
Deep Contextualized Compressive Offloading for Images
Bo Chen1, Zhisheng Yan2, Hongpeng Guo1, Zhe Yang1
Ahmed Ali-Eldin3, Prashant Shenoy4, Klara Nahrstedt1

1University of Illinois at Urbana-Champaign 2George Mason University
3Chalmers University of Technology and UMass 4Amherst University of Massachusetts Amherst
1{boc2, hg5, zheyang3, klara}@illinois.edu, 2zyan4@gmu.edu, {3ahmeda, 4shenoy}@cs.umass.edu

ABSTRACT
Recent years have witnessed sensors becoming an indispensable
part of our life with the camera being one of the most popular and
widely deployed sensors. The camera gives rise to numerous vision-
based IoT applications that generate high-level understandings of a
live video stream by performing analysis on end devices like mobile
or embedded devices. Typically, these applications are built with
deep learning (DL) models to conduct complex vision tasks, e.g.,
image classification and object detection. Due to the prohibitive
cost of running DL models on end devices close to the camera and
with limited computation capabilities, it is widely adopted to offload
the computation to a nearby powerful edge server. However, there
is a gap between the restricted offloading bandwidth of the end
device and the large volume of image data incurred by the live video
stream. In this paper, we present Deep Contextualized Compres-
sive Offloading for Images (DCCOI), a lightweight, context-aware,
and bandwidth-efficient offloading framework for images. DCCOI
consists of the spatial-adaptive encoder, a lightweight neural net-
work, to spatial-adaptively compress the image, and the generative
decoder for reconstructing the image from the compressed data.
In contrast to existing DL-based encoders, the spatial-adaptive
encoder allows an image region to be encoded into different num-
bers of feature values based on the information in it. This offers
a variable-length coding method for image compression, which is
a more optimal way for compression than the fix-length coding
method took by existing DL-based compression approaches and
demonstrates superior accuracy-compression rate trade-offs. We
evaluate DCCOI against several baseline compression techniques
while serving an object detection-based application. The results
show that DCCOI roughly reduces the offloading size of JPEG by a
factor of 9 and DeepCOD, the state-of-the-art offloading approach,
by 20% with similar accuracy and a compression overhead less than
50ms.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; •Computingmethodologies→Machine learning ap-
proaches;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AIChallengeIoT 21, November 15–17, 2021, Coimbra, Portugal
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9097-2/21/11. . . $15.00
https://doi.org/10.1145/3485730.3493452

KEYWORDS
Deep Learning, Image Compression, Internet of Things

ACM Reference Format:
Bo Chen1, Zhisheng Yan2, Hongpeng Guo1, Zhe Yang1, Ahmed Ali-Eldin3,
Prashant Shenoy4, Klara Nahrstedt1 . 2021. Deep Contextualized Compres-
sive Offloading for Images . In The 3rd International Workshop on Challenges
in Artificial Intelligence and Machine Learning for Internet of Things (AIChal-
lengeIoT 21), November 15–17, 2021, Coimbra, Portugal. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3485730.3493452

1 INTRODUCTION
Vision-based IoT applications (vision apps) are becoming pervasive
nowadays due to the advancement in deep learning (DL) [8] and
the strong sensing capabilities of widely deployed cameras. Vision
apps process live-captured videos with sophisticated DL models to
generate a high-level understanding of the image/video. Examples
of vision apps include human face recognition [18], pedestrian de-
tection [4], or traffic monitoring [14] applications. However, the
vision app is usually demanded on a near-camera end device with
limited computation capabilities, e.g., mobile IoT devices [21], em-
bedded devices [14], and underwater sensor nodes [13], which can
hardly run large DL models. To facilitate vision apps on end devices,
it is widely adopted to offload the computation to an edge server,
which executes all or a part of the DL model. Due to the real-time
nature of vision apps, a large volume of images has to be offloaded,
which conflicts with the limited offloading bandwidth.

To address the bandwidth issue in offloading, a new category
of compression techniques, machine-centric image compression [6],
has been proposed. Unlike traditional compression standards, e.g.,
JPEG [25], and JPEG2000 [23], that preserve the visual quality of
images, the machine-centric image compression technique aims at
maintaining the performance metrics when conducting image clas-
sification or object detection, e.g., the top-1 accuracy and the mean
average precision (mAP) [7] Machine-centric image compression
can be categorized into server-assisted compression [6, 16, 17] and
DL-based compression [2, 19, 26].

In server-assisted compression techniques, the end device adap-
tively compresses different image regions based on the context sent
from the edge server. The context is defined as the indicator of
whether a particular compression technique should be applied re-
garding a vision app (IoC) in an image region. For instance, the
regions of interest (ROI) of images processed at the edge server
have been treated as the context to allow selected image regions to
be transmitted from the end device at a higher resolution [6, 16, 17].
One limitation of this approach is its reliance on server-side feed-
back, which makes its effectiveness dependent on the network
latency. Specifically, if the ROI sent by the edge server is delayed

467

https://doi.org/10.1145/3485730.3493452
https://doi.org/10.1145/3485730.3493452

AIChallengeIoT, Workshop co-located with ACM SenSys’21, November 17, 2021, Coimbra, Portugal Chen et al.

and deviates from the actual ROI on the end device, server-assisted
compression becomes ineffective in offloading for images.

DL-based compression techniques do not depend on the network
latency like server-assisted compression. They train an encoder
network on the end device to extract features from raw images and
a decoder network on the edge server to reconstruct the image from
extracted features. DL-based compression techniques like Deep-
COD [26] have been successful atmaintaining the accuracy of vision
apps with a much lower compression rate (referred to as "rate")
than traditional compression techniques, i.e., higher compression
effectiveness. The impediment of existing DL-based compression is
that their encoder is inherently a fixed-length coding method. It
sequentially applies one or multiple convolutional neural networks
(CNN) to an image and encodes heterogeneous image contents in
different regions with the same number of feature values. However,
according to Shannon’s source coding theorem [22], image contents
containing less information should be encoded with shorter coding
lengths, which makes existing DL-based compression techniques
suboptimal (encoding suboptimality). The fundamental problem
of DL-based compression techniques is that they lack the spatial-
adaptability of server-assisted compression techniques.

We present Deep Contextualized Compressive Offloading for
Images (DCCOI), a lightweight, context-aware, and bandwidth-
efficient offloading framework for images. DCCOI significantly
reduces the offloading bandwidth when compared to existing com-
pression techniques with similar accuracy and a small compression
overhead, i.e., the latency of compression. We introduce tightly
coupled context extraction and hierarchical masked filtering in the
design of a spatial-adaptive encoder, a lightweight neural network.
Tightly coupled context extraction embeds a context extractor net-
work in the spatial-adaptive encoder, which enables the context
extractor to be learned regarding the compression technique and
the vision app. Thus, the context is extracted to reflect the IoC
correctly. Hierarchical masked filtering constructs a hierarchy of
filters allowing different image regions to be adaptively compressed
based on the context. It overcomes the encoding suboptimality of
existing DL-based compression techniques as a variable-length cod-
ing method. A generative decoder is also built to reconstruct the
image from adaptively compressed data based on a generative net-
work. Furthermore, the spatial-adaptive encoder and the generative
decoder can be trained end-to-end to optimize the accuracy of the
vision app and the compression rate.

We evaluate DCCOI against several compression baselines while
serving an object detection-based application. It is shown that DC-
COI roughly reduces the offloading size of JPEG by a factor of 9 and
DeepCOD [26], the state-of-the-art offloading approach, by 20%
with similar accuracy and a compression overhead less than 50ms.

The contribution of this paper is summarized as follows.

• We present DCCOI, a lightweight, context-aware, and
bandwidth-efficient offloading framework for images consist-
ing of a spatial-adaptive encoder and a generative decoder.

• We design the spatial-adaptive encoder, a lightweight neural
network based on tightly coupled context extraction and
hierarchical masked filtering, which allow the context map
to be extracted correctly and drives spatial-adaptive com-
pression of the image.

• We evaluate DCCOI against several baselines while serving
an object detection-based application. DCCOI demonstrates
superior performance in saving the bandwidth while main-
taining similar accuracy with a small compression overhead.

2 RELATEDWORK
2.1 Traditional Image Compression
Typical traditional image compression techniques include JPEG
[25], JPEG2000 [23] and WebP [9]. JPEG divides the image into
8× 8 macroblocks and operates on the YUV components of them. It
mainly consists of three steps: 1) discrete cosine transform (DCT):
extract DCT coefficients from the YUV components, 2) quantiza-
tion: divide DCT coefficients in all macroblocks by a quantization
table and round results to integers, and 3) entropy encoding: apply
Huffman coding to the quantized DCT coefficients. WebP is similar
to JPEG in the sense that it also operates on macroblocks and in-
volves DCT, quantization, and entropy encoding. WebP improves
on JPEG via predictive coding that utilizes information in neighbor-
ing macroblocks to predict a macroblock. Unlike these techniques
that focus on visual quality, DCCOI focuses on optimizing accuracy
regarding vision apps and minimizing the offloading size.

2.2 Machine-Centric Image Compression
Server-assisted compression. Server-assisted compression ex-
ploits server-side feedback to assist compression. [6, 16, 17] propose
to exploit the server-side ROI information to drive spatial quality
adaptation at the client. [5] tracks objects on the mobile device by
utilizing the object recognition result computed on the server. The
limitation of server-assisted compression is that the unpredictable
network latency can hamper its performance. In contrast, DCCOI
does not rely on server-side feedback to function.

DL-based compression. The autoencoders [2, 19, 20, 24] are a
type of DL-based compression that builds symmetric deep encoder
and decoder networks to compress and reconstruct the image, re-
spectively. They are able to compress images into a much smaller
size than traditional compression techniques, e.g., JPEG. However,
their encoding side demands sophisticated models to extract la-
tent features from the image, which places a huge burden on end
devices with limited computation capabilities. To deal with this
problem, DeepCOD [26] proposes an "imbalanced" autoencoder.
The limitation of DeepCOD is that it inherently treats image regions
containing different amounts of information in the sameway, which
is sub-optimal. DCCOI introduces the spatial-adaptive encoder that
adaptively compresses the image based on the extracted context
map and greatly improves the compression rate of DeepCOD with
almost no loss in accuracy.

3 DEEP CONTEXTUALIZED COMPRESSIVE
OFFLOADING FOR IMAGES

3.1 Overview
The design of DCCOI is shown in Figure 1, which mainly consists
of a spatial-adaptive encoder (SA-ENC) and a generative decoder
(G-DEC). On the end device, the image is processed by the spatial-
adaptive encoder into the compressed data. The compressed data
on the end device is transmitted over wireless networks to the edge

468

DCCOI AIChallengeIoT, Workshop co-located with ACM SenSys’21, November 17, 2021, Coimbra, Portugal

Figure 1: System Architecture

server. On the edge server, the compressed data is processed by
the generative decoder to reconstruct the image. The reconstructed
image will be used to generate predictive results and evaluate accu-
racy.

3.2 Problem Formulation
The spatial-adaptive encoding process compresses the input image
into the compressed data, which is formulated in Equation 1.

𝑧 = 𝐸𝜃 (𝑥), (1)
where 𝑥 represents the input image, 𝑧 represents the compressed
data, and 𝜃 is the parameter of the spatial-adaptive encoder. The
generative decoding process reconstructs the image from the com-
pressed data, which is formulated in Equation 2.

𝑥
′
= 𝐷𝜙 (𝑧) = 𝐷𝜙 (𝐸𝜃 (𝑥)), (2)

where 𝑥 ′ represents the reconstructed image data and 𝜙 represents
the parameter of the generative decoder. The vision app makes
predictions, e.g., object detection, based on the reconstructed image
data, which can be formulated as:

𝑦
′
= 𝑉 (𝑥

′
), (3)

where 𝑉 abstracts the prediction of the vision app and 𝑦′ is the
prediction result, e.g., detected bounding boxes, of reconstructed
image data 𝑥 ′ . The prediction result is used to evaluate accuracy
regarding the vision app, which is formulated as:

𝜂 = 𝑀 (𝑦
′
), (4)

where𝑀 is an abstraction for metrics like the top-1 accuracy and the
mAP. The compression rate 𝑟 is used to evaluate the compression
effectiveness, which is defined in Equation 5.

𝑟 = |𝑧 |/|𝑥 |, (5)
where | · | denotes the size of the data.

Our goal is to find parameters, 𝜃 and 𝜙 , that maximize both
accuracy and the compression rate, which can be formulated into a
multi-objective optimization (MOO) problem as in Equation 6.

max
𝜃,𝜙

𝒇 (𝜃, 𝜙) = (𝜂, 𝑟) ⊂ IR2, (6)

4 SPATIAL-ADAPTIVE ENCODER
The spatial-adaptive encoder is a lightweight neural network de-
signed with tightly coupled context extraction and hierarchical
masked filtering. As shown in Figure 2, it mainly consists of a con-
text extractor, a spatial-adaptive feature extractor, a quantization
module, and a lossless encoding module.

4.1 Context Extractor
The context extractor is implemented with CNN to generate context
maps𝑚𝑖 ⊂ IR3×ℎ𝑖×𝑤𝑖 , 𝑖 = 1, ..., 𝐿, from the input image 𝑥 ⊂ IR3×ℎ×𝑤 .
ℎ and𝑤 are the height and width of the input image, respectively.
ℎ𝑖 =

ℎ
2𝐿−𝑖+3 and 𝑤𝑖 = 𝑤

2𝐿−𝑖+3 are the height and width of the 𝑖-th

context map, respectively. The 𝑖-th context map𝑚𝑖 assumes the
image 𝑥 is partitioned into ℎ𝑖 ×𝑤𝑖 equal-sized blocks. Each element
in𝑚𝑖 indicates the IoC of the corresponding block.

4.2 Spatial-Adaptive Feature Extractor
Spatial-adaptive feature extractor adaptively encodes information
in the image based on the context maps𝑚𝑖 , 𝑖 = 1, ..., 𝐿, as shown
in Figure 3. The key components towards spatial adaptability are
a hierarchy of learnable filters (referred to as the filter) and the
filtering masks (referred to as the mask).

The learnable filter is the basic operation to compress the
image. We implement the filter F𝑖 , 𝑖 = 1, ..., 𝐿 + 1, as a single-layer
CNN whose input and output channels are the same 1. We adopt
a cascaded design of filters as shown at the top of Figure 3. The
first filter F1 has its size and stride both set to 4 × 4. The size and
stride of subsequent filters F𝑖 , 𝑖 = 2, ..., 𝐿 + 1, are both 2 × 2. The
rationale behind this setup of filters is to allow the image to be
compressed with compression rates of 1 : 42, 1 : 82, ... Generally,
the more filters an image region is processed with, information in
the region is more compactly compressed.

The filteringmask indicates the image region that will be com-
pressed with a specific sequence of filters. In other words, different
masks control image compression with different compression rates.
The mask 𝑚̂𝑖 ⊂ IR3×ℎ×𝑤 , 𝑖 = 1, ..., 𝐿+1, is implemented as a boolean
tensor derived from context maps. We derive the mask via logical
operations as shown in Equation 7.

𝑚̂𝑖 =


¤𝑚𝑖 < 𝛿 𝑖 = 1
(¬𝑚̂1)

∧
...
∧(¬𝑚̂𝑖−1)

∧(¤𝑚𝑖 < 𝛿) 𝑖 = 2, .., 𝐿
(¬𝑚̂1)

∧
...
∧(¬𝑚̂𝑖−1) 𝑖 = 𝐿 + 1

(7)

where
¤𝑚𝑖 = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝑚𝑖 , 𝐿 − 𝑖 + 3) (8)

up-samples the context map𝑚𝑖 to the size ℎ𝑖 · 2𝐿−𝑖+3×𝑤𝑖 · 2𝐿−𝑖+3 =
ℎ ×𝑤 with the nearest neighbor principle, which makes all boolean
operations performed with the same size (ℎ×𝑤). ¤𝑚𝑖 < 𝛿 maps each
value in a tensor to a boolean value depending on whether that
value is less than the threshold 𝛿 , which is set to 0.5 by default. The
operator¬ flips each boolean value in a boolean tensor. The operator∧

applies the logical AND operation to two boolean tensors.
Spatial-adaptive feature extraction is performed by process-

ing image regions masked by 𝑚̂𝑖 with filters F𝑖 , 𝑖 = 1, ..., 𝐿 + 2 − 𝑖 ,
sequentially. In this way, we can derive the filtered feature 𝑣𝑖 from
𝑚̂𝑖 as formulated in Equation 9.

𝑣𝑖 = 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(F𝐿+2−𝑖 (...(F1 (𝑥))), ¥𝑚𝑖), 𝑖 = 1, ..., 𝐿 + 1. (9)
where

¥𝑚𝑖 = 𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 (𝑚̂𝑖 , 𝐿 − 𝑖 + 3) (10)
down-samples the mask 𝑚̂𝑖 to the size ℎ

2𝐿−𝑖+3 × 𝑤
2𝐿−𝑖+3 = ℎ𝑖 × 𝑤𝑖 ,

which changes the size of the mask to the size of the output of the
1Since the number of channels (3) does not change during compression, we omit it
when describing the size of tensors generated during compression for simplicity.

469

AIChallengeIoT, Workshop co-located with ACM SenSys’21, November 17, 2021, Coimbra, Portugal Chen et al.

Figure 2: Spatial-Adaptive Encoder

Figure 3: Spatial-Adaptive Feature Extractor
filter F𝐿+2−𝑖 . F𝑘 (·), 𝑘 = 1, .., 𝐿 + 1 − 𝑖 , applies the filter F𝑘 to the
feature. 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛(𝑎, 𝑏) flattens the feature 𝑎 to a vector based on the
mask 𝑏. A smaller index of the mask corresponds to more filters
and hence more compact compression. As shown in Figure 3, the
mask 𝑚̂1 indicates the bottom-right ℎ2 ×

𝑤
2 block in the input image

will be processed by filters F1, F2, and F3.
The adaptively filtered feature 𝑑 is the concatenation of all fil-

tered features:

𝑑 = 𝑣1 ∥ ... ∥ 𝑣𝐿+1 = (𝑑1, ..., 𝑑𝑁), (11)

where N is the length of 𝑑 .

4.3 Quantization & Lossless Encoding
We adopt the learning-based quantization technique [1] in the quan-
tization module. It maps each value in the adaptively filtered feature
𝑑 to one value in a set of quantization centers 𝐶 = {𝑐1, ..., 𝑐𝐾 } ⊂ IR.
The lossless encoding module applies run-length encoding (RLE)
and Huffman coding to the quantized feature 𝑑 = (𝑑1, ..., 𝑑𝑁) and
the filtering masks 𝑚̂𝑖 , 𝑖 = 1, ..., 𝐿, to reduce the data size.

5 GENERATIVE DECODER
The generative decoder consists of the lossless decoding module,
the adaptive up-sampling module, and the generative network as
shown in Figure 4.

5.1 Lossless Decoding
The lossless decoding module decodes the compressed data 𝑧 to
recover the quantized features 𝑑 and the masks 𝑚̂𝑖 , 𝑖 = 1, ..., 𝐿 (the
(𝐿+1)-th mask can be derived from previous 𝐿masks). It technically
reverses the operations of Huffman coding and RLE.

5.2 Adaptive Up-Sampling
The adaptive up-sampling module processes the quantized features
𝑑 to obtain the feature𝑔 ⊂ IR3×

ℎ
4 ×

𝑤
4 , which will be used as the input

to the generative network. The adaptive up-sampling module is
implemented by up-sampling𝑑 based on themasks𝑚̂𝑖 , 𝑖 = 1, ..., 𝐿+1,
with the nearest neighbor principle. The restored features 𝑔 can be
represented by Equation 12.

𝑔 = 𝑔 (𝐿+1) ⊙ 𝑚̂1 + ... + 𝑔 (1) ⊙ 𝑚̂𝐿+1, (12)

where 𝑔 (𝑖) denotes the feature map that is processed by a sequence
of filters F𝑘 , 𝑘 = 1, ..., 𝑖 , quantized, and then up-sampled to the size
ℎ
4 × 𝑤

4 with the nearest neighbor principle:

𝑔 (𝑖) = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝑄 (F𝑖 (...(F1 (𝑔)))), 𝑖), 𝑖 = 1, ..., 𝐿 + 1, (13)

where 𝑄 denotes the quantization step described in Section4.3.
To better learn parameters of DCCOI, we replace Equation 12

with the differentiable soft filter function as shown in Equation 14
during backward propagation.

𝑔 = 𝑔 (𝐿+1) ⊙ ¤𝑚1

+ 𝑔 (𝐿) ⊙ (1 − ¤𝑚1) ⊙ ¤𝑚2
+ ...

+ 𝑔 (2) ⊙ (1 − ¤𝑚1) ⊙ ... ⊙ (1 − ¤𝑚𝐿−1) ⊙ ¤𝑚𝐿
+ 𝑔 (1) ⊙ (1 − ¤𝑚1) ⊙ ... ⊙ (1 − ¤𝑚𝐿),

(14)

where ¤𝑚𝑖 , 𝑖 = 1, ..., 𝐿, represents the context map𝑚𝑖 up-sampled to
the size ℎ ×𝑤 (Equation 8).

5.3 Generative Network
The generative network computes the reconstructed image 𝑥 ′ using
the restored image feature 𝑔. It is composed of the self-attention
layer, the residual transposed convolution layer, and the single-
layer convolution as illustrated in Figure 4. The self-attention layer
is added for the enhancement of the spatial dependency during the

470

DCCOI AIChallengeIoT, Workshop co-located with ACM SenSys’21, November 17, 2021, Coimbra, Portugal

Figure 4: Generative Decoder

reconstruction of the image [27]. The residual transposed convolu-
tion layer expands the dimension of the input feature map to the
original size of the image [3, 11].

6 IMPLEMENTATION
The loss function of the DCCOImodel consists of the reconstruction
loss, the pooling loss, the entropy penalty, and the orthogonal
regularizor as shown in Equation 15.

L𝐷𝐶𝐶𝑂𝐼 = L𝑅𝑒𝑐𝑜𝑛 + 𝛾1L𝐹𝑖𝑙𝑡𝑒𝑟 + 𝛾2L𝐸 + 𝛾3L𝑂𝑟𝑡ℎ . (15)

The reconstruction loss aims at distilling knowledge from the
vision app 𝑉 and making the reconstructed image behave in a
similar way as the original image does regarding the vision app.
We denote the output of the 𝑖-th layer of the model of the vision
app 𝑉 as 𝑉 (𝑖) (𝑥), 𝑖 = 1, ..., 𝐿𝑉 , where 𝑥 is the input of the network
and 𝐿𝑉 is the total number of layers of 𝑉 . The reconstruction loss
is formulated as in Equation 16.

L𝑅𝑒𝑐𝑜𝑛 =
∑
𝑖∈𝑆

𝑉 (𝑖) (𝑥) −𝑉 (𝑖) (𝑥
′
)

2
, (16)

where 𝑆 is the set of selected layers. We select the input layer and
the output layers of all Cross Stage Partial (CSP) bottlenecks in the
YOLOv5 network to supervise the training.

The filter loss aims at suppressing the size of spatially filtered
features. Intuitively, the filter loss can be simply represented by the
size of spatially filtered features using the masks 𝑚̂𝑖 , 𝑖 = 1, ..., 𝐿 + 1:

L𝐹𝑖𝑙𝑡𝑒𝑟 =
1
4𝐿

⊕ 𝑚̂1 + ... +
1
41

⊕ 𝑚̂𝐿 + ⊕𝑚̂𝐿+1, (17)

where ⊕𝑚 represents the sum of all elements in the matrix𝑚 and
⊙ represents element-wise multiplication. The coefficient 1

22×𝐿 ac-
commodates the fact that different masks are responsible for com-
pression with different comression rates.

To better learn parameters of DCCOI, we rewrite Equation 17
as the differentiable soft filter loss in Equation 18 during backward
propagation.

L𝐹𝑖𝑙𝑡𝑒𝑟 =
1
4𝐿

⊕ ¤𝑚1

+ 1
4𝐿−1

⊕ ((1 − ¤𝑚1) ⊙ ¤𝑚2)

+ ...

+ 1
41

⊕ ((1 − ¤𝑚1) ⊙ ... ⊙ (1 − ¤𝑚𝐿−1) ⊙ ¤𝑚𝐿)

+ ⊕((1 − ¤𝑚1) ⊙ ... ⊙ (1 − ¤𝑚𝐿)),

(18)

where ⊕𝑚 represents the sum of all elements in the matrix𝑚 and
¤𝑚𝑖 , 𝑖 = 1, ..., 𝐿, represents the context map𝑚𝑖 up-sampled to the
size ℎ ×𝑤 (Equation 8).

The entropy penalty suppresses the average information in
quantized feature values 𝑑 for better performance in entropy en-
coding. Lower average information means the entropy coding can
compress the quantized feature values more compactly. We borrow
the concept of the Shannon entropy[22] to evaluate the average
information and formulate the entropy penalty in Equation 19.

L𝐸 = −
𝐾∑
𝑘=1

𝑝𝑘 log𝑝𝑘 , (19)

where 𝐾 is the number of quantization centers and 𝑝𝑖 represents
the probability of a feature value being quantized to the 𝑖-th quanti-
zation center. To allow the entropy loss to be backward propagated,
we represent the probability with the softmax function as shown
in Equation 20.

𝑝𝑘 =
1
𝑁

𝑁∑
𝑖=1

𝑒𝑥𝑝 (− ∥𝑑𝑖 − 𝑐𝑘 ∥2)∑𝐾
𝑗=1 𝑒𝑥𝑝 (−

𝑑𝑖 − 𝑐 𝑗

2) , (20)

where 𝑑𝑖 , 𝑖 = 1, ..., 𝑁 , is the 𝑖-th feature value and 𝑐 𝑗 , 𝑗 = 1, ..., 𝐾 , is
the 𝑗-th quantization center.

The orthogonal penalty is added to let the encoder 𝐸𝜃 meet the
Set-Restricted Eigenvalue Condition, which ensures that the image
can be recovered from the compressed data [26]. The orthogonal
penalty is formulated in Equation 21.

L𝑂𝑟𝑡ℎ =

𝐸′𝑇
𝜃
𝐸
′

𝜃
− 𝐼

2
, (21)

where 𝐸′

𝜃
∈ IRℎ𝑒 ·𝑤𝑒 ·𝑐𝑖×𝑐𝑜 is a matrix transformed from the convo-

lution kernel of the encoder 𝐸𝜃 ∈ IRℎ𝑒×𝑤𝑒×𝑐𝑖×𝑐𝑜 . 𝐼 is the identity
matrix.

7 EVALUATION
7.1 Methodology
Application. We conduct the evaluation on an object detection-
based application. In this application, we apply YOLOv5 [12] to
detect objects in the COCO 2017 dataset [15]. The performance
metric we adopt is the mean average precision (mAP) [7].

Hardware. The spatial-adaptive encoder is implemented on
two end devices: Raspberry Pi 4 Model B (RPi) and NVIDIA Jetson
Nano (Nano). Raspberry Pi 4 Model B is equipped with a Quad-core
Cortex-A72 CPU @ 1.5GHz. NVIDIA Jetson Nano is equipped with
a Quad-core Cortex-A57 CPU @ 1.5GHz and a 128-core NVIDIA
Maxwell architecture-based GPU. The generative decoder and the
vision application are implemented on two Linux desktops as edge
servers. One Linux desktop (RTX) is equipped with an Intel Core
i7-9700K CPU @ 3.60GHz and two NVIDIA GeForce RTX 2080 Ti
GPU. The other Linux desktop (GTX) is equipped with an Intel

471

AIChallengeIoT, Workshop co-located with ACM SenSys’21, November 17, 2021, Coimbra, Portugal Chen et al.

Core i9-8950HK CPU @ 2.90GHz and one NVIDIA GeForce GTX
1080 GPU. The end device is connected to the Internet via WiFi or
LTE, as detailed below. The edge server is connected to the campus
network via a 1Gbps cable.

Networking.We consider two network conditions in the eval-
uation: WiFi and LTE. For WiFi, we adopt the 802.11ac standard
with a frequency of 5 GHz and a bandwidth of 450Mbps. For LTE,
we choose 4G LTE with an upload bandwidth of 50Mbps.

Baselines. 1) JPEG [10]: the de facto standard for image com-
pression. 2) WebP [9]: an image format that is optimized to create
smaller images on the website. 3) Intp: an approach that performs
encoding by evenly down-sampling the image data before trans-
mission on the end device. The image is decoded via the bilinear
interpolation method on the edge server. 4) DeepCOD [26]: the
state-of-the-art offloading approach that compresses the image via
a single-layer CNN, a quantization module, and an entropy encod-
ing module. The image is reconstructed using a generative model.

7.2 Accuracy-Rate Trade-off
Figure 5 demonstrates the accuracy-rate trade-offs of DCCOI and
baselines in object detection, where each point represents the com-
pression rate and the mAP of a compression configuration. Only
meaningful configurations, whose accuracy is greater than that
of DeepCOD, are kept in Figure 5. Among JPEG, WebP, and Intp,
WebP achieves the best accuracy-rate trade-off. Specifically, WebP
achieves a compression rate of 0.024 with an mAP of 0.5, which
is slightly better than the compression rate of JPEG (0.036) at a
similar mAP of 0.502 and significantly better than Intp. DCCOI
and DeepCOD both greatly improve the accuracy-rate trade-off
of others. DeepCOD achieves an mAP of 0.499 with a compres-
sion rate of 0.00489 while DCCOI achieves an mAP of 0.502 with
a compression rate of only 0.00390. DCCOI roughly reduces the
offloading size of JPEG and WebP by a factor of 9 and 6 with similar
accuracy, respectively. In contrast to DeepCOD, DCCOI reduces
the offloading size by 20.2% with similar accuracy.

To summarize, DL-based compression techniques achieve much
better accuracy-rate trade-offs than other approaches. DCCOI out-
performs DeepCOD by a roughly 20% reduction in the offloading
size with similar accuracy.

0 0.05 0.1 0.15 0.2

Compression Rate

0

0.2

0.4

0.6

m
A

P
@

0
.5

DCCOI DeepCOD JPEG WebP Intp

3 4 5

10 -3

0.49

0.5

0.51

Figure 5: Accuracy-compression rate trade-offs (YOLOv5).

7.3 End-to-end Analysis
Based on the choices of the end device, i.e., RPi and Nano, and the
edge server, i.e., GTX and RTX, we build four hardware architec-
tures integrating different end devices and edge servers, which are
denoted by RPi GTX, RPi RTX, Nano GTX, and Nano RTX. For
the fair comparison of different approaches, we configure all ap-
proaches to produce similar accuracy with the maximum difference
in mAP being only 0.003.

Figure 6 and Figure 7 present the end-to-end offloading latency
using WiFi and LTE, respectively. When using WiFi, DeepCOD
achieves the lowest end-to-end latency while the end-to-end latency
of DCCOI is close to that of DeepCOD. When using LTE, DCCOI
consistently achieves the lowest end-to-end latency, which reduces
the latency of DeepCOD by roughly 40% and reduces the latency
of JPEG by approximately a factor of 5. The compression overhead
(Enc) of DCCOI is consistently lower than 50ms.

RPi GTX RPi RTX Nano GTX Nano RTX
0

50

100

150

200

T
im

e
 (

m
s
)

D
C

C
O

I
D

e
e
p
C

O
D

J
P

E
G

W
e
b
P

In
tp

Enc Net Dec

Figure 6: End-to-end offloading latency using WiFi

RPi GTX RPi RTX Nano GTX Nano RTX
0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

m
s
)

D
C

C
O

I
D

e
e
p
C

O
D

J
P

E
G

W
e
b
P

In
tp

Enc Net Dec

Figure 7: End-to-end offloading latency using LTE

In summary, DCCOI and DeepCOD achieve the lowest end-to-
end latency when using LTE and WiFi, respectively. The compres-
sion overhead of DCCOI is lower than 50ms on RPi and Nano.

8 CONCLUSION
We present DCCOI, a lightweight, context-aware, and bandwidth-
efficient offloading framework for images. DCCOI significantly re-
duces the offloading bandwidth using a small compression overhead
when compared to existing compression techniques with similar
accuracy.

472

DCCOI AIChallengeIoT, Workshop co-located with ACM SenSys’21, November 17, 2021, Coimbra, Portugal

REFERENCES
[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu

Timofte, Luca Benini, and Luc VanGool. 2017. Soft-to-hard vector quantization for
end-to-end learning compressible representations. arXiv preprint arXiv:1704.00648
(2017).

[2] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. 2016. End-to-end optimized
image compression. arXiv preprint arXiv:1611.01704 (2016).

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large scale GAN
training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096
(2018).

[4] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. 2015. Learning
complexity-aware cascades for deep pedestrian detection. In Proceedings of the
IEEE International Conference on Computer Vision. 3361–3369.

[5] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. 155–168.

[6] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,
Henry Hoffmann, and Junchen Jiang. 2020. Server-Driven Video Streaming for
Deep Learning Inference. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 557–570.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. [n. d.]. The PASCAL Visual Object
Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[8] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[9] Google. 2020. A new image format for the Web. https://developers.google.com/
speed/webp

[10] The Independent JPEG Group. 2014. libjpeg. https://github.com/LuaDist/libjpeg
[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012, ChristopherSTAN,
Liu Changyu, Laughing, tkianai, Adam Hogan, lorenzomammana, yxNONG,
AlexWang1900, Laurentiu Diaconu, Marc, wanghaoyang0106, ml5ah, Doug, Fran-
cisco Ingham, Frederik, Guilhen, Hatovix, Jake Poznanski, Jiacong Fang, Lijun
Yu, changyu98, Mingyu Wang, Naman Gupta, Osama Akhtar, PetrDvoracek,
and Prashant Rai. 2020. ultralytics/yolov5: v3.1 - Bug Fixes and Performance
Improvements. https://doi.org/10.5281/zenodo.4154370

[13] N Krishnaraj, Mohamed Elhoseny, M Thenmozhi, Mahmoud M Selim, and K
Shankar. 2020. Deep learning model for real-time image compression in Internet
of Underwater Things (IoUT). Journal of Real-Time Image Processing 17, 6 (2020),
2097–2111.

[14] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,
and Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 359–376.

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[16] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[17] Chrisma Pakha, Aakanksha Chowdhery, and Junchen Jiang. 2018. Reinventing
video streaming for distributed vision analytics. In 10th {USENIX} Workshop on
Hot Topics in Cloud Computing (HotCloud 18).

[18] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep face
recognition. (2015).

[19] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James
Storer. 2017. Semantic perceptual image compression using deep convolution
networks. In 2017 Data Compression Conference (DCC). IEEE, 250–259.

[20] Oren Rippel and Lubomir Bourdev. 2017. Real-Time Adaptive Image Compression.
In Proceedings of the 34th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.),
Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 2922–2930.
http://proceedings.mlr.press/v70/rippel17a.html

[21] Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris,
and Jörg Henkel. 2016. Computation offloading and resource allocation for low-
power IoT edge devices. In 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT). IEEE, 7–12.

[22] Claude E Shannon. 1948. A mathematical theory of communication. The Bell
system technical journal 27, 3 (1948), 379–423.

[23] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi. 2001. The
jpeg 2000 still image compression standard. IEEE Signal processing magazine 18,

5 (2001), 36–58.
[24] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. 2017.

Lossy image compression with compressive autoencoders. arXiv preprint
arXiv:1703.00395 (2017).

[25] Gregory K Wallace. 1992. The JPEG still picture compression standard. IEEE
transactions on consumer electronics 38, 1 (1992), xviii–xxxiv.

[26] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. 2020. Deep compressive offloading: speeding up
neural network inference by trading edge computation for network latency.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
476–488.

[27] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2019. Self-
attention generative adversarial networks. In International conference on machine
learning. PMLR, 7354–7363.

473

https://developers.google.com/speed/webp
https://developers.google.com/speed/webp
https://github.com/LuaDist/libjpeg
https://doi.org/10.5281/zenodo.4154370
http://proceedings.mlr.press/v70/rippel17a.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Image Compression
	2.2 Machine-Centric Image Compression

	3 Deep Contextualized Compressive Offloading for Images
	3.1 Overview
	3.2 Problem Formulation

	4 Spatial-Adaptive Encoder
	4.1 Context Extractor
	4.2 Spatial-Adaptive Feature Extractor
	4.3 Quantization & Lossless Encoding

	5 Generative Decoder
	5.1 Lossless Decoding
	5.2 Adaptive Up-Sampling
	5.3 Generative Network

	6 Implementation
	7 Evaluation
	7.1 Methodology
	7.2 Accuracy-Rate Trade-off
	7.3 End-to-end Analysis

	8 Conclusion
	References

