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ABSTRACT
Offloading videos from end devices to edge or cloud servers is the
key to enabling computation-intensive video analytics. To ensure
the analytics accuracy at the server, the video quality for offloading
must be configured based on the specific content and the avail-
able network bandwidth. While adaptive video streaming for user
viewing has been widely studied, none of the existing works can
guarantee the analytics accuracy at the server in a bandwidth- and
content-adaptive way. To fill in this gap, this paper presents DAO,
a dynamic adaptive offloading framework for video analytics that
jointly considers the dynamics of network bandwidth and video con-
tent. DAO is able to maximize the analytics accuracy at the server
by adapting the video bitrate and resolution dynamically. In essence,
we shift the context of adaptive video transport from traditional
DASH systems to a new dynamic adaptive offloading framework
tailored for video analytics. DAO is empowered by some new dis-
coveries about the inherent relationship among analytics accuracy,
video content, bitrate, and resolution, as well as by an optimization
formulation to adapt the bitrate and resolution dynamically. Results
from real-world implementation of object detection tasks show that
DAO’s performance is close to the theoretical bound, achieving
20% bandwidth saving and 59% category-wise mAP improvement
compared to conventional DASH schemes.
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1 INTRODUCTION
Video analytics plays a pivotal role in science and engineering
monitoring. The advancement of Deep Neural Networks (DNNs)
has enabled complicated analytics tasks such as security surveil-
lance [48] and victim search in disaster response [40]. In selected
applications [41], even superhuman performance can be achieved.
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However, advanced DNNs demand excessive computation, placing
a barrier to deploying them on constrained end devices that capture
the video. Therefore, camera-captured videos are typically offloaded
from the end device to a computationally capable edge/cloud server
for complex DNN-based video analytics [9, 19, 24, 35, 47].

For desired video analytics, video frames must be continuously
offloaded to the server and then accurately analyzed by the DNN.
To this end, videos must be offloaded in an adaptive way to accom-
modate both the network dynamics and content dynamics. First, the
video bitrate must be adapted to dynamic network conditions. The
mismatch between bitrate and bandwidth would cause laggy or
failed video analytics with large time gaps between frames [5]. The
interrupted analytics could diminish the benefits of video analytics
since it loses significant insight in the temporal domain. Second,
the video resolution and bitrate must be configured based on the
given content to ensure satisfactory analytics accuracy at the server.
A slight change of the content may severely affect the analytics
accuracy even with the same bitrate and resolution [12, 13]. For
example, a higher video resolution generally results in a higher
video analytics accuracy [25, 35], but this might not hold on to
videos with detailed background or occluded objects.

Despite the rich history of research in adaptive video streaming,
none of the existing works supports both bandwidth-adaptive and
content-adaptive offloading for video analytics. Most traditional
adaptive streaming systems [4, 31] follow the Dynamic Adaptive
Streaming over HTTP (DASH) standard. They adapt the video bi-
trate or resolution dynamically to the current bandwidth in order to
maximize video quality. This bandwidth-adaptive approach works
well for video viewing systems as a higher bitrate or resolution
generally enhances users’ viewing experience. However, it does
not address the dynamic impacts of video content on analytics ac-
curacy and thus cannot be used for offloading in video analytics.
Recently, machine-centered video processing and compression has
been studied to preserve visual features of the content and maxi-
mize the analytics accuracy of reconstructed videos [8, 10, 11, 17].
These approaches utilize pixel-level processing or DNN to remove
analytics-redundant video information. Nevertheless, these are all
highly-handcrafted static algorithms without a knob for dynamic
bitrate adaptation, preventing them from being used in uplink net-
works with dynamic and limited offloading bandwidth.

In this paper, we bridge the aforementioned gaps by proposing
DAO, Dynamic Adaptive Offloading for video analytics. DAO is
the first offloading framework for video analytics that supports both
bandwidth and content adaptation. At the end device, each video
chunk is dynamically encoded with optimal bitrate and resolution
and then offloaded to the server. This encoding configuration will
maximize the analytics accuracy of DNNs deployed at the server
while addressing the dynamics of network bandwidth and video
content. By shifting the context of adaptive video transport from
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the widely-studied DASH for video viewing to a new scenario of of-
floading for video analytics, DAO will enable large-scale distributed
video analytics applications that are otherwise unattainable.

Realizing DAO requires us to overcome two unique challenges
of adaptive video offloading. First, while we are aware of the im-
pacts of bitrate, resolution, and content features on the analytics
accuracy, the interplay among these factors and the way to quan-
tify this relationship is unknown. We begin by exploring the DNN
perception of video content by learning a novel mapping between
the video content and analytics accuracy with respect to various
encoding configurations. We learn directly from pixel values and
obtain a lightweight convolutional neural network (CNN) feasible
for deployment on constrained end devices. As a result, this model
can efficiently estimate the analytics accuracy of an offloaded video
under a specific bitrate and resolution.

Another challenge is that since adaptive video offloading for ana-
lytics is fundamentally different from adaptive video streaming for
viewing, the video adaptation for maximal server analytics accuracy
(rather than user viewing experience) has not been explored. To
address this challenge, we propose an optimization algorithm that
integrates the proposed content-accuracy mapping model in order
to select the optimal video bitrate and resolution. The optimization
is able to handle the complex dynamics of bandwidth and visual
features. This algorithm is also effective and efficient to run on
camera-equipped end devices.

We prototype DAO using an NVIDIA Jetson module and Ubuntu
servers. We validate the designs and algorithms of DAO by focusing
on object detection, one of the most popular analytics tasks and
a key primitive for many high-level computer vision applications.
We evaluate the bandwidth consumption and analytics accuracy
of DAO through a dataset of 21 videos and various practical exper-
iments under WiFi and 4G bandwidth. Our results show that the
performance of DAO is close to the theoretical bound, achieving
20% bandwidth saving and 59% category-wise mAP improvement
with negligible overhead compared to conventional DASH schemes.

To summarize, the contributions of this paper include,

• A dynamic adaptive offloading framework for video analyt-
ics that replaces the traditional DASH framework for video
viewing (Section 3-4.1).
• A lightweight CNN model characterizing the relationship
among video content, analytics accuracy, video bitrate and
resolution (Section 4.2).
• An optimization formulation for video adaptation to effi-
ciently maximize the analytics accuracy given dynamic con-
tent and networks (Section 4.3).
• A practical demonstration of the satisfactory performance
achieved by the dynamic adaptive offloading (Section 5).

2 RELATEDWORK
UDP and DASH are two common protocols that support live stream-
ing and offloading of videos. We focus on DASH in this paper be-
cause of its recent popularity and its support of distributing live
videos over the Internet [46].
AdaptiveVideo Streaming forHumanViewing. Adaptive video
streaming has been used to address the network dynamics in the

context of video viewing [21, 28, 34], where video bitrate or resolu-
tion is dynamically changed to match the network bandwidth so
that user-perceived video quality can be maximized. The formats
and structures of adaptive video streaming were defined by the
DASH standard [20]. Building on top of DASH, multi-tier [15, 38]
and layered video streaming [30] were proposed to improve the
tradeoff between bandwidth and video quality. In addition, systems
were also designed to optimize the receiving energy of mobile de-
vices in adaptive video viewing [43]. The successful deployment of
DASH-based systems in commercial applications demonstrates the
necessity of video adaptation for video delivery. However, this line
of work is designed for video viewing and they only adapt video
quality to the bandwidth dynamics. They cannot be used in adap-
tive offloading for video analytics because they do not address how
content dynamics would affect the analytics accuracy at the server
and how the video should be adapted for such content dynamics.
Instead, DAO will support this content adaptation.
Video Processing and Compression for Networked Machine
Analytics. Despite the development of several lightweight DNNs
[18, 44], their computation requirements still prevent the direct
deployment of advanced video analytics on everyday end devices,
e.g., widely distributed camera devices. Therefore, modern video
analytics tasks are often performed at edge/cloud servers through
video offloading [19, 24, 35, 47].

Offloading works attempted to first identify salient video data for
DNN analytics, such as video frames containing important objects
[23] and regions of interest within a frame [11]. Such analytics-
salient data could be detected by either local on-device image pro-
cessing [10, 48] or remote server-initiated feedback [14, 32]. Then
the non-salient video data was discarded during the offloading,
which was expected to save network bandwidth while retaining
analytics performance. However, both types of salient data iden-
tification have limitations. On-device methods rely on traditional
image processing and detection of pixel-level patterns, which are
known to cause false negatives and false positives. On the other
hand, the server-initiated methods cause extra delay when send-
ing salient cues from the server to the device. This can make the
offloaded data stale and hamper the performance of server analytics.

Recently, machine-centered compression has been studied to
represent visual data in a compact way before being offloaded to
DNN machine analytics. Low-level visual features were employed
to enhance standard codecs such as JPEG and H.265 [17, 42]. These
feature-assisted approaches improve the accuracy of video analytics,
but they are built on top of standard codecs, where all components
are hard-coded. There still remains significant room for improv-
ing compression efficiency in these heavily engineered codecs. In
addition, autoencoders were utilized for encoding an image into a
vector that can be reconstructed later. These approaches [7–9, 27]
learned a smaller feature representation of the data and achieved
more compact compression than traditional codecs. However, their
encoders require sophisticated CNN models to extract latent fea-
tures from the image, which is challenging to scale to everyday end
devices with computation constraints.

More importantly, all aforementioned video processing and com-
pression algorithms for server DNN analytics prepare the data to
offload solely based on the input content. The video to offload is
fixed in place irrespective of the available bandwidth at the time of
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Figure 1: Results show that (1) different videos achieve distinct accu-
racywhen adapting the bitrate/resolution and (2) the effect of adapt-
ing bitrate versus resolution on a given video is different.

offloading because it is difficult to dynamically configure these pre-
trained models and highly-optimized algorithms. This can cause
serious issues in a time-varying uplink offloading network with
significantly lower bandwidth than a normal download network.
In this paper, we explore the inherent relationship among encoding
configuration of videos, network bandwidth, and analytics accuracy
to enable both content and bandwidth adaptation in offloading.

3 MOTIVATION
The fundamental reason we cannot use DASH-based approaches in
adaptive offloading for video analytics is that the analytics accuracy
of the server DNN is not simply determined by either bitrate or
resolution in a linear manner. The accuracy is closely related to the
nature of video content and is jointly affected by both bitrate and
resolution. In this section, we elaborate this point by conducting a
motivational study to illustrate this complex relationship.

We examined analytics accuracy under various resolutions and
bitrates. We focused on object detection, where the class of objects
and the coordinates of object bounding boxes in the input videos are
detected. The accuracy of object detection was measured by mean
Average Precision (mAP) [16]. We selected 6 annotated videos with
distinct content features (single/multiple objects, simple/complex
object, small/big object, and simple/complex background) from the
ILSVRC dataset [37]. Each video was transcoded via FFmpeg [6]
and had 30 frames per second.

Figure 1 (top left) shows the accuracy under different bitrates
by using the SSD model, a widely used object detection algorithm
[26]. It can be seen that the accuracy-bitrate tradeoff varies across
different video content types. The accuracy of some videos drops
slowly as bitrate decreases, allowing more bandwidth saving in
video offloading by degrading the video, whereas other content
types incur a rapidly dropping accuracy, making the bitrate down-
scaling undesirable. For example, the detector successfully identifies

the car even when the bitrate is reduced by seven times to 64 Kbps
(Figure 1 middle row left). This is because the monolithic structure
of the single car can be shown clearly in the low-bitrate video. How-
ever, the performance of “4 bikes” is decreased in 64 Kbps (Figure 1
middle row right) because the structural textures of bicycles in the
images are more complicated than the car. Therefore, if we do not
treat different videos differently during offloading, the analytics at
the server could become ineffective or even fail.

We also show the accuracy under different resolutions in Figure 1
(top right) to make a comparison. We observe that the accuracy-
resolution tradeoff is also significantly different across content.
More importantly, for a given video, adapting resolution versus
adapting bitrate results in highly distinct performance. For example,
the accuracy of “small plane” quickly drops with decreasing resolu-
tion because the plane becomes highly blurred (Figure 1 bottom).
However, this is not true when decreasing the bitrate since the en-
coder allocates far more bits to the delicate video background than
the plane. To meet the overall bitrate reduction, the bits allocated
to the background must reduce faster while the plane can keep a
relatively stable bit budget, preventing the fast drop of the detection
accuracy. Hence, if we fail to adapt the bitrate and resolution jointly,
the offloading and analytics performance will be suboptimal.

From these results, we conclude that it is necessary to differenti-
ate visual features of videos and pick the optimal offloading bitrate
and resolution for each video respectively in order to enhance the
analytics accuracy at the server.

4 THE PROPOSED DAO FRAMEWORK
4.1 System Architecture
We first introduce the architecture of DAO as shown in Figure 2,
which empowers the system to accomplish bandwidth-adaptive
and content-adaptive offloading for video analytics.

End device

Server

Network
DNN Model

Accuracy
Estimator

Video
Adapter

optimal encoding
configuration

Encoded
ChunksEncoder

Raw Chunks

Camera

Bandwidth
Predictor

Frames

Figure 2: DAO system architecture.

4.1.1 End device. The offloading process begins at the end device
when the camera captures a pre-defined number of video chunks.
This threshold number depends on the time sensitiveness of the
analytics application. Each video chunk is encoded and offloaded
using a specific bitrate and resolution based on the visual content
features of this chunk. The encoding decision also relates to the
predicted upcoming bandwidth from the Bandwidth Predictor that
leverages state-of-the-art estimation algorithms.

The principle intelligence of the end device in DAO lies in two
modules that optimize the encoding decision, i.e., Accuracy Estima-
tor (Section 4.2) and Video Adapter (Section 4.3). First, the Accuracy
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Estimator (AE) models the relationship among video bitrate, res-
olution, content, and analytics accuracy. Given the key frame of
a video chunk and the potential encoding bitrate and resolution,
the AE estimates the analytics accuracy of this chunk when it is
analyzed by the DNN at the server. Second, along with the pre-
dicted bandwidth, the Video Adapter receives the output of the
AE to dynamically select the optimal video bitrate and resolution
to encode the chunk. Its goal is to maximize the server analytics
accuracy. The design of the AE and Video Adapter supports the
bandwidth and content adaptation in DAO.

4.1.2 Server. The server of DAO can be an edge or cloud server
connected to the end device through a dynamic network. The server
is deployed with a DNN model for analytics tasks that cannot be
executed in constrained end devices. Once a video chunk is received,
the DNN model will perform the analytics task and render the
results. Note that we focus on video offloading for popular DNN
models already proven fast when deployed on servers, such as
object detection and target tracking, i.e., the analytics itself is not
the bottleneck, but the network is. We do not aim to expedite the
DNN computation which involve other orthogonal research areas.

4.2 Accuracy Estimator
Given the complex relationship presented in Section 3, it is crucial
to characterize the relationship between the encoding configuration
and the accuracy of a specific video in order to ensure effective
offloading. To this end, the proposed Accuracy Estimator (AE) will
learn this content-dependent relationship through a CNN due to
its advantages of distilling visual content features.

Specifically, the AE receives one raw video chunk as input and
estimates a set of accuracy scores for the DNN model deployed
at the server. Each estimated accuracy score corresponds to one
possible pair of bitrate and resolution considered in the offloading.
We fix the video frame rate for all videos because a video retains
similar information at different frame rates, resulting in similar
DNN model performance.

While providing the entire video chunk as input to the AE is
straightforward, doing so increases the computation cost signif-
icantly because more video frames have to be processed. This is
inappropriate for end devices that have limited computation capa-
bilities. More importantly, video information is temporal redundant
across frames. The information in a set of frames can be generalized
to a key frame, provided that the frame set is small enough. DAO
employs the first frame of each video chunk to be the key frame
given the small chunk duration in modern video systems (1 second
in our prototype implementation).

4.2.1 Model Design. The architecture of AE is described in Figure 3.
The AE has two main parts, a base network and a decision layer.
The base network directly explores the pixel intensities of the input
frame. The goal is to extract and represent visual features for the
input video so that the AE can provide the best accuracy estimate in
a content-adaptive way. The output of the base network is feature
maps that are used as input to the decision layer. The decision layer
estimates the analytics accuracy of the server DNN.

There are many CNN-based architectures with well-designed
base networks for feature extraction and representation. We employ

Conv
Block

. . . . . . . . FC 1
Layer

FC 2
Layer

Input Image

YOLO Base

A1
A2
.
.
.
.
.

Ah

Output

Figure 3: The model architecture of the AE.

the base structure of YOLOv3 [36] that consists of a sequence of
Conv Blocks. Each Conv Block includes three convolutional layers
with different kernel size and stride. Such a base network is known
for its accuracy, robustness, and speed in object detection [39]. This
choice ensures the performance of our network as a whole while
meeting constraints of computation power at the end devices. We
will show the time overhead of AE in Section 5. Furthermore, since
object detection is a primitive for many computer vision problems,
the proposed base network can extract features effectively for a
wide range of DNN analytics tasks.

The decision layer is a stack of two fully connected (FC) layers.
It receives the feature maps generated from the base network. The
output of the last FC layer includes ℎ neurons, each of which pre-
dicts the accuracy of the input video when it is analyzed by the
server DNN at one specific encoding configuration. Unlike con-
volutional layers, which return values corresponding to specific
spatial locations from the input frame, FC layers aggregate all input
values associated with all input pixels. This helps the model make
decisions based on the information from every part of the input
frame. Using two FC layers increases the non-linearity of the model,
allowing it to learn more complicated decisions.

4.2.2 Model Training. Predicting the accuracy score of an input
video corresponding to different encoding configurations is a re-
gression problem. We propose using a loss function that can distill
knowledge from the server DNN model and force the AE to behave
in a similar way as the server DNN. As a result, the accuracy pre-
dicted by the AE would be similar to the actual accuracy provided
by the server DNN. Specifically, we use the following loss function.
It measures the mean square error (MSE) between the predicted
and actual accuracy scores of the DNN model, i.e.,

𝐿(𝐴,𝐴′) = 1/𝑀
𝑀∑
𝑚=0
(𝐴(𝑓 , 𝑏, 𝑟 ) −𝐴′(𝑓 , 𝑏, 𝑟 ))2 (1)

where𝑀 is total number of data samples, 𝐴(𝑓 , 𝑏, 𝑟 ) and 𝐴′(𝑓 , 𝑏, 𝑟 )
are the predicted and ground-truth accuracy for a given frame 𝑓
under a specific bitrate 𝑏 and resolution 𝑟 . The accuracy function
𝐴(·) is determined by the DNN model deployed on the server. For
example, if the analytics task is object detection, we can select mAP
scores to supervise the training. Note that even though the server
analytics does not use a DNN model, we can still leverage the most
common metric for an algorithm and apply this accuracy loss.

We then utilize transfer learning on the base network of the AE.
First, the YOLOV3 model is trained on COCO [22], a large dataset
for standard object detection tasks such that the weights of the
base network of YOLOV3 can be transferred into the AE. Then the
whole network will be trained on our accuracy dataset that will be



DAO: Dynamic Adaptive Offloading for Video Analytics MM ’22, October 10–14, 2022, Lisboa, Portugal

presented in Section 5.1. ADAM optimizer is used to update the
model parameters.

4.3 Video Adapter
In this section, we introduce the Video Adapter (VA) in DAO, a
module that finds the optimal bitrate and resolution that adapt
to both content and bandwidth dynamics. We start with formally
describing the optimization problem and then propose a practical
algorithm to solve the problem.

4.3.1 Problem Formulation. Videos captured by the camera will be
chopped into chunks. Each chunk lasts𝑇 seconds and is indexed by
the variable 𝑖 . Once chunk 𝑖 is ready, it will be encoded and offloaded
using a specific bitrate 𝑏 (𝑖) and resolution 𝑟 (𝑖). The values of the
𝑏 (𝑖) and 𝑟 (𝑖) are selected from the set of bitrates {𝑏1, . . . , 𝑏𝑘 , . . . , 𝑏𝐾 }
and the set of resolutions {𝑟1, . . . , 𝑟𝑙 , . . . , 𝑟𝐿}, where 𝐾 and 𝐿 are the
numbers of pre-defined bitrates and resolutions, respectively.

Given the visual content features of chunk 𝑖 , the analytics accu-
racy of this chunk under a particular encoding setting, 𝑏 (𝑖) and 𝑟 (𝑖),
can be estimated by the Accuracy Estimator, i.e., 𝐴(𝑓 (𝑖), 𝑏 (𝑖), 𝑟 (𝑖)),
where 𝑓 (𝑖) is the pixel data of the key frame of chunk 𝑖 . In order
to provide high-performance video analytics services at the server,
the goal of our optimization is to maximize the accuracy scores of
the DNN model for the entire video across every video chunk.

Since video chunks are captured by the camera continuously,
these chunks must be transported to the server continuously once
the offloading starts. The limited storage capacity of the end device
makes it desirable to offload video chunks immediately because
such data, without timely offloading, may be dropped eventually
due to lack of storage. This data loss could lead to zero or near-
zero performance at the server DNN for some chunks since the
incomplete or missing video chunks may mislead the analytics task,
which ultimately causes a decrease in overall accuracy. To prevent
this negative effect, a critical constraint of the AE optimization is
that the chunk bitrate 𝑏 (𝑖) must be less than the predicted network
bandwidth 𝐵𝑊 (𝑖) when chunk 𝑖 is offloaded. This would prevent
the chunks from piling up and being dropped at the end device.

To derive 𝐵𝑊 (𝑖), we assume the end device finishes the offload-
ing of chunk 𝑖 − 1 at time 𝑡 (𝑖 − 1). Once chunk 𝑖 − 1 is completely
delivered or chunk 𝑖 becomes available from the camera, whichever
comes late, the end device starts to offload chunk 𝑖 at time 𝑡 (𝑖).
Hence the bandwidth for chunk 𝑖 can be predicted by

𝐵𝑊 (𝑖) =

∫ 𝑡 (𝑖)
𝑡 (𝑖−1) 𝐵𝑊𝑡𝑑𝑡

𝑡 (𝑖) − 𝑡 (𝑖 − 1) (2)

In sum, the proposed optimization problem at the VA is formally
described as follows.

maximize:
𝑁∑
𝑖=1

𝐴(𝑓 (𝑖), 𝑏 (𝑖), 𝑟 (𝑖))

subject to: 0 ≤ 𝑏 (𝑖) ≤ 𝐵𝑊 (𝑖), ∀𝑖
𝑏 (𝑖) ∈ {𝑏1, . . . , 𝑏𝑘 , . . . , 𝑏𝐾 },∀𝑖
𝑟 (𝑖) ∈ {𝑟1, . . . , 𝑟𝑙 , . . . , 𝑟𝐿}, ∀𝑖

(3)

The intuition of (3) is to optimize the encoding configurations
across 𝑁 different video chunks such that maximal analytics ac-
curacy can be achieved at the server while still adapting to the
dynamic bandwidth.

4.3.2 Solution Algorithm for VA. Ideally, if the future bandwidths
for offloading each chunks 𝐵𝑊 (1), . . . , 𝐵𝑊 (𝑁 ) are known, one can
solve the problem in (3) by a one-time offline computation and
obtain the optimal encoding configurations ( ®𝑏, ®𝑟 ) for chunk 1 to
𝑁 . However, it is impossible in practice to acquire such perfect
knowledge. Instead, an online decision-making strategy needs to
be developed to approximate the theoretically optimal result.

In essence, the combinational optimization problem in (3) can
be recognized as a dynamic stochastic control process. There are
widely accepted theoretical treatments for this non-trivial problem.
Markov Decision Process [33] assumes that the system states, e.g.,
bandwidth, evolve as a Markov process, and it then probabilistically
derives the future bandwidths andmakes the decision. However, the
Markov properties of bandwidth dynamics have not been proved,
and how to obtain a general model for offloading bandwidth is
unknown. Receding horizon control [29] assumes a stable state, e.g.,
bandwidth, within a short period and optimizes the decision within
a finite horizon. It then iterates this process to approximate the
performance bound. Nevertheless, the search space for each chunk
can be ample, degrading the computation efficiency at the end
device. In DAO, we propose a simple yet practical greedy algorithm
to approximate the optimal solution. We will show in Section 5 that
our performance closely approaches the theoretical bound.

Our solution is summarized in the Algorithm 1. The goal is to
find and return the encoding configuration 𝑏 (𝑖), 𝑟 (𝑖) and estimated
accuracy 𝑎(𝑖) for chunk 𝑖 . These variables are initialized to zero. For
each chunk 𝑖 , the algorithm obtains the predicted bandwidth 𝐵𝑊 (𝑖)
and utilizes the AE to estimate the accuracy scores 𝐴(𝑓 (𝑖), 𝑏𝑘 , 𝑟𝑙 )
by processing the key frame 𝑓 (𝑖) under various bitrates and reso-
lutions. The algorithm iterates over each combination of bitrates
and resolutions and filters out configurations conflicting with the
bandwidth limit. Among the acceptable configurations, the algo-
rithm selects the one with the highest accuracy and returns the
configuration and predicted accuracy for chunk 𝑖 .

Algorithm 1: Video Adapter Algorithm
1 for 𝑖 ∈ {1, . . . , 𝑁 } do
2 𝑏 (𝑖) ← 0, 𝑟 (𝑖) ← 0, 𝑎(𝑖) ← 0
3 Obtain the predicted bandwidth 𝐵𝑊 (𝑖)
4 Access the key frame 𝑓 (𝑖)
5 for 𝑘 = 1, . . . , 𝐾 & 𝑙 = 1, . . . , 𝐿 do
6 if 𝑏𝑘 < 𝐵𝑊 (𝑖) & 𝐴(𝑓 (𝑖), 𝑏𝑘 , 𝑟𝑙 ) > 𝑎(𝑖) then
7 𝑎(𝑖) ← 𝐴(𝑓 (𝑖), 𝑏𝑘 , 𝑟𝑙 );
8 𝑏 (𝑖) ← 𝑏𝑘 ;
9 𝑟 (𝑖) ← 𝑟𝑙 ;

10 else
11 continue;
12 end
13 end
14 return (𝑏 (𝑖), 𝑟 (𝑖), 𝑎(𝑖))
15 end

Given the algorithm, the VA selects the configuration for each
chunk and each round has a complexity of O(𝐾𝐿), where 𝐿 and
𝐾 are the numbers of possible bitrate levels and resolution values.
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Since 𝐾 and 𝐿 are typically small (< 10 in standardized adaptive
video transport systems such as DASH), they can be considered
constants. Therefore, the VA can run fast with negligible overhead
for every chunk decision.

5 EVALUATION
We now evaluate DAO through extensive real-world implementa-
tions and experiments. We focus on the server analytics task of
object detection because it is one of themost popular video analytics
services that is fundamental to many high-level vision applications.

5.1 Experiment Setup
5.1.1 Dataset and AE Training. Our dataset for training the Accu-
racy Estimator (AE) was derived from Youtube-VOS [2], a large-
scale dataset of more than 4,000+ annotated videos for object detec-
tion. It covers 90+ semantic categories, and 7800+ unique objects.
To ensure the quality of the input video, we selected 320 videos
with a 1080p resolution or higher. For each video, we split it into
chunks of 𝑇 = 1 second. Each chunk was transcoded into 32 differ-
ent encoding configurations, with the bitrate ranging from 32 Kbps
to 2048 Kbps and the resolution ranging from 240p to 1080p. For
each configuration, the DNN-based object detector (SSD-500 [26])
performed object detection on all chunks. This process created a
dataset of 18,778 samples. Each sample is a key frame representing
a video chunk and the label for the sample is an array of 32 real val-
ues that indicate the mAP scores when the video chunk is analyzed
at the server under 32 combinations of bitrate and resolution.

After annotation, we divide the dataset into a training set and a
test set. We follow the method in Section 4.2 to train the AE with a
learning rate of 0.0003 and a weight decay of 1e-5. The number of
output neurons of the decision layers is 32 (ℎ = 32), corresponding
to the number of encoding configurations. The test set consists
of 1079 chunks from 21 videos across 20 object categories. The
training took less than 5 hours on a single machine with an Intel
Xeon Gold 6130 CPU and a 64 GB RAM.

5.1.2 System Implementation. We implemented the end device of
DAO on an NVIDIA Jetson AGX Xavier device, which has been
widely used as the end device in distributed systems and the Internet
of Things. This computing board has a Tensor Cores GPU and an
8-core ARM v8.2 64-bit CPU. The board has an Ubuntu 18.04 system
with a JetPack SDK 4.4 to support the development of deep learning.
We employed FFmpeg for the video encoding and processing. The
AE was trained in Pytorch and ported to the Jetson device. The
server and SSD-500 object detector were developed in Python. The
server program was deployed on an Ubuntu 18.04 machine with an
Intel Xeon Gold 6130 CPU and a 64GB RAM.

We used Wondershaper [3], a bandwidth control tool, to throt-
tle the uplink offloading bandwidth between the server and the
end device by using real-world bandwidth traces [23]. These traces
were collected when visual data was uploaded from phones to
servers through 4G and WiFi. They characterize the unstable and
limited offloading bandwidth that is significantly lower than the
typical downloading bandwidth in offices and homes. The band-
width ranges from 144 Kbps to 744 Kbps, with an average of 418
Kbps. By default, we run each experiment using 10 traces and we
report the average result.
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Figure 4: Train and test loss are
small for the AE.

Failure Success

Precision 0.94 0.80
Recall 0.94 0.82
F1-score 0.93 0.80

Table 1: AE estimation of DNN
failure and success.

5.1.3 Baselines. We compare DAO with three baselines.
• Perfect Model: This is the ideal scenario where the Video
Adapter (VA) knows the future network bandwidth and al-
ways chooses the theoretically optimal bitrate and resolution.
It should yield the upper bound of object detection accuracy.
• Constant Baseline: The video has a constant resolution (1080p)
and bitrate during an experiment. For each experiment, the
constant bitrate is set to be the highest level no greater than
80% of the minimum bandwidth in the trace.
• DASH Baseline: To simulate traditional adaptive video deliv-
ery for viewing, the encoding configuration is dynamically
selected based on the current bandwidth from the available
encoding setting list in standard DASH [1].

5.2 Evaluation Results
5.2.1 Performance of Accuracy Estimator. We first illustrate the
convergence of the loss function in the training and testing of the
AE in Figure 4. The figure shows that theMSE between the predicted
accuracy and the ground truth converges to a close-to-zero value,
indicating that the model is well trained.

To further evaluate the performance of the AE, we categorize
the accuracy estimation results into two groups. The first group
includes the cases when the server DNN fails to detect any objects
on the input frame (mAP=0), whereas the second group presents the
cases when the server DNN successfully detects all desired objects
on the input frame (mAP=100%). We show the precision, recall, and
F1 score of the test videos for both groups in Table 1. We observe
that the AE correctly predicts the failure case of the DNN on a video
94% of the time (precision), and discovers 94% cases where the DNN
would fail (recall). In the second group (success), the precision and
recall are around 80%. These results demonstrate that the AE can
effectively predict the DNN performance of the offloaded video at
the server, which would benefit the adaptive offloading.

5.2.2 Video-wise Analytics Performance. In this section, we investi-
gate the performance of DAO across different videos. Each video is
offloaded to and analyzed at the server. The mAP scores achieved
at the server for all videos are reported in Table 2. We observe that
DAO achieves higher mAP than DASH and Constant on all test
videos. This is because DAO can select the best encoding config-
uration that adapts to both the complexity of the content and the
dynamics of the network bandwidth. On the contrary, DASH only
pays attention to the bandwidth and Constant is agnostic to both
bandwidth and content, both of which results in lower mAP scores.
In addition, DAO’s performance is close to the theoretical bound
achieved by Perfect in all videos. The small gaps mainly stem from
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Table 2: Comparison of per-video mAP scores (%) achieved at the
server after offloading.

Video Name Perfect DAO Constant DASH
DogInDryLeaves 68 65 39 13
BigCarAndPeople 69 68 68 48
CarEngineParts 77 75 69 59
TrainTrailView 82 80 71 59
CarsBikesOnRoad 84 84 79 57
PersonRidingHorse 88 84 75 54
KidPlayingCat 86 86 79 81
PersonCatDanceClip 89 87 60 36
CowsGrass 93 89 74 45
CowsRoadCars 91 90 86 35
RoadTrafficBuildings 92 92 88 75
RoadTraffic 96 92 84 57
BigBus 94 93 76 36
BigBusesEngineView 95 94 89 51
PersonKayaking 98 95 94 37
PeopleCyclingRoad 99 96 92 47
DucksLake 97 96 90 75
PersonDogCourt 98 98 95 60
PersonSingInstruments 98 98 98 95
KidsBoxing 99 99 95 69
HousesDogPersons 100 100 95 85

the bandwidth prediction errors, which sometimes causes DAO
to choose a sub-optimal encoding. We conclude that DAO effec-
tively supports the content and bandwidth adaptation required in
adaptive offloading for video analytics.

5.2.3 Category-wise Analytics Performance. Since each test video
has multiple object categories, the video-wise result in Table 2 av-
erages the mAP scores across object categories. To have a different
perspective on howDAO adapts to object categories, Table 3 reports
the per-category mAP scores. We observe that DAO consistently
outperforms DASH and Constant. The average mAP across across
object categories for DAO is 59% and 16% higher than DASH and
Constant, respectively. DAO also stays close to Perfect in all cat-
egories. By contrast, the performance of DASH tends to fluctuate
widely. For example, it achieves nearly-perfect scores for “Aero-
plane” and “Cat” but poor performance for “Potted plant”. This is
because DASH lacks awareness of the target object category and
cannot adjust the encoding configuration accordingly to ensure the
performance on some challenging content.

5.2.4 Bandwidth Usage. This section investigates the bandwidth
consumption in the offloading process. We record the size of video
data transferred over the network to indicate the offloading band-
width usage. Figure 5 illustrates the bandwidth usage by each video.
We can see that DAO consumes the least amount of bandwidth
and remains close to the upper bound. On average, the bandwidth
consumption for DAO across the videos is 297.28 Kbps, which is 20%
lower than DASH and 33% lower than Constant. The reason why
DAO can consume less bandwidth while reaching higher analytics
accuracy is that the adaptation of bitrate and resolution could have
a distinct effect on the mAP at the server. By understanding how
the server DNN would perceive a video chunk, DAO can sometimes
reduce the bitrate and increase the resolution to simultaneously
increase the analytics accuracy and reduce bandwidth consumption.
However, this is not supported in DASH and Constant which do
not adapt to the content dynamics for server analytics.

5.2.5 Impact of Different Bandwidth Conditions. We now evaluate
the analytics performance achieved at the server under various

Table 3: Comparison of per-categorymAP scores (%) achieved at the
server after offloading.

Category Name Perfect DAO Constant DASH
Sofa 56 50 50 50
Bottle 76 73.4 70 41.2
Dinning table 79 75 50 25
Dog 87 81.2 76.7 63.5
Bus 85 83.8 77.8 67.2
TV monitor 88 86 86 28
Car 89 86.5 84.8 69.7
Person 94 91.5 90 57
Bird 93 91.5 81 41.25
Train 94 91.5 78 67.8
Chair 93 92 90 25
Cow 95.6 95.6 89.8 76.8
Boat 96 96 46 87.5
Bicycle 96.5 96.5 96.5 40.5
Motor bike 99.4 99.4 94.6 50
Sheep 100 100 72.3 54.3
Potted plant 100 100 50 0
Horse 100 100 77.2 89.2
Cat 100 100 89 90
Aeroplane 100 100 100 100
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Figure 5: Offloading bandwidth usage by each video.

bandwidth levels. We configured the offloading bandwidth as stable
bandwidth at 9 different levels, ranging from 160 Kbps to 800 Kbps
by following suggestions in the upload bandwidth study [23]. For
each bandwidth level, we perform the offloading for all videos and
report the average mAP scores. Figure 6 shows that the mAP scores
steadily move up for all systems as the available network bandwidth
increases. This is because more available bandwidth could allow a
higher-quality video to offload regardless of the adaptation method.
The higher-quality video then results in a higher mAP. It can also be
seen that DAO and Perfect stay close to each other and achieve the
highest mAP scores at all levels. This indicates that DAO performs
well across a wide range of offloading bandwidth.
5.2.6 Network Fluctuations. In this section, we study the impact
of fluctuating bandwidth. We show the variation of mAP over time
when offloading in a 4G and a WiFi network in Figure 7. The mAP
results are averaged across all videos. As expected, all systems reach
a higher mAP when the bandwidth is abundant. In addition, it is
interesting to observe that DAO performs better in lower bandwidth
than in higher bandwidth. In a low-bandwidth case, the benefits
of joint bitrate and resolution adaptation become more evident
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Figure 6: mAP increases as offloading bandwidth increases.

because DAO could potentially use a low bitrate and a reasonable
resolution to achieve high accuracy while reducing the bandwidth.
However, this benefit is diminished in high bandwidth because
all systems can opt for a high-bitrate version. Moreover, DAO is
designed to optimize the analytics over all chunks, and thus it tends
not to be too aggressive when bandwidth is high because it wants
to avoid low performance when bandwidth reduces. This result
demonstrates the balanced and stable performance of DAO.

5.2.7 Computation Overhead. Since we utilize a CNN-based AE
to understand video content and estimate server DNN accuracy,
it is vital to examine its computation overhead. We recorded the
execution time of the AE throughout experiments and found that
the average value is only 26 ms. This is due to our simple CNN
architecture with only convolutional layers and FC layers. While it
is unlikely to conduct complex DNN analytics on end devices, our
result proves the benefits of leveraging simple CNN on end devices
and is consistent with the YOLO performance [39]. In addition, we
measured the time to run the adaptation algorithm in the VA, and
the average value is 0.2 ms. Given that DAO makes an adaptation
decision per chunk (rather than per frame), we conclude that the
computation overhead of the AE and VA is negligible.

6 DISCUSSION
Advanced Network and System Support for Video Analytics.
We observe a small gap between DAO and the theoretical bound
in Section 5. This is because our bandwidth predictor and video
adapter are fast but sometimes susceptible to prediction errors and
sub-optimal performance during transient bandwidth fluctuation.
To enhance the system, a learning-based predictor and adapter can
be employed to explore a longer history of previous transmissions
in order to be both stable against traffic spikes and adaptive to
long-term network changes. At the same time, the computation
efficiency must be ensured for fast execution on end devices.

Another design choice is the scheduling of video offloading. We
currently consider immediate video offloading upon camera captur-
ing. However, if a buffer is added at the end device, video chunks
may be selectively held in the buffer based on the predicted band-
width so that the overall accuracy of the whole video is enhanced.

Moreover, DAO focuses on continuously streaming frames from
end devices to servers. As long as frames are delivered in the source
video frame rate without data loss, seconds of end-to-end latency
are acceptable [45]. Nevertheless, real-time applications may re-
quire the video frames to be delivered to the server and analyzed by
the DNN in tens or hundreds of milliseconds after camera capturing.
In this case, a tradeoff between computation efficiency and system

80
00
_1

80
00
_2

80
00
_3

64
_4

11
2_
5

50
00
_6

50
00
_7

16
0_
8

11
00
0_
9

11
00
0_
10

90
00
_1
1

16
0_
12

32
_1
3

32
_1
4

10
00
0_
15

4G Bandwidth (Kbps)__Chunk Index

20

30

40

50

60

70

80

90

100

m
AP

 S
co

re
 (

%
)

Perfect
DAO
Constant
DASH

90
00
_1

12
8_
2

12
8_
3

64
_4

14
00
0_
5

14
00
0_
6

14
00
0_
7

16
0_
8

16
0_
9

12
00
0_
10

15
00
0_
11

15
00
0_
12

32
_1
3

64
_1
4

12
8_
15

WiFi Bandwidth (Kbps)__Chunk Index

20

30

40

50

60

70

80

90

100

m
AP

 S
co

re
 (

%
)

Perfect
DAO
Constant
DASH

Figure 7: mAP scores over fluctuating 4G and WiFi networks.

performance must be struck throughout the encoding, offloading,
and DNN analytics to meet the real-time requirement.

It is important to note that, as the first adaptive offloading frame-
work that supports both content and bandwidth adaptation, DAO
focuses on the most fundamental design. The above directions are
open research topics that can be built on top of DAO, each of which
would require a careful full-scale study.
Multiple Analytics Tasks and 4K Videos. DAO currently sup-
ports a single analytics task at the server. To allow multiple server
DNN models simultaneously, we can include multiple columns at
the AE’s decision layer, each of which is similar to the current
AE’s last layer and estimates the accuracy of a DNN under various
encoding settings. A new AE parameter will be added to index the
specific DNN to which the input video is sent. We can then train
the multi-task AE in the same way except for using the ground
truth of all tasks and the task indexes.

Similarly, DAO considers videos up to 1080p resolution, but
4K resolutions are becoming popular, e.g., for the emerging 360
videos. Offloading 4K videos is more difficult because many small
objects on the giant video frames are less evident and encoding
them in lower bitrate and resolution as in DAO could destroy the
details. To reduce bandwidth while still ensuring the accuracy on
4K videos, a CNN model to crop irrelevant background content
can be designed to decrease video resolution. This is possible since
background content typically does not affect analytics tasks. The
cropping model can be integrated into the AE as a unified model
for efficient model execution on the end device.

7 CONCLUSION
This paper takes an important step in dynamic adaptive offload-
ing for video analytics. We propose DAO, the first framework that
supports both content and bandwidth adaptation. Thanks to the
efficient Accuracy Estimator and Video Adapter, DAO can esti-
mate the accuracy of a video when it is analyzed by a server DNN
and then select the optimal bitrate and resolution for the video to
offload. Real-world implementation with diverse videos and band-
width conditions demonstrates the significant bandwidth saving
and accuracy improvement of DAO over traditional adaptive video
streaming approaches. The core design of joint content and band-
width adaptation in DAO creates a new context for adaptive video
delivery, which can enable a suite of future works studying content
perception models and video adaptation algorithms.
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