint information causes the
VMR to fail, accounting for 0.0186% of the testing dataset. B
represents the cases in which using the viewpoint information

Fig. 7. Statistics pertaining to VMR success/failure cases with/without
viewpoint on the CompCars dataset.

causes the VMR to succeed, accounting for 1.651% of the
testing dataset. The percentage of B is considerably larger
than that of A, which indicates that even though the vehicle
viewpoint information may cause the VMR to fail, the number
of cases with success outweighs this risk.

F. Visual Analysis of Network Features

1) Visual Analysis based on the t-SNE Method: To analyze
the feature extraction ability of the model, we decrease the
dimensions of the features extracted from EP-CNN based
on the CompCars dataset to two dimensions by using the t-
SNE [60] [61] method and compare the visualization results
with those of ResNet-50, SE-ResNet-50 and MultiSE-ResNet-
50, as shown in Fig. 8. Moreover, we visualize the features
from PE-SubNet. Each point in the figure represents a test
sample, and points of the same color represent the same class.
Generally, the last layer of CNN is used to map features to
specific categories. Therefore, we choose the penultimate layer
to extract features for visualization.

In Fig. 8(a), the sample points exhibit a clustering trend;
however, substantial overlap exists between points of different
classes. Thus, ResNet-50 learns useful features for fine-grained
vehicle model classification, but different categories cannot be
sufficiently distinguished.

As shown in Fig. 8(b), compared to the results shown in Fig.
8(a), all samples are effectively clustered, and the interclass
variance is higher than that observed in Fig. 8(a). However,
in the center region of the image, the level of overlap is
higher than that in other regions but lower than that in Fig.
8(a). Thus, SE-ResNet-50 can extract more distinguishable
features than ResNet-50. Fig. 8(c) shows the visualization of
the features extracted from MultiSE-ResNet-50. As shown in
Fig. 8(c), MultiSE-ResNet-50 has a superior feature extraction
ability than SE-ResNet-50 and ResNet-50. Although various
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Fig. 8. Visualization of features after dimension reduction: (a) ResNet-50, (b) SE-ResNet-50, (c) MultiSE-ResNet-50, (d) EP-CNN and (e) PE-SubNet.

sample points are more clearly separated, and the same sample
points are more tightly clustered, the interclass variance is not
adequately large.

The features extracted by the EP-CNN model are shown in
Fig. 8(d). Points of the same class are clustered compactly, and
points of different classes are well distinguished. The degree
of overlap is considerably lower than that of the features
shown in Figs. 8(a), (b) and (c), which indicates that EP-CNN
can extract more distinguishable features than the previously
discussed models.

To verify the effectiveness of PE-SubNet, we visualize the
features extracted from it. As shown in Fig. 8(e), five classes
are obviously distinguished, which indicates that the vehicle
viewpoint that is extracted from PE-SubNet can provide reli-
able information that guides the flow of the training process.

Fig. 9. Grad-CAM visualization results for different models. (a) ResNet-50.
(b) SE-ResNet-50. (c) MultiSE-ResNet-50. (d) EP-CNN.

2) Visual Analysis based on the Class Activation Map
(CAM) Method: To more intuitively compare the EP-CNN
model and other networks in terms of the ability to extract ve-
hicle features, we visualize the CAMs [62] using the gradient-
weighted class activation mapping (Grad-CAM) [63] method
for VMR. Grad-CAM is a visualization method that uses gra-
dients to generate CAMs. This method is commonly employed
to localize the discriminative regions for image classification.

In CAMs, the discriminative regions of a vehicle used for
classification are highlighted, and thus, CAMs function in a
similar manner as attention maps.

As shown in Fig. 9, the ResNet-50 based Grad-CAM result
covers only the front part of the vehicle (highlighted area)
and focuses on the light and logo areas (shown in red). SE-
ResNet-50 assigns a higher attention to the features in the hood
section of the vehicle than ResNet-50. The highlighted area of
MultiSE-ResNet-50 is larger than that of SE-ResNet-50, and
the side-front area receives more attention. The EP-CNN has
activation maps that tend to cover the key vehicle area, such
as lights, and the vehicle logo and hoods receive considerable
attention. These results prove that pose information enables
the EP-CNN to extract more discriminative vehicle features.

V. CONCLUSION

This paper proposes a fine-grained VMR model, EP-CNN,
is proposed. EP-CNN is composed of two subnetworks: one
subnetwork is used for vehicle viewpoint estimation and pose
feature extraction, and the other subnetwork is used for clas-
sification. During classification, multiview vehicle images are
input, and the MultiSE block with pose information is added to
the residual block. We use the MultiSE block to fully exploit
the vehicle’s multiscale characteristics and fuse the vehicle
viewpoint and pose features into the classification network,
thereby enhancing features that contribute more to the final
classification and obtaining superior recognition results. The
experimental results demonstrate that the proposed method can
achieve a higher recognition accuracy than most classic CNN
models and several state-of-the-art fine-grained vehicle model
classification algorithms.
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