
Context-aware Image Compression Optimization for Visual
Analytics Offloading

ABSTRACT
Convolutional Neural Networks (CNN) have given rise to numerous
visual analytics applications in Internet of Things (IoT) environ-
ments. Visual data is typically captured by IoT cameras and then live
streamed to edge servers for analytics due to the prohibitive cost
of running CNN on computation-constrained IoT end devices. To
guarantee low-bandwidth and low-latency visual analytics offload-
ing and accurate visual analytics, the key lies in image compression
that minimizes the amount of visual data to offload. Despite the
wide adoption, JPEG standard and traditional image compression
do not address the accuracy of analytics tasks, leading to ineffec-
tive compression for visual analytics offloading. Although recent
machine-centric image compression techniques leverage sophisti-
cated neural network models or hardware architecture to support
the accuracy-bandwidth trade-off, they introduce excessive latency
in the visual analytics offloading pipeline. This paper presents CICO,
a Context-aware Image Compression Optimization framework to
achieve low-bandwidth and low-latency visual analytics offload-
ing. CICO contextualizes image compression for offloading by em-
ploying easily-computable low-level image features to understand
the importance of different image regions for a visual analytics
task. Accordingly, CICO is able to optimize the trade-off between
compression size and analytics accuracy. Extensive results from
real-world experiments demonstrate that CICO reduces the band-
width consumption of existing compression methods by up to 40%
under a comparable analytics accuracy. In terms of the low-latency
support, CICO achieves up to a 2x speedup over state-of-the-art
compression techniques.

1 INTRODUCTION
With the advancement in Convolutional Neural Networks (CNN)
[13, 17, 34], visual analytics tasks (herein referred to as vision apps)
such as human face recognition [31], pedestrian detection [6], or
traffic monitoring [23] have been deployed in Internet of Things
(IoT) environments. Typically, visual data is captured by the cam-
eras of IoT end devices, e.g., underwater sensor nodes [21], and
then live streamed to edge servers for analysis due to the computa-
tion constraints of the IoT end devices and the prohibitive cost of
running CNN models on these end devices.

To guarantee the performance of vision apps in IoT systems, the
network bandwidth required for visual analytics offloading must
be minimized because of the challenging network conditions in
IoT environments. For example, capturing and offloading images
in drone object detection requires us to minimize the offloading
bandwidth since the network connection between the drone and
edge server can be highly dynamic or even intermittent. Moreover,
the latency of the whole visual analytics offloading pipeline, from
encoding to decoding, must be minimal to support time-sensitive
vision apps. For example, during victim search in a fire incident,
images of the firefighting site should be sent to the command center

for analysis as soon as possible so that commanders can guide the
rescue operation effectively.

The key to achieving the low-bandwidth and low-latency visual
analytics offloading is to minimize the amount of visual data to of-
fload through image compression. Well-known image compression
standards such as JPEG [41] and JPEG2000 [38] focus on improv-
ing the visual quality of the reconstructed images under limited
network bandwidth. However, they are not able to consider the
analytics accuracy when they are applied to image offloading in
vision apps.

Machine-centric image compression [9] has been proposed to ad-
dress this limitation by both enhancing the accuracy of vision apps
and minimizing the size of the data to be offloaded. CNN-driven
compression [2, 3, 33, 43] is one category of such techniques. These
methods employ CNN models to encode an image into a vector at
the IoT end device for offloading and use generative models at the
server to reconstruct the image. They can compress images into
smaller sizes than traditional image compression standards while
preserving the quality of reconstructed images. However, these ap-
proaches usually require heavy computation power (e.g., GPU) to
perform encoding (on the IoT end device) and/or decoding (on the
edge server) through sophisticated CNN models [2, 3, 33], which
could incur excessive end-to-end latency in the offloading pipeline
for vision apps. The other category of machine-centric compression
– server-driven compression [9, 25] compresses images for offload-
ing adaptively based on the information sent from the edge server
that indicates the importance of image regions. Nevertheless, the
server feedback introduces an additional delay before the data can
be compressed for offloading. If the delay is significant, the regions
of interest (ROI) sent by the edge server can deviate from the ROI
currently captured and the compression performance will degrade.

In this paper, we remedy the aforementioned issues of existing
image compression techniques by proposing CICO, Context-aware
Image Compression Optimization. CICO is a lightweight frame-
work that contextualizes and optimizes image compression for low-
bandwidth and low-latency visual analytics offloading in vision
apps. As low-level image features such as STAR [1] and FAST [35]
reflect high-level image semantics that is of interest to the vision
apps, CICO learns such a relationship and utilizes it to identify the
importance of different image regions for a vision app. Accordingly,
CICO optimizes the trade-off between compression size and analyt-
ics accuracy. By putting the compression of each image region under
a vision app into a context, CICO is able to minimize the required
network bandwidth for visual analytics offloading while preserv-
ing the analytics accuracy. By employing image features that can
be computed efficiently in the runtime, CICO allows images to be
compressed, offloaded, and reconstructed in a minimal end-to-end
latency. To the best of our knowledge, CICO is the first compression
framework that achieves low-bandwidth and low-latency visual
analytics offloading while ensuring analytics accuracy.

Realizing CICO requires us to overcome two challenges.

1. How to make the relationship between image features
and image compression learnable? The basic principle of CICO
is that the image region with a higher density of important im-
age features should have a higher compression quality, i.e., less
information loss. To achieve this goal, design choices like 1) the
significance of different features in a particular vision app and 2)
the mapping from the feature density to the compression quality
have to be made. We innovatively propose the context-aware com-
pression module (CCM) within the CICO framework that models the
above design choices into learnable parameters (referred to as the
configuration). The CCM is a generic module that can be built on
top of any other compression methods such that the compression
methods will fit a vision app in a better way.

2. How to conduct the learning in order to compress im-
ages? An essential step in CICO is to make the CCM aware of
and optimized for the target vision app. To this end, we model the
selection of the configuration of the CCM into a multi-objective
optimization (MOO) problem. The variable is the configuration and
the objectives are 1) maximizing the analytics accuracy regarding
the vision app, e.g., the top-1 accuracy for image classification and
the mean average precision (mAP) for object detection [?], and
2) minimizing the size of data to be offloaded. Solving the MOO
problem means deriving its Pareto front, which is non-trivial be-
cause of the infinite design space of the configuration and the costly
evaluation of a configuration. We address these issues with the com-
pression optimizer (CO) within the CICO framework that optimizes
the choice of configurations and efficiently evaluates each configu-
ration. The CO finds offline the optimal set of configurations for
the CCM in a reasonable amount of time.

We evaluate CICO by focusing on two vision apps (image classifi-
cation and object detection) and two IoT end devices (Raspberry Pi
4 Model B and Nvidia Jetson Nano) in two network environments
(WiFi and LTE networks). By comparing CICOwith traditional JPEG
standard and a CNN-based compression method [43], our extensive
results demonstrate that CICO improves the accuracy-bandwidth
trade-offs of JPEG and CNN-based encoders and achieves a lower
end-to-end latency and higher processing speed for visual analytics
offloading. Specifically, CICO reduces the size of offloaded images
compressed by existing compression techniques by up to 40% while
reaching a comparable analytics accuracy. In terms of the support
for low-latency vision apps, CICO achieves up to a 2× speedup over
state-of-the-art compression techniques.

The contribution of this paper is summarized as follows.

• We propose CICO, a novel and lightweight framework that
contextualizes and optimizes the image compression for low-
bandwidth and low-latency offloading in vision apps.
• Wemodel and solve the image compression as an MOO prob-
lem offline, which allows online compression to be context-
aware with minimal impact on the latency.
• We optimize JPEG and a CNN-based encoder with CICO and
conduct extensive evaluations to validate the low-bandwidth
and low-latency benefits of CICO.

For the remainder of this paper, we first discuss the motivation
and the related work in Section 2. Then, we present an overview
of the system architecture in Section 3. Two key components in
CICO, the context-aware compression module, and the compression

optimizer are detailed in Section 4 and Section 5, respectively. CICO
is evaluated in Section 6, which is followed by the discussion in
Section 7 and the conclusion in Section 8.

Figure 1: Low-level image features indicate different ROI.

2 MOTIVATION AND RELATEDWORK
2.1 Motivation
Low-level image features (referred to as features) abstract image
information and are highly related to the vision app. They could
provide the context to enhance image compression in a lightweight
manner if used appropriately. In essence, features are calculated
by making a binary decision at every pixel on whether it meets a
certain criterion, e.g., STAR [1], FAST [35], and ORB [36]. Our ob-
servation is that different features indicate different ROIs. As shown
in Figure 1, we apply three feature extraction methods, FAST (red
points), STAR (green points), and ORB (blue points), to two images.
The first column shows the original image and the second column
shows the detected feature points. For the image in the first row,
the image area with a high density of ORB feature points contains
the person who is surfing. For the image in the second row, the
image area with a high density of FAST feature points contains the
tree. These results confirm that low-level image features correlate
to high-level vision apps. More importantly, unlike computation-
intensive CNN features [2, 33], these features can be detected in a
lightweight manner. Given a target vision app, we expect that the
compression algorithm can learn to locate ROI (i.e., the context) by
using these features and perform low-bandwidth and low-latency
image compression accordingly.

2.2 Image Compression
2.2.1 Traditional Image Compression. Traditional image compres-
sion techniques like JPEG [41], JPEG2000 [38] and WebP [15] aim
at preserving the visual quality of images. JPEG divides the image
into 8 × 8 macroblocks and operates on the YUV components of
them. It mainly consists of three steps, 1) discrete cosine transform
(DCT) that extracts DCT coefficients from the YUV components, 2)
quantization that divides DCT coefficients in all macroblocks by a
quantization table and rounds results to integers, and 3) entropy
encoding that applies Huffman coding to the quantized DCT coeffi-
cients. Quantization is the step that determines the compression
quality of JPEG images. WebP is similar to JPEG in the sense that

it also operates on macroblocks and involves DCT, quantization,
and entropy encoding. WebP improves on JPEG via predictive cod-
ing that uses information in neighboring macroblocks to predict a
macroblock. Unlike these techniques that focus on visual quality,
CICO focuses on maximizing the accuracy regarding vision apps
and minimizing the data to be offloaded.

2.2.2 Machine-Centric Image Compression. Machine-centric im-
age compression techniques can be categorized into CNN-driven
compression and server-driven compression.

CNN-driven compression. The autoencoders [2, 3, 33] employ
a CNNmodel to encode an image into a vector and use another CNN
model to reconstruct the image from the vector. The autoencoder
is able to compress images into a much smaller size than tradi-
tional compression techniques, e.g., JPEG. However, their encoding
part demands sophisticated CNN models to extract latent features
from the image, which places a drastic computation burden on end
devices with limited computation capabilities. To deal with this
problem, DeepCOD [43] proposes an “imbalanced” autoencoder
that consists of a lightweight encoder and a relatively more complex
decoder. The limitation of DeepCOD is that heavy computation
capability, e.g., GPUs such as Nvidia Titan V and Nvidia GeForce
GTX Titan X, are required at the edge server to reconstruct images
in real time.

Server-driven compression. Serve-driven compression has
been proposed to exploit the server-side ROI feedback to drive spa-
tial quality adaptation at the end devices [9, 25]. The limitation is
that the additional delay introduced by device-server communica-
tion can lead to excessive end-to-end latency and hamper the spatial
quality adaptation. There are also approaches [42] that utilize fea-
tures of interest provided by scientists to heuristically partition and
compress data. However, it is difficult to find the best configuration
for this heuristic approach or generalize it to compress a different
type of data.

Unlike these CNN-driven and server-driven compression tech-
niques that bring unacceptable end-to-end latency for visual analyt-
ics offloading, CICO seeks for a lightweight compression algorithm
that would result in a minimal latency in the offloading pipeline.
Furthermore, CICO adopts a more generalizable approach that mod-
els image compression into an MOO problem and searches for the
optimal configuration on the Pareto front without any other prior
domain knowledge.

2.3 Multi-Objective Optimization
The multi-objective optimization (MOO) problem targets at the
configuration denoted by 𝜽 = (𝜃1, ...𝜃𝑘) ∈ Ψ ⊆ IR𝑘 , where 𝑘 is
the dimension of the configuration and Ψ is the set of all feasible
configurations (also known as the design space) in the MOO prob-
lem. The goal of the MOO problem is to find configurations that
maximize𝑚 objective functions, i.e.,

max
𝜽 ∈Ψ

𝒇 (𝜽) = (𝑓1 (𝜽), ..., 𝑓𝑚 (𝜽)) ⊆ IR𝑚, (1)

where𝑚 = 1, 2,
In the case of 𝑚 = 1, the configurations 𝜽 ∈ Ψ can be easily

ordered according to the objective function𝒇 (𝜽). When𝑚 >= 2, the
dominance relation is introduced to partially order configurations

in the design space. We say 𝜽 is dominated by 𝜽
′
when

𝜽 ≺ 𝜽
′
=

{
𝜃𝑖 ≤ 𝜃

′
𝑖
∀𝑖 = 1, ...,𝑚

𝜃𝑖 < 𝜃
′
𝑖
∃𝑖 = 1, ...,𝑚

(2)

If a configuration is not dominated by any other feasible config-
uration, this configuration is Pareto optimal. There exists a set of
Pareto optimal configurations Ω such that

Ω = {𝜽 |¬∃𝜽
′
𝑠 .𝑡 .𝜽 ≺ 𝜽

′
, 𝜽
′
∈ Ψ}. (3)

Ω is also called the exact Pareto front of Ψ, which is the solution
for the MOO problem. Additionally, any subset Ω̂ ⊆ Ψ is an ap-
proximate Pareto front. Due to the difficulty in finding the exact
Pareto front for certain problems. The goal becomes finding the
approximate Pareto front Ω̂, which is as close as possible to the
exact Pareto front Ω.

Practical problems like the design of embedded systems [4, 30]
and neural network architectures [26, 39] have been modeled and
solved as the MOO problem. The main challenge is the large design
space, which makes exhaustive search expensive. To address this
issue, design space exploration (DSE) approaches have been proposed
to explore the design space efficiently, which are categorized into
heuristics-based and model-based approaches.

Heuristics-based DSE approaches exploit domain knowledge
to remove sub-optimal configurations [14, 19], identify the impor-
tance of parameters in the configuration [11], or guide the direction
of the exploration of configurations [8, 30].

Model-based DSE approaches assume little prior knowledge
about the MOO problem but build models to assist DSE, e.g., Non-
dominated Sorting Genetic Algorithm II (NGSA II) [7] and Multi-
objective Bayesian Optimization (MOBO) [12, 40].

In this paper, we take the first attempt to model image compres-
sion in CICO into an MOO problem that simultaneously optimizes
the accuracy of the vision app and the offloading bandwidth.

3 SYSTEM OVERVIEW

Figure 2: System Architecture

As shown in Figure 2, the architecture of CICO can be split into
the offline profiling stage and the online compression stage.

3.1 Offline Profiling Stage
In the offline profiling stage, the compression optimizer (CO) in-
teracts with the context-aware compression module (CCM) and the
vision app to establish the profile for online compression in the
following five steps.

1. Initialization. The CO first samples a set of raw images (a)
from the training data and selects a configuration (b) to be evaluated.

2. Image Compression. The selected images (a) are compressed
by the CCM based on the selected configuration (b). Then, the
compressed images (c) will be offloaded to the edge server over the
network.

3. Image Processing.After receiving the compressed images (c),
the edge server decodes them, performs analysis via CNN models,
and sends back the result (d).

4. Metrics Collection. The performance analyzer calculates the
accuracy based on the received result (d) and measures the amount
of image data reduced for offloading (referred to as the bandwidth
reduction for clarity) (e). The metrics (f), including the accuracy
and the bandwidth reduction, are sent to the CO.

5. Optimization. The CO receives metrics (f) of the configura-
tion (b) and learns to select the next configuration based on the
historical performance of all selected configurations.

The profile (g) consists of explored configurations that are Pareto
optimal in terms of accuracy and bandwidth reduction. In other
words, the profile is the approximate Pareto front on the training
data.

3.2 Online Compression Stage
In the online compression stage, the CCM selects the optimal config-
uration (h) from the profile (g) based on the bandwidth condition of
the end device and the accuracy requirement. The configured CCM
compresses images from the testing data and generates compressed
images (i). Then, the compressed images are offloaded, decoded,
and processed by CNN models in the edge server.

In the following, we present details of the context-aware com-
pression module and the compression optimizer in Section 4 and
Section 5, respectively.

4 CONTEXT-AWARE COMPRESSION
The context-aware compression module (Figure 3) consists of fea-
ture extraction, context derivation and base compression. Feature
extraction and context derivation exploit low-level image features
in the input image to derive the context that drives adaptive com-
pression of the base compression.

Feature extraction. Low-level feature extraction distills infor-
mation from input images efficiently.We start with a set of low-level
image features represented by Γ = {𝐹 (1) , ..., 𝐹 (𝑀) }, where 𝐹 (𝑗) is
the j-th image feature and𝑀 is the number of classes of features.
Common image feature extraction such as STAR [1], FAST [35],
and ORB [36] can be applied to the input image 𝐼 for extracting
feature points.

Context Derivation. Context derivation translates low-level
image features to the context, which is performed in the following
three steps.
1) Tiling. By spatially dividing a raw image 𝐼 into 𝑁 equal-sized

tiles, where each tile is indexed by 𝑖 ∈ {1, ..., 𝑁 }, we can get the

Figure 3: Context-aware Compression Module

vector of feature density 𝒅 (𝑗) = (𝑑 (𝑗)1 , ..., 𝑑
(𝑗)
𝑁
) for the j-th feature,

𝑗 = 1, ..., 𝑀 . 𝑑 (𝑗)
𝑖

represents the feature density of the j-th feature
in the i-th tile. Note that

∑𝑁
𝑖=1 𝑑

(𝑗)
𝑖

= 1, 𝑗 = 1, ..., 𝑀 .
2) Weight. We define the vector of weighted density 𝝆 to represent

the weighted density contributed by all features in each tile, i.e.,
𝝆 = (𝜌1, ..., 𝜌𝑁). The vector of weights𝜶 = (𝛼1, ..., 𝛼𝑀) describes
the importance of different features. The weighted density is
calculated as the dot product of the vector of feature density and
the vector of weights, i.e., 𝜌𝑖 =

∑𝑀
𝑗=1 𝛼 𝑗𝑑

(𝑗)
𝑖

, 𝑖 ∈ {1, ..., 𝑁 }. Note
that 𝜌𝑖 ∈ [0, 1] and

∑𝑁
𝑖=1 𝜌𝑖 = 1.

3) Nonlinear. We use the nonlinear function 𝑔(·; 𝜷) defined on [0, 1]
to map the vector of weighted density 𝝆 to the vector of com-
pression quality 𝜼 = (𝜂1, ..., 𝜂𝑁), where 𝜂𝑖 = 𝑔(𝜌𝑖 ; 𝜷) ∈ [0, 1]
indicates the compression quality of the i-th tile. 𝜷 is a hyper-
parameter. A higher compression quality implies less information
loss after compression.
Base compression. Base compression utilizes the context to per-

form adaptive compression with an existing compression method,
e.g., JPEG. Specifically, we apply the existing compression method
to different tiles in the image 𝐼 based on the compression quality
in that tile. For example, different quantization tables in JPEG can
be selected for a tile based on its compression quality. The base
compression is denoted by 𝐼

′
= C(𝐼 ;𝜼), where C represents the

compression operation.
The compression configuration is 𝜽 = (𝜶 , 𝜷). For clarity, the

derivation of the context can be treated as a mapping 𝜉 from the
input image 𝐼 to the compression quality 𝜼, i.e., 𝜂 = 𝜉 (𝐼 ;𝜽). Finally,
the CCM can be expressed as

𝐼
′
= C(𝐼 ; 𝜉 (𝐼 ;𝜽)) . (4)

5 COMPRESSION OPTIMIZER
The compression optimizer consists of the exploration optimizer
and the data sampler, as shown in Figure 4. The exploration opti-
mizer generates configurations to be evaluated based on the accu-
racy and bandwidth reduction of previously evaluated configura-
tions. The data sampler randomly samples a subset of the data for
each evaluation. We will first formulate image compression via the

Figure 4: Compression Optimizer

CCM into an MOO problem and discuss challenges. Then, we detail
how the challenges are addressed by the exploration optimizer and
the data sampler.

5.1 Problem Formulation
With Equation 4, the CCM can transform an image dataset D into
a compressed image dataset D′ = {𝐼 ′ |𝐼 ′ = C(𝐼 ; 𝜉 (𝐼 ;𝜽)), 𝐼 ∈ D},
which will be sent to the edge server, decoded and processed by
CNN models. The configuration affects metrics like the accuracy 𝜈

regarding the vision app and the bandwidth reduction 𝑟 .
The accuracy is calculated based on the result returned by the

vision app ((d) in Figure 2) and the ground truth. For simplicity, it
is represented by 𝜈 = V(𝜽 ;D) = V(𝜽), whereV is an abstraction
for accuracy metrics like the top-1 accuracy and the mAP.

The bandwidth reduction is calculated by 𝑟 = 1 −
∑

𝐼
′ ∈D′ |𝐼

′ |∑
𝐼∈D |𝐼 |

=

R(𝜽 ;D) = R(𝜽), where | · | represents the size of an image. A
higher value of 𝑟 means a smaller size after compression and more
loss of information.

We aim at finding configurations that maximize both the accu-
racy and the bandwidth reduction, which can be formulated into a
multi-objective optimization (MOO) problem as in Equation 5.

max
𝜽 ∈Ψ

𝒇 (𝜽) = (V(𝜽),R(𝜽)) ⊆ IR2, (5)

where Ψ = {𝜽 ∈ IR𝑀 |𝜃𝑖 ∈ [0, 1], 𝑖 = 1, ..., 𝑀} is the design space.
The goal of the compression optimizer is to find the approximate
Pareto front Ω̂ ⊆ Ψ of the MOO problem defined in Equation 5.

Challenges. A naive implementation of the compression opti-
mizer can follow these steps to find the approximate Pareto front:
1) draw a random set of configurations from the design space, where

each configuration is sampled with the same probability, i.e.,
randomized exploration (RE),

2) evaluate each configuration over the whole dataset to obtain
objectives, i.e., the accuracy and the bandwidth reduction, and

3) find the Pareto front of explored configurations.
However, there are two problems with this naive implementation:
1) exploration inefficiency: the infinite design space makes it chal-
lenging for RE to obtain a good approximate Pareto front, and 2)
evaluation inefficiency: it is time-consuming to evaluate objectives
over the whole dataset.

5.2 Exploration Optimizer
Exploration inefficiency. To understand the exploration ineffi-
ciency problem, we conduct a preliminary experiment to investigate

the offline profiling regarding the vision app based on image clas-
sification. It is implemented with Meta Pseudo Labels (MPL) [32],
the state-of-the-art image classification method, to classify images
in the CIFAR10 dataset [22]. The base compression encodes and
decodes the image with the linear interpolation method, which is
implemented with the resize() function in OpenCV [5]. A lower
compression quality means a smaller size after encoding and more
information loss. The whole training set of CIFAR10 is used to eval-
uate objectives, and RE is first adopted to select 100 configurations
from the design space. The configurations explored by RE are pre-
sented in Figure 5(a), where each point represents the performance
of a configuration (top-1 accuracy, bandwidth reduction). We can
notice that the configurations on the Pareto front are unevenly
sampled. Almost all explored configurations result in a bandwidth
reduction over 40% while only one configuration results in a lower
bandwidth reduction (roughly 20%). Configurations resulting in
lower rates and higher accuracy are rarely explored.

Challenges.We are trying to solve the design space exploration
(DSE) problem, which aims at pruning unwanted configurations.
Though it has been studied in the design of embedded systems
[4, 30] and neural network architectures [26, 39], the design space
in these problems is mostly finite, and heuristics can be exploited
to solve it. Our problem, however, has an infinite number of config-
urations, and there is a lack of knowledge of the impact of different
knobs in the configuration. AWStream [44] has proposed to scale
RE with up to 30 GPUs, but this is not affordable for everyone.

(a) Randomized Exploration

(b) MOBO

Figure 5: Explored configurations by RE and MOBO.

Solution.Weaddress this problemwithmulti-objective Bayesian
optimization (MOBO) [12]. We first set the maximum number of
iterations of the algorithm. MOBO models the objectives, i.e., the
accuracy and the bandwidth reduction, as drawn from the Gaussian
process distribution to capture their relationship with the config-
uration and to accommodate the noise at the same time. MOBO
optimizes the choice of configurations based on the historical per-
formance of all selected configurations such that it 1) correctly
locates the Pareto optimal configurations (i.e., red points instead
of blue points in Figure 4) and 2) evenly samples Pareto optimal

configurations (the gray point in Figure 4). Algorithm 1 illustrates
how MOBO is utilized in the design space exploration. We first
set the maximum number of iterations 𝑁 . Then, we initialize the
set of Pareto optimal configurations Ω to empty (line 1). Next, we
start a loop to iterate over different configurations with MOBO. In
this loop, MOBO chooses a configuration 𝜽 based on the history
of explored configurations and their performance (line 4). With
the chosen configuration 𝜽 , we can obtain its performance 𝜈 and 𝑟
by running compression and the vision app (line 5). If the chosen
configuration is not dominated by any other configurations in the
set Ω, we add this configuration to Ω (line 6). Finally, we add the
configuration and its performance to the history 𝐻 . Figure 5(b)
demonstrates the optimized exploration achieved by MOBO, where
the configurations are more evenly distributed and closer to the
exact Pareto front.

Algorithm 1 Design Space Exploration with MOBO
Require: The maximum number of iterations 𝑁
1: Ω ← {}
2: 𝐻 ← {}
3: for 𝑘 = 1, 𝑘++, 𝑘 < 𝑁 do
4: 𝜽 ←MOBO(𝐻)
5: 𝜈 ←V(𝜽), 𝑟 ← R(𝜽)
6: if ¬∃𝜽 ′ ∈ Ω, s.t., 𝜃 ≺ 𝜽

′
then

7: Ω ← Ω
⋃{𝜽 }

8: 𝐻 ← 𝐻
⋃{(𝜽 , 𝜈, 𝑟)}

5.3 Data Sampler
Evaluation inefficiency.To understand the evaluation inefficiency
problem, we simulate a vision app that runs YOLOv5 [18], the
state-of-the-art object detection technique, on COCO2017 [24], a
large-scale dataset for object detection. COCO2017 contains 118, 287
images on its training set, where the objects would take over 5 hours
to be detected with an Nvidia RTX 2080 GPU. This indicates that
we need over 5 hours to evaluate a single configuration, which is
not acceptable considering that finding a good approximate Pareto
front usually requires hundreds or even thousands of evaluations.
The question is, do we really need to use the whole dataset to evaluate
a single configuration?

Observations. We conduct an experiment to investigate how
the objectives would respond to the change in the size of the
dataset. We randomly select a subset of configurations A ⊆ Ψ
and a subset of data D̂ ⊆ D. The accuracy and the bandwidth
reduction averaged over configurations in A can be calculated by
𝜈 = 1

|A |
∑
𝜽 ∈AV(𝜽 ; D̂) and 𝑟 = 1

|A |
∑
𝜽 ∈A R(𝜽 ; D̂), respectively.

By varying the size of D̂ (referred to as the sampling size), we collect
the average values of objectives using different sampling sizes. The
results for two vision apps based on image classification (with MPL
on CIFAR10) and object detection (with YOLOv5 on COCO2017)
are shown in Figure 6(a) and Figure 6(b), respectively. We observe
that although there are more than 50k images in CIFAR10 and more
than 100k images in COCO2017, the objectives quickly converge
and stabilize when the sampling size reaches several thousand.

Solution. Based on this observation, we configure the data sam-
pler to randomly sample 100 × 32 images in the evaluation of each

10
3

10
4

10
5

Number of Images

0

50

100

O
b
je

c
ti
v
e
s
 (

%
)

Top-1 Accuracy BW Reduction

(a) Image Classification

10
3

10
4

10
5

Number of Images

0

50

100

O
b
je

c
ti
v
e
s
 (

%
)

mAP@0.5 BW Reduction

(b) Object Detection

Figure 6: Objectives vs. The Sampling Size.

configuration for both image classification and object detection,
which significantly accelerates the compression optimizer.

6 EVALUATION
6.1 Methodology
Applications. We evaluate CICO on two vision apps – image
classification (CLS) and object detection (DET), respectively.

For CLS, we apply Meta Pseudo Labels (MPL) [32] to classify the
CIFAR10 dataset [22]. The CIFAR10 dataset contains 60,000 color
images. Each image in the dataset is labeled with one of 10 classes.
The goodness metric we adopt is the top-1 accuracy. The CIFAR10
dataset is divided into a training set of 50,000 images and a test set
of 10,000 images.

For DET,we apply YOLOv5 [18] to detect objects in the COCO2017
dataset [24]. COCO2017 contains over 120k color images. Each
image contains one or multiple objects from 91 categories. The
goodness metric we adopt is the mean average precision (mAP).
Specifically, we use mAP@0.5 as the metric, which means a bound-
ing box is correct if the intersection over union (IoU) of it and the
ground truth is over 0.5. The COCO2017 dataset is divided into a
training set of 118,287 images and a test set of 5,024 images.

Hardware.We include two models of IoT end devices – Rasp-
berry Pi 4 Model B and Nvidia Jetson Nano. Raspberry Pi 4 Model B
(denoted by RPi) is equipped with a Quad-core Cortex-A72 CPU @
1.5GHz. Nvidia Jetson Nano (denoted by Nano) is equipped with a
Quad-core Cortex-A57 CPU @ 1.5GHz. We also include two types
of edge servers. One configuration is a Linux desktop equipped with
an Intel Core i9-8950HK CPU @ 2.90GHz ×8 (denoted by i9). The
other configuration is a Linux desktop equipped with an Intel Core
i7-9700K CPU @ 3.60GHz×12 (denoted by i7). The edge servers
are connected to the campus network via a 1Gbps cable. The end
devices are connected to the Internet via WiFi or LTE, as detailed
below.

Networking.We consider two real-world network conditions
in the evaluation – WiFi and LTE. For WiFi, we adopt the 802.11ac
standard with a frequency of 5 GHz and a bandwidth of 450Mbps.
For LTE, we choose 4G LTE with an upload bandwidth of 50Mbps.

6.2 CICO settings
Base compression algorithm.We optimize two base compression
algorithms with CICO, i.e., a traditional compression technique and
a CNN-based compression technique. For the traditional compres-
sion technique, we adopt JPEG [16], the de facto standard for image
compression. For the CNN-based compression technique, we adopt
the encoder in DeepCOD [43] (denoted by CNN). The image is com-
pressed by a single-layer CNN, a quantization layer, and an entropy
encoding layer. In DeepCOD, the image is reconstructed using a
sophisticated CNN model consisting of residual networks and self-
attention networks. To allow DeepCOD to run on our edge servers
with CPU, we adapt the decompression by applying operations
of compression in the reverse order, i.e., the decoder of entropy
encoding, dequantization, and up-sampling (linear interpolation).
The proposed compression techniques are denoted by CICO-J and
CICO-C. For CICO-J, we apply JPEG compression to tiles with the
quantization table of each tile selected based on the CICO-derived
compression quality. A higher value of the compression quality
means smaller values in the quantization table and less information
loss. For CICO-C, we apply single-layer convolution to tiles with
the stride of the convolution kernel, which is equal to the size of
the kernel, chosen based on the compression quality of the tile. A
higher value of the compression quality means a smaller stride of
the kernel and less information loss.

Low-level image feature. Considering the running time and
the performance of different features in image classification and
object detection, we use FAST [35], SIFT [28], and good features
to track [37] in image classification, and STAR [1], FAST and ORB
[36] in object detection.

Nonlinear function. The nonlinear function in the context-
aware compression module (Figure 3) is defined as shown in Equa-
tion 6.

𝑔(𝑥 ; 𝜷) =
{

𝛽1 + (𝛽2 − 𝛽1) ∗ 𝑥2𝛽0−1 𝛽0 ∈ [0.5, 1]
𝛽1 + (𝛽2 − 𝛽1) ∗ 𝑥

1
1−2𝛽0 𝛽0 ∈ [0, 0.5),

(6)

where 𝑥 ∈ [0, 1] and 𝜷 = (𝛽0, 𝛽1, 𝛽2), 𝛽𝑘 ∈ [0, 1], 𝑘 = 0, 1, 2.
Figure 7 shows the shape of the nonlinear function under different
configurations of 𝜷 .

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

g(
x)

β0=0.25
β0=0.5
β0=0.75
β0=1

(a) 𝛽1 = 0.1, 𝛽2 = 0.9

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

g(
x)

β0=0.25
β0=0.5
β0=0.75
β0=1

(b) 𝛽1 = 0.9, 𝛽2 = 0.1

Figure 7: Illustration of the nonlinear function.

6.3 Accuracy-Bandwidth Trade-off

0 50 100

Bandwidth Reduction (%)

0

50

100

T
o

p
-1

 A
c
c
u

ra
c
y
 (

%
)

CNN CICO-C JPEG CICO-J

Figure 8: Accuracy-bandwidth trade-offs (CLS).

0 20 40 60 80 100

Bandwidth Reduction (%)

0

20

40

60

m
A

P
@

0
.5

 (
%

)

CNN CICO-C JPEG CICO-J

Figure 9: Accuracy-bandwidth trade-offs (DET).

In this subsection, we evaluate the accuracy-bandwidth trade-
offs of different approaches. Figure 8 and Figure 9 show the accuracy-
bandwidth trade-offs evaluatedwithMPL and YOLOv5, respectively,
where each point represents the bandwidth reduction and the top-1
accuracy/mAP@0.5 of a configuration. We observe that CICO-J and
CICO-C outperform JPEG and the CNN-based encoder, respectively
(curves higher in the figure). For example, in Figure 8, compared to
the bandwidth reduction of 76.9% and the top-1 accuracy of 79.8%
achieved by the CNN-based encoder, CICO-C can achieve a band-
width reduction of 86.1% and a top-1 accuracy of 79.9%. In other
words, CICO reduces the size of compressed images by around
40% over the CNN encoder at the same level of top-1 accuracy.
This is because CICO optimizes the accuracy-bandwidth trade-off
while considering the spatial differentiation among different image
regions. However, this is not addressed in the existing methods.
On one hand, JPEG does not consider the analytics accuracy in
the design space. On the other hand, the CNN encoder is essen-
tially a fixed-length encoder that does not address ROI because the
convolution is equally applied to different image regions.

In addition, we observe that, by comparing the curves of CICO-J
and CICO-C versus JPEG and CNN respectively, CICO demon-
strates more improvement near the center of the curve while less
improvement at both ends of the curve. The reason is that when the

bandwidth reduction is close to the lower bound or upper bound
of the base compression, CICO tends to choose configurations that
assign the highest or the lowest compression quality to all tiles,
respectively. Near the center of the curve, CICO can reassign and
adapt the compression quality of tiles in a more effective way to
improve the accuracy-bandwidth trade-off.

To statistically evaluate the improvement in the accuracy-bandwidth
trade-off, i.e., the Pareto front on the test data with the optimal
configuration, we introduce two metrics: hypervolume and coverage
[29]. Hypervolume H measures the area dominated by a Pareto
front with respect to a reference point. In our evaluation, the refer-
ence point is set to (0, 0). Figure 10(a) shows the hypervolume of a
Pareto front consisting of 3 configurations, which is represented by
the area of the gray regions. A higher value in the hypervolume in-
dicates a better accuracy-bandwidth trade-off. Coverage 𝜒 (Ω̂1, Ω̂2)
calculates the percentage of configurations in Ω̂1 that is dominated
by Ω̂2. We say a configuration is dominated by a Pareto front if
any configuration on that Pareto front dominates the configura-
tion. In Figure 10(b), the configurations dominated by Ω̂1 or Ω̂2
are surrounded by dashed circles. We can find 𝜒 (Ω̂1, Ω̂2) = 2/3.
and 𝜒 (Ω̂2, Ω̂1) = 1/3. A higher coverage implies a relatively better
performance in the accuracy-bandwidth trade-off.

(a) Hypervolume (b) Coverage

Figure 10: Illustration of Metrics.

Table 1 shows the hypervolume of different approaches. The
hypervolume of CICO-J and CICO-C outperforms that of JPEG and
the CNN-based encoder in image classification and object detec-
tion, respectively. The coverage of different pairs of approaches are
presented in Table 2 (MPL) and Table 3 (YOLOv5). It is shown that
the accuracy-bandwidth trade-offs of CICO-J (CICO-C) dominate
most (over 70%) of that of JPEG (CNN).

Overall, CICO improves the accuracy-bandwidth trade-off of
JPEG and the CNN-based encoder in vision apps of both image
classification and object detection. This is mainly attributed to
the data sampler and exploration optimizer of CICO that were
introduced in Section 5.

Table 1: Hypervolume.

JPEG CNN CICO-J CICO-C
CLS 0.736 0.79 0.737 0.847
DET 0.531 0.506 0.532 0.509

Table 2: Coverage 𝜒 (Ω̂1, Ω̂2) (CLS).

Ω̂1

Ω̂2 JPEG CNN CICO-J CICO-C

JPEG 0 24 5.1 11.4
CNN 79.1 0 30.8 8.6
CICO-J 81.4 28.0 0 11.4
CICO-C 76.7 84.0 62.8 0

Table 3: Coverage 𝜒 (Ω̂1, Ω̂2) (DET).

Ω̂1

Ω̂2 JPEG CNN CICO-J CICO-C

JPEG 0 85.2 0 89.4
CNN 3.6 0 4.3 18.8
CICO-J 92.7 83.6 0 89.4
CICO-C 3.6 70.5 4.3 0

6.4 End-to-end Analysis
In this subsection, we conduct an analysis to show how CICO af-
fects the end-to-end performance of visual analytics offloading,
including the end-to-end offloading latency and the system pro-
cessing speed. To study the impact of CICO on different hardware
architectures, we build four hardware architectures based on the
choices of the IoT end devices (RPi and Nano) and the edge servers
(i9 and i7). Each hardware architecture integrates different IoT end
devices and edge servers, which are denoted by RPi+i9, RPi+i7,
Nano+i9, and Nano+i7. For a fair comparison of the end-to-end
performance, we make sure the difference of accuracy between two
compression approaches is less than 1% in both image classification
and object detection. In image classification, the top-1 accuracy of
all approaches is configured to near 85%. In object detection, the
mAP@0.5 of all approaches are configured to be near 50%.

The end-to-end offloading latency consists of the encoding la-
tency (enc), the network transmission latency (net), and the decod-
ing latency (dec). Figure 11 and Figure 12 present the end-to-end
offloading latency in image classification using WiFi and LTE, re-
spectively. Figure 13 and Figure 14 present the end-to-end offloading
latency in object detection using WiFi and LTE, respectively. We
observe that the end-to-end offloading latency is reduced by CICO
for CNN and JPEG in most hardware architectures and network
conditions. For example, Figure 14 shows that CICO reduces the
end-to-end latency for the CNN encoder and JPEG by 35% and
15%, respectively. This is because CICO significantly reduces the
network transmission latency by optimizing the compression al-
gorithm and achieving a higher bandwidth reduction at a similar
analytics accuracy. The overhead of the CICO computation is the
slightly increased encoding and decoding latency. However, as can
be seen from the figures, the computation cost of utilizing low-level
image features introduced by CICO is negligible in general.

A few exceptions are found when using CICO to compress im-
ages for offloading inWiFi. In these cases, the end-to-end offloading
latency is several milliseconds higher in CICO (e.g., Figure 11). The
reason for the increased latency is that the image size (32×32) is rel-
atively small while the network bandwidth in our ideal office WiFi

(several hundredMbps) is significantly high. As a result, the reduced
network transmission latency is not sufficient to compensate for
the encoding/decoding latency added by CICO. However, we point
out that this phenomenon is unlikely to happen in more realistic
situations in practice where the IoT environment has significantly
lower and unstable bandwidth (similar to or worse than LTE) and
the image data to be offloaded are generally larger. We will also
show in the following that such minor latency discrepancy does
not affect the expedited performance of the whole CICO offloading
pipeline.

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

5

10

15

20

25

30

T
im

e
 (

m
s
)

C
N

N
C

IC
O

-C
J
P

E
G

C
IC

O
-J

Enc Net Dec

Figure 11: End-to-end offloading latency using WiFi (CLS).

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

50

100

150

T
im

e
 (

m
s
)

C
N

N
C

IC
O

-C
J
P

E
G

C
IC

O
-J

Enc Net Dec

Figure 12: End-to-end offloading latency using LTE (CLS).

Since component-wise and end-to-end latency evaluate the per-
formance of a system rather than the quality of service that can be
delivered by a system, we evaluate the end-to-end processing speed
to examine the quality of service of the visual analytics offload-
ing. The processing speed is determined by the highest component
latency among encoding, network transmission, and decoding. Un-
like the absolute numbers of latency, the processing speed provides
users and system designers an intuitive way to understand how
CICO can achieve ultra-fast visual analytics offloading compared
to state-of-the-art compression techniques. Figure 15 and Figure 16
demonstrate the processing speed in image classification usingWiFi
and LTE, respectively. Figure 17 and Figure 18 demonstrate the pro-
cessing speed in object detection using WiFi and LTE, respectively.

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

50

100

150

T
im

e
 (

m
s
)

C
N

N
C

IC
O

-C
J
P

E
G

C
IC

O
-J

Enc Net Dec

Figure 13: End-to-end offloading latency using WiFi (DET).

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

200

400

600

800

1000

T
im

e
 (

m
s
)

C
N

N
C

IC
O

-C
J
P

E
G

C
IC

O
-J

Enc Net Dec

Figure 14: End-to-end offloading latency using LTE (DET).

Comparing the processing speed with and without CICO, we can
find that the processing speed has been significantly improved by
CICO in different hardware architectures and network conditions.
We observed up to a 2× speed up of the visual analytics offload-
ing pipeline among all these scenarios. The results of end-to-end
processing speed confirm that CICO is faster and more appropri-
ate than existing compression techniques for time-sensitive vision
apps that require a higher frame processing rate in visual analytics
offloading.

In sum, CICO reduces the end-to-end offloading latency and
improves the processing speed for JPEG and the CNN-based encoder
in most hardware architectures and network conditions.

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

20

40

60

80

100

120

P
ro

c
e

s
s
in

g
 S

p
e

e
d

 (
fp

s
)

CNN CICO-C JPEG CICO-J

Figure 15: Processing speed using WiFi (CLS).

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

5

10

15

P
ro

c
e

s
s
in

g
 S

p
e

e
d

 (
fp

s
)

CNN CICO-C JPEG CICO-J

Figure 16: Processing speed using LTE (CLS).

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

10

20

30

40

50

P
ro

c
e

s
s
in

g
 S

p
e

e
d

 (
fp

s
)

CNN CICO-C JPEG CICO-J

Figure 17: Processing speed using WiFi (DET).

RPi+i9 RPi+i7 Nano+i9 Nano+i7
0

1

2

3

4

P
ro

c
e

s
s
in

g
 S

p
e

e
d

 (
fp

s
)

CNN CICO-C JPEG CICO-J

Figure 18: Processing speed using LTE (DET).

6.5 Profiling Cost
The profiling involves running the offline profiling stage (Figure 2)
for two base compression modules on two applications, CLS and
DET, which results in four offline profiling stages. We set the num-
ber of configurations to explore to be 500. As discussed in Section 5.3,
100× 32 samples will be used for each configuration. In each offline
profiling stage, a total of 500 × 100 × 32 = 1, 600, 000 images will be
encoded, transmitted, decoded, and processed by the application.
The profiling is performed on a Linux server equipped with two
Nvidia GeForce RTX 2080 GPUs. For image classification, the offline
profiling for each compression approach takes about 20 hours. For
object detection, the profiling for each compression approach takes
about 40 hours. Our proposed offline profiling method allows CICO
to learn from the images and the vision apps in a reasonable period
of time.

6.6 Profiling Error
To demonstrate the difference of the profile obtained using the train-
ing data and the performance of it on the test data, we introduce the
profiling error. It is defined as the absolute difference in the accuracy
(or the bandwidth reduction) of the configuration measured with
the training data and the test data. The profiling error is averaged
over all configurations on the profile (of CICO-J and CICO-C for
two vision apps) and shown in Table 4. We can notice that the
profiling errors of the bandwidth reduction and the accuracy are
small in general. This indicates that system designers can choose
the configuration on the profile to optimize the utilization of the
bandwidth resource on the IoT end device.

Table 4: Profiling Error.

Accuracy BW Reduction
CLS 2.7(±1.8)% 0.026(±0.049%)
DET 4.3(±1.5)% 0.34(±0.23)%

7 DISCUSSION
Choice of the low-level image features. One advantage of our
approach is that the system designer does not have to understand
how each type of low-level image feature affects the overall com-
pression performance. Instead, our approach automatically learns
how to exploit different low-level image features in image compres-
sion. The system designer only needs to include a few well-known
features [1, 28, 35–37] and make sure the running time of the op-
timized compression approach, which includes the time spent in
feature extraction and compression, is acceptable. For example, the
running time should be kept under 33 ms for real-time applications
at an offloading speed of 30 fps.

Choice of the nonlinear function. The nonlinear function
models the relationship between the feature density and the com-
pression quality. We selected the one in Equation 6 to strike a
trade-off between training complexity and compression perfor-
mance. The nonlinear function can be defined in other forms as
long as it maps a density value in [0, 1] to a compression quality
value in [0, 1]. More parameters could be included in the nonlinear
function to allow our approach to better model the relationship
between the feature density and the compression quality. However,
the downside is that the design space of our system would be larger,
which would take longer for the compression optimizer to learn
the optimal set of parameters.

Choice of the base compression module. The choice of the
compression method is generally flexible. It can be any traditional,
e.g., JPEG, or machine learning-based, e.g., DeepCOD, compression
method. The base compression method would need to be config-
ured in a way that it could compress different image tiles with
different qualities. The other consideration is that an excessively
complicated compression method should not be used because the
benefits introduced by CICO in bandwidth reduction and network
latency reduction might be offset by the additional delay incurred
in the encoding and decoding modules.

The vision-based application. In addition to image classifi-
cation and object detection, our approach is generic and can be

applied to other vision-based applications like car counting [27] and
action detection [20]. As long as a vision app explicitly gives out a
metric that can evaluate the performance of an image dataset, CICO
can be used to learn the dataset and enhance the visual analytics
offloading performance.

8 CONCLUSION
We present CICO, a novel compression framework that contextual-
izes and optimizes image compression for visual analytics offloading
in IoT. CICO is the first low-bandwidth and low-latency compres-
sion framework that optimizes the accuracy and the bandwidth in
visual analytics offloading. The compression problem is formulated
as an MOO problem and the Pareto front of the MOO problem
is approximated by an MOBO-based exploration optimizer and
an efficient data sampler. We evaluate the performance of CICO
in extensive experimental settings. Our results show that, com-
pared to state-of-the-art compression approaches, CICO elevates
the accuracy-bandwidth trade-off and the end-to-end quality of
service of visual analytics offloading in IoT.

REFERENCES
[1] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. 2008. Censure: Center

surround extremas for realtime feature detection and matching. In European
Conference on Computer Vision. Springer, 102–115.

[2] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and
Luc Van Gool. 2019. Generative adversarial networks for extreme learned image
compression. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 221–231.

[3] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. 2016. End-to-end optimized
image compression. arXiv preprint arXiv:1611.01704 (2016).

[4] Giovanni Beltrame, Luca Fossati, and Donatella Sciuto. 2010. Decision-theoretic
design space exploration of multiprocessor platforms. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 29, 7 (2010), 1083–
1095.

[5] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[6] Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. 2015. Learning
complexity-aware cascades for deep pedestrian detection. In Proceedings of the
IEEE International Conference on Computer Vision. 3361–3369.

[7] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[8] Robert P Dick and Niraj K Jha. 1997. MOGAC: A multiobjective genetic algorithm
for the co-synthesis of hardware-software embedded systems. In iccad, Vol. 97.
522–529.

[9] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowdhery, Qizheng Zhang,
Henry Hoffmann, and Junchen Jiang. 2020. Server-Driven Video Streaming for
Deep Learning Inference. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 557–570.

[10]]pascal-voc-2012 M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. [n. d.]. The PASCAL Visual Object
Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[11] William Fornaciari, Donatella Sciuto, Cristina Silvano, and Vittorio Zaccaria.
2002. A sensitivity-based design space exploration methodology for embedded
systems. Design Automation for Embedded Systems 7, 1 (2002), 7–33.

[12] Paulo Paneque Galuzio, Emerson Hochsteiner [de Vasconcelos Segundo], Leandro
dos Santos Coelho, and Viviana Cocco Mariani. 2020. MOBOpt — multi-objective
Bayesian optimization. SoftwareX 12 (2020), 100520. https://doi.org/10.1016/j.
softx.2020.100520

[13] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[14] Tony Givargis, Frank Vahid, and Jörg Henkel. 2001. System-level exploration for
pareto-optimal configurations in parameterized systems-on-a-chip. In IEEE/ACM
International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACMDigest
of Technical Papers (Cat. No. 01CH37281). IEEE, 25–30.

[15] Google. 2020. A new image format for the Web. https://developers.google.com/
speed/webp

[16] The Independent JPEG Group. 2014. libjpeg. https://github.com/LuaDist/libjpeg

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[18] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012, ChristopherSTAN,
Liu Changyu, Laughing, tkianai, Adam Hogan, lorenzomammana, yxNONG,
AlexWang1900, Laurentiu Diaconu, Marc, wanghaoyang0106, ml5ah, Doug, Fran-
cisco Ingham, Frederik, Guilhen, Hatovix, Jake Poznanski, Jiacong Fang, Lijun
Yu, changyu98, Mingyu Wang, Naman Gupta, Osama Akhtar, PetrDvoracek,
and Prashant Rai. 2020. ultralytics/yolov5: v3.1 - Bug Fixes and Performance
Improvements. https://doi.org/10.5281/zenodo.4154370

[19] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. 2010. An approach for
effective design space exploration. In Monterey Workshop. Springer, 33–54.

[20] Okan Köpüklü, Xiangyu Wei, and Gerhard Rigoll. 2019. You only watch once: A
unified cnn architecture for real-time spatiotemporal action localization. arXiv
preprint arXiv:1911.06644 (2019).

[21] N Krishnaraj, Mohamed Elhoseny, M Thenmozhi, Mahmoud M Selim, and K
Shankar. 2020. Deep learning model for real-time image compression in Internet
of Underwater Things (IoUT). Journal of Real-Time Image Processing 17, 6 (2020),
2097–2111.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[23] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,
and Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-Efficient
Real-Time Video Analytics. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 359–376.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[25] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[26] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb,
Erik Goodman, and Wolfgang Banzhaf. 2019. Nsga-net: neural architecture
search using multi-objective genetic algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference. 419–427.

[27] Thomas Moranduzzo and Farid Melgani. 2013. Automatic car counting method
for unmanned aerial vehicle images. IEEE Transactions on Geoscience and Remote
Sensing 52, 3 (2013), 1635–1647.

[28] Pauline C Ng and Steven Henikoff. 2003. SIFT: Predicting amino acid changes
that affect protein function. Nucleic acids research 31, 13 (2003), 3812–3814.

[29] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. 2009. Respir: A re-
sponse surface-based pareto iterative refinement for application-specific design
space exploration. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28, 12 (2009), 1816–1829.

[30] Maurizio Palesi and Tony Givargis. 2002. Multi-objective design space exploration
using genetic algorithms. In Proceedings of the tenth international symposium on
Hardware/software codesign. 67–72.

[31] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep face
recognition. (2015).

[32] Hieu Pham, Qizhe Xie, Zihang Dai, and Quoc V Le. 2020. Meta pseudo labels.
arXiv preprint arXiv:2003.10580 (2020).

[33] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James
Storer. 2017. Semantic perceptual image compression using deep convolution
networks. In 2017 Data Compression Conference (DCC). IEEE, 250–259.

[34] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[35] Edward Rosten and Tom Drummond. 2006. Machine learning for high-speed
corner detection. In European conference on computer vision. Springer, 430–443.

[36] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. 2011. ORB: An efficient
alternative to SIFT or SURF. In 2011 International Conference on Computer Vision.
2564–2571. https://doi.org/10.1109/ICCV.2011.6126544

[37] Jianbo Shi et al. 1994. Good features to track. In 1994 Proceedings of IEEE conference
on computer vision and pattern recognition. IEEE, 593–600.

[38] Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi. 2001. The
jpeg 2000 still image compression standard. IEEE Signal processing magazine 18,
5 (2001), 36–58.

[39] Sean C Smithson, Guang Yang, Warren J Gross, and Brett H Meyer. 2016. Neural
networks designing neural networks: multi-objective hyper-parameter optimiza-
tion. In Proceedings of the 35th International Conference on Computer-Aided Design.
1–8.

[40] Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki
Karasuyama. 2020. Multi-objective bayesian optimization using pareto-frontier
entropy. In International Conference on Machine Learning. PMLR, 9279–9288.

[41] Gregory K Wallace. 1992. The JPEG still picture compression standard. IEEE
transactions on consumer electronics 38, 1 (1992), xviii–xxxiv.

https://doi.org/10.1016/j.softx.2020.100520
https://doi.org/10.1016/j.softx.2020.100520
https://developers.google.com/speed/webp
https://developers.google.com/speed/webp
https://github.com/LuaDist/libjpeg
https://doi.org/10.5281/zenodo.4154370
https://doi.org/10.1109/ICCV.2011.6126544

[42] Chaoli Wang, Hongfeng Yu, and Kwan-Liu Ma. 2009. Application-driven com-
pression for visualizing large-scale time-varying data. IEEE Computer Graphics
and Applications 30, 1 (2009), 59–69.

[43] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. 2020. Deep compressive offloading: speeding up
neural network inference by trading edge computation for network latency.

In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
476–488.

[44] Ben Zhang, Xin Jin, Sylvia Ratnasamy, JohnWawrzynek, and Edward A Lee. 2018.
Awstream: Adaptive wide-area streaming analytics. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. 236–252.

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Motivation
	2.2 Image Compression
	2.3 Multi-Objective Optimization

	3 System Overview
	3.1 Offline Profiling Stage
	3.2 Online Compression Stage

	4 Context-aware Compression
	5 Compression Optimizer
	5.1 Problem Formulation
	5.2 Exploration Optimizer
	5.3 Data Sampler

	6 Evaluation
	6.1 Methodology
	6.2 CICO settings
	6.3 Accuracy-Bandwidth Trade-off
	6.4 End-to-end Analysis
	6.5 Profiling Cost
	6.6 Profiling Error

	7 Discussion
	8 Conclusion
	References

