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ABSTRACT

Despite the increasing popularity, realizing 360-degree videos in
everyday applications is still challenging. Considering the unique
viewing behavior in head-mounted display (HMD), understanding
the saliency of 360-degree videos becomes the key to various 360-
degree video research. Unfortunately, existing saliency datasets
are either irrelevant to 360-degree videos or too small to support
saliency modeling. In this paper, we introduce a large saliency
dataset for 360-degree videos with 50,654 saliency maps from 24
diverse videos. The dataset is created by a new methodology sup-
ported by psychology studies in HMD viewing. We describe an
open-source software implementing this methodology that can
generate saliency maps from any head tracking data. Evaluation of
the dataset shows that the generated saliency is highly correlated
with the actual user fixation and that the saliency data can provide
useful insight on user attention in 360-degree video viewing. The
dataset and the program used to extract saliency are both made
publicly available to facilitate future research.
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1 INTRODUCTION

Virtual Reality (VR) has the potential to become the mainstream
of modern life. Its market share is expected to reach $47.7 billion
in 2024 [15]. Under the broad umbrella of VR, 360-degree video
is an important technology. This emerging video is captured by a
360-degree camera from all directions and then shown as a sphere
centered at a user’s head. By wearing a head-mounted display
(HMD), the user is able to navigate through the panoramic content
as she moves her head around. This brings a unique immersive
experience that differentiates it from regular videos. Despite the
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promising experience, viewing 360-degree videos in diverse appli-
cations is still challenging. Due to the omnidirectional nature, the
desired resolution of 360-degree videos are typically more than
12K [6]. This requires a higher bandwidth than ever to support the
video transport. To make it worse, CPU cycles and energy are also
significantly consumed on tasks such as streaming, rendering, and
decoding.

Considering the unique user interaction pattern when viewing
360-degree videos, understanding users’ visual attention, or saliency,
in HMDs has become a key to 360-degree video research. First, an
accurate saliency detection model can improve head movement
prediction for 360-degree video viewing [9, 21] and thus optimize
viewport adaptive streaming systems [6, 23], where the client only
downloads the content likely to be viewed. In addition, including
360-degree saliency as a feature can improve the performance of
a wide spectrum of applications, ranging from video compression
[12] to salient object segmentation [19], image retargeting [25], and
supporting human eye adaptation within HMD [29]. Moreover, a
rich saliency dataset could be used to investigate the complex rela-
tion between stimuli and user attention. It can help neuroscientists
and psychologists to understand the underlying process of human
brain and visual cognition.

It is well known that a large and comprehensive dataset is needed
to build a strong computational model for saliency prediction[11,21].
Although many saliency models have been developed for regu-
lar videos/images thanks to large-scale saliency datasets such as
SALICON [14], they cannot be transferred and directly applied to a
360-degree video under a VR headset. Recently, Fan et al. generated
saliency maps for 360-degree videos by a model trained on regular
images [9]. However, they do not reflect users’ visual attention in
HMD. Although efforts have been made to extract saliency in HMD,
the size of the two existing datasets are still small (60 samples for
[24] and 5,700 samples for [8]). The saliency models resulted from
small datasets are likely to be biased and overfitted.

In this paper, we introduce a saliency dataset for 360-degree
videos with 50,654 samples. Our saliency maps are extracted from
viewing sessions of more than 48 users on 24 videos ranging from
60 seconds to 655 seconds. While saliency datasets for regular
images/videos can be generated by capturing eye gaze points and
fixation using eye-tracking devices, specialized HMDs with accurate
eye tracking are not widely available. Considering the unique user
interaction in HMDs, we adopt a simple yet proven method as in
[1, 26] to represent eye gaze point in HMD by head orientation.
This methodology is supported by the fact that the head tends
to follow eye movement to preserve the eye-resting position (i.e.,
eyes looking straight ahead) [17]. We also present a software to
to extract saliency maps from head tracking logs. Our software is
freely available for the public and can be used to generate saliency
maps for any 360-degree videos and head tracking data.
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Figure 1: Saliency extraction for 360-degree videos

To extract saliency maps from head movement, we propose a
saliency extraction method based on psychology studies on hu-
man eye-head movement behavior [10, 11, 17]. After the fixation
(where users focus) is extracted by filtering out the saccade (fast
movement during which the brain does not process input from
the eyes [10]), we generate the saliency maps. We evaluate the
consistency between the extracted saliency maps and the actual
user fixation using popular metrics such as sAUC, NSS, and CC
[3]. The results show that the proposed saliency dataset achieves
a similar performance as state-of-the-art saliency datasets [3, 22].
Furthermore, we analyze the saliency dataset to provide insight
for 360-degree video viewing. We observe that users tend to focus
their attention with less movement when viewing videos captured
by fast-moving cameras and videos presenting high contrast and
few salient objects.

To the best of our knowledge, the proposed dataset is the largest
public saliency dataset for 360-degree videos. The specific con-
tributions are summarized as follows. First, a saliency dataset for
360-degree videos that includes 50,654 saliency maps from 24 videos
of various types is generated. Second, a methodology to extract
saliency maps is proposed, which can be extended to head move-
ment logs from any 360-degree videos for enlarging the saliency
dataset for the research community. Third, an extensive evaluation
of the dataset is conducted to validate the consistency between the
saliency and the actual user fixation as well as to provide insight
on user attention in 360-degree video viewing.

2 RELATED WORKS

Visual attention for regular image/video is an established topic that
has been studied for many years. The role of visual attention in the
process of objection recognition in human brain was studied in [20].
The concept of saliency map was later mentioned in [18] to address
the conspicuity of spatial region in images. Later, several large
saliency datasets were introduced to improve the performance of
computational saliency models. Borji et al. [2] developed a dataset
of 4,000 samples from 120 users viewing regular images from 20
different categories. The fixation data was collected by dedicated
eye tracking device in highly controlled experiments. Jiang et al.
introduced SALICON [14], a large-scale dataset with 15,000 samples
that can be used to train Deep Convolutional Network (DCNN) with
minimal overfitting [22]. The dataset utilized Amazon Mechanic
Turk to capture mouse clicks. The data collection procedure was
set up such that the mouse clicks from users simulate human visual
attention in a free viewing context. These datasets have been widely
used in regular image and video research. However, they do not
reflect the human attention for 360-degree video and thus should
not be directly applied to this new technology.

Few works have focused on user attention for 360-degree videos
and images. Fan et al. collected head tracking data from 50 users
viewing 10 videos [9]. However, the introduced saliency datasets
were generated from a model trained on regular images [7]. Thus,
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Table 1: Statistics of Head Tracking Logs

Logs Name  No. of Users No. of Videos  Log type

Corbillon [5] 59 5 Quaternion
Wu [27] 43 9 Quaternion
Lo [20] 50 10 Euler angles

Figure 2: Deriving head orientation vector

the saliency maps do not reflect users’ attention in 360-degree
videos. Rai et al. created a saliency dataset from 40 users viewing 60
omnidirectional image [24]. Each image was viewed for 25 seconds
while the head and eye were tracked by a customized eye tracker
installed into the HMD device. Recently, David et al. adopted a
similar approach to collect tracking data from 19 videos of five
categories [8]. Each video has 20 seconds and was viewed by 57
users. The fixation derived from the tracking logs was then used to
generate saliency maps. Unfortunately, the size of these datasets
are still limited to support advanced saliency modeling, e.g., using
deep neural networks. To bridge this gap, we propose the largest
360-degree video saliency dataset so far and a saliency extraction
software to enable further research in saliency prediction and 360-
degree video systems.

3 DATASET GENERATION

In this section, we introduce the steps to extract saliency for 360-
degree videos. The procedure is summarized in Figure 1.

3.1 Head Tracking Input

To generate saliency maps, the proposed saliency extraction frame-
work receives head tracking logs as input. The head tracking logs
are obtained from three public datasets [5, 20, 27]. Table 1 shows
the number of users, the number of videos, and the head orientation
representation of each head tracking dataset. We exclude 9 videos
from Wu’s head tracking logs since the data was collected while
users were performing assigned tasks such as tracking/counting
objects. Therefore, they were not captured in a free-viewing condi-
tion. The average duration of the head tracking logs is 164 seconds,
with a minimum of 60 seconds and a maximum of 655 seconds.

3.2 Head Orientation Derivation

We first derive the head orientation vector and treat it as a consis-
tent head orientation format across different head tracking logs.
Existing logs record users’ head movement by using the rotation
between a reference unit vector and the current head orientation.
Depending on the platform, the rotation could be represented as
4-tuple quaternion [5, 27] or yaw, pitch, roll [20]. Quaternion is
a 4-tuple representation that is equivalent to the rotation matrix
in 3D. Euler angles represent the rotations along individual axes.
Hence, by applying a rotation operation to the unit reference vector,
the head orientation vector can be derived. This process can be
illustrated by Figure 2. Given a head orientation represented as a
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Figure 3: Saccade filtering using thresholds (dotted line)

Euler angle (yaw=40, pitch=0, roll=0) or a quaternion (0.940, 0.0,
0.342, 0.0), the head orientation vector u can be derived by applying
a 40° counter-clockwise rotation along the y axis on the reference
unit vector v. Coupled with the timestamps, we are able to derive
where the user is looking at on the 3D sphere for any given moment.

3.3 Fixation Extraction

In this step, the fixation is extracted from head orientation vectors.
Fixation happens when users’ head orientation focuses at a spe-
cific area for a short period of time. Before extracting the fixation,
saccades must be filtered out. Saccades are very fast movement
during which the brain does not process visual input. Thus, they
do not reflect user attention. To remove saccades, head turning
velocity and acceleration are first derived from head orientations.
Then, based on study in [10], head movement with velocity over
20° /s and acceleration magnitude greater than 50°/s? is considered
saccade and filtered out.

Figure 3 illustrates an example of filtering out saccade of the
video “Conan1”. The red dotted lines are the thresholds of velocity
(top figure) and acceleration (bottom figure). Those data whose
velocity and acceleration exceed the thresholds are cut off.

We then associate the filtered head orientation vectors with
the video frame under viewing. The head orientation vectors are
converted into pixel coordinates to create fixation maps (equirect-
angular frame format) using the following formulas:

¢

QZQ*(W (1)
b:(l_sTm@)*w @)

where a and b are the longitude and latitude positions in the equirect-
angular frame, ¢ and 6 are the vertical and horizontal angles of
head orientation vector u in 3D space, and ‘W and H are the width
and height of the target equirectangular frame.

3.4 Fixation Map Creation

Fixation map is the aggregation of fixation points from all users
viewing a video at a given timestamp. While fixation from differ-
ent users usually can mark the region of interest, isolated fixation
from few users could be the results of random behavior. Thus, it
is necessary to filter out these noisy data points. We choose the
Density-Based Spatial Clustering (DBSCAN) algorithm to filter out
noise fixation points. This is because DBSCAN, unlike K-mean,
returns high-density fixation samples (core samples) without in-
troducing additional data. Based on the density of fixations points
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Figure 4: Fixation map filtering by DBSCAN
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Figure 5: Sample saliency maps in the dataset

(i) Sport

in our pre-filtering fixation maps, the DBSCAN is configured to
remove most noise in clusters with high density and still be able to
retain some core fixations points in cluster with less density. Similar
approaches have been previously applied to 360-degree images [1].

Figure 4 illustrates the effect of filtering noisy fixation. While
the majority of user fixation focus on the man’s face and the feet
of the Eiffel tower, some users randomly look around. In Figure
4c, the DBSCAN filters out the most irrelevant fixation points. The
core fixation samples now reflect the two most salient areas in the
frame.

3.5 Saliency Map Generation
While fixation maps can manifest users’ attention at some specific
points, they ignore the area in between those points. In fact, it is
important to identify continuous regions of interest [4, 26]. This
problem could be addressed by applying a Gaussian filter on the
fixation maps. Specifically, we assign saliency level to an area based
on the density of the fixation around it. Such a classic method has
previously been adopted in [1, 16] to generate saliency maps.
Figure 5 shows several illustrative examples of the created saliency
maps. These saliency maps imply the areas where the majority of
users pay attention to. In these examples, there is a tendency to
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focus on small and conspicuous objects such as human (5a, 5d, and
5i). This is similar to the observed behavior in regular image/videos.
However, we notice that there are also some distinct phenomena.
For example, users highly focus on the target of fast-moving cam-
eras in videos such as Roller (5b), Driving (5g), Game (5h) and Skiing
(5€). In addition, users also tend to ignore large and close objects
and prefer far-away and small objects that attract their interests in
some videos such as Skiing (5e), and Diving (5f).

3.6 Program Structure

The generated saliency maps are filtered one more time to remove
maps with negligible saliency, i.e., users’ head orientations are ran-
domly scattered due to the lack of region of interest. We eventually
create a dataset of 50,654 saliency maps from 24 videos. The saliency
maps for each video are stored together in one file. The data in each
file is organized into records. Each record has three fields: times-
tamp, fixation, and saliency map. The first field is the relative video
time in seconds for the saliency maps. The second field is a list of
fixation points. Each fixation point is a unit vector representing the
head orientation in the three-dimensional space. The third field is
the saliency map, where each pixel is a float number representing
the saliency level in the original video frame.

Our software can receive head tracking logs for any 360-degree
videos and return saliency maps stored in pickle formats. The scripts
(written in Python) reside in the root folder. The data folder contains
saliency map files and the URLs to the original 360-degree videos
hosted in Youtube. The naming convention for saliency map files is
saliency_ds<ds>_topic<vid> where ds is the index of the data source
(Corbillon, Wu, and Lo) and vid is the video name. The saliency
maps and the software are made publicly available at Github. !

4 DATASET EVALUATION AND ANALYTICS

In this section, we evaluate the consistency and explore some of
the characteristics of the 360-degree saliency maps. The Intel AI
DevCloud framework is used to calculate the evaluation metrics,
analyze and visualize the saliency data.

4.1 Dataset Evaluation

First, we evaluate if the generated saliency maps are consistent with
human attention by using several popular corresponding measures
[3] such as shuffle Area Under Curve (SAUC), Normalized Scanpath
Saliency (NSS), and Pearson’s Correlation Coefficient (CC). These
measures indicate the correlation between the saliency maps and
the actual user fixation. We also compare the proposed saliency
dataset with two baseline saliency generation methods. The Equator
Bar is a model which linearly increases saliency level from the pole
to the equator of the sphere. This results in a nonlinear increasing
of saliency in the projected equirectangular frame. Similarly, in
the Circle at Center baseline, a circle on the surface of the sphere
is expanded from a given point. The saliency level decreases as it
moves further away from that point. The projected equirectangular
shows high saliency around the center of the frame.

Table 2 shows the evaluation results. The proposed saliency
dataset achieves a higher score than both baselines in all metrics.
The scores of these metrics are also consistent with the results of
other state-of-the-art datasets [3, 22] indicating that the saliency

Thttps://github.com/phananh1010/PanoSaliency
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Table 2: Saliency Dataset Evaluation

Models sAUC NSS CC
Our Saliency Dataset 0.862 4.873 0.916
Equator Bar 0.409 1.110 0.302

Circle at Center 0.589 2.472 0.502

dataset is reasonable and captures user attention. Moreover, the low
scores of the baselines imply that user attention cannot be captured
by simple heuristics that attempt to simulate biases. Finally, the
scores of Circle at Center are better than those of Equator Bar. This
is because the camera placement in many 360-degree videos tend
to capture important targets at the center of the frame.

4.2 Dataset Analytics
Next, we analyze the proposed saliency dataset to provide insight
on user behavior in 360-degree videos.

4.2.1  Accumulated Saliency. We first examine accumulated saliency
to investigate user attention on 360-degree videos in the spatial
domain. Specifically, we sum together the saliency maps of a video
across the time domain to create the accumulated saliency map.
The accumulated saliency maps identify the most salient regions
attracting the highest attention. We also randomly sample 600 fix-
ation maps for each video to indicate which spatial regions have
been actually explored by users. Note that some fixation points may
not be shown on the accumulated saliency map since they may be
viewed by only a few users.

The accumulated saliency and fixation maps are shown in Fig-
ure 6. We can observe that users’ exploring pattern across the spatial
domain is highly distinct for different videos. For very fast moving
videos such as Roller, Drive, Game and Landscape, the salient re-
gions are small and the fixation points are relatively clustered. This
is because the fast camera-moving speed strongly restricts users’
movement and therefore users focus on the moving direction of the
camera. Similarly, the small size of highly salient region and the
clusters of fixation points can also be observed in videos with few
salient objects such as Cooking, Conanl, and Sport. This is because
the small number of salient objects limits the users’ navigating
options.

4.2.2 Local Randomness Saliency. To quantify the extent of user
navigation in accumulated saliency maps, we propose the Local
Randomness Saliency (LRS) metric. It is calculated by applying an
entropy filter [28] to the accumulated saliency map and then taking
the mean of the output map. The entropy filter passes a convolution
mask on the accumulated saliency map and calculates the Shannon
Entropy each time. Therefore, the LRS metric can assign more
energy to regions that attract users attention and capture the extent
of users’ spatial navigation behavior.

Table 3 shows the LRS values for each 360-degree video. There
is a strong agreement between the LRS values and the accumulated
saliency maps shown in Figure 6. Notably, videos with faster camera
movement such as Roller, Coaster, Coaster2, Game, Ride and Drive
all result in lower LRS values. This is because there are only a
few regions with high saliency in these videos. On the other hand,
videos with a static camera and fewer focus points such as Venise,
Diving, Timelapse, Diving2, and Panel achieve higher values of LRS.
This is attributed to the fact that there is no clear foreground object


https://github.com/phananh1010/PanoSaliency

A Saliency Dataset for 360-Degree Videos

Cooking Roller Diving

MMSys ’19, June 18-21, 2019, Amherst, MA, USA

Timelapse Venise Drive

Conanl Skiing Game

Landscape Sport Diving2

Figure 6: Sample accumulated saliency and fixation maps

Table 3: Local Randomness Saliency of the dataset

Coaster Coaster2 Diving2 Landscape Pacman Panel Drive Ride Game  Sport Roller Venise
0.35 0.265 0.723 0.503 0.266 0.61 0.453 0.339 0.252 0.492  0.347 0.952
Conanl Skiing Alien Conan2 Surfing War  Cooking Football Rhinos Paris Timelapse Diving
0.439 1.187 1.548 0.434 1.303 0.801 0.839 0.745 1.378 0.557  0.779 0.892

to focus on when viewing these videos. As a result, users spend
most of the time exploring around.

4.2.3 Head Movement Velocity and Saccade Percentage. We now
investigate user attention in the time domain by studying some
intermediate data that results in the saliency dataset. Specifically,
we track the median head movement velocity of all users and the
saccade percentage of each video. The saccade percentage is the
portion of data removed during the saccade removal process dis-
cussed in Section 3.3. A high saccade percentage of a video implies
that users move their head frequently to explore new content.
Table 4 shows the user interaction results in the time domain. In
all cases, videos with higher head movement speed have more data
identified as saccade. More interestingly, videos captured by a fast-
moving camera such as Roller, Drive, Game, Landscape, Coaster,
Coaster2, and Pacman have a low head movement speed. This
verifies the effects we discussed in Section 4.2.1 and 4.2.2. In addition,
the head movement velocity in videos such as Conan1, Conan2, and
Cooking tend to be much lower. Since these videos have few salient
objects, users do not have many options to explore the content.

5 DATASET SAMPLE USAGE
5.1 360-degree Saliency Prediction Model

In 360-degree videos, developing an accurate attention models has
become the major challenge due to its role in many applications.
While several strong saliency prediction models [7, 22] have been
proposed for regular videos/images thanks to the large-scale dataset
such as SALICON [14], the development of 360-degree saliency
model has been limited due to the lack of similar large-scale 360-
degree datasets. With the proposed large dataset, an improved
saliency model could be trained to address various problems in
360-degree videos. One of the potential application of 360-degree
saliency model is video compression. Similar to previous approaches

in regular videos [12], identifying and encoding region of interest in
higher quality could allow higher compression ratio and satisfactory
user experience.

5.2 Head Movement Prediction

Head movement prediction is the key to bandwidth-efficient viewport-
adaptive streaming for 360-degree videos, where only the viewport
that users would look at in the near future is streamed. However,
head movement prediction that only explores past head orienta-
tions was shown to achieve limited accuracy [13, 23]. Since most
head movement are the users’ reaction to video content, saliency
maps could be used to identify areas that attract users’ attention.
By adding near-future saliency maps as an additional feature, the
head movement prediction performance can be significantly im-
proved. In fact, we have used a small subset of the proposed saliency
dataset to build a preliminary head movement prediction model
successfully [21]. Future work is needed to fully explore the larger
saliency dataset and further improve head movement prediction
performance.

5.3 360-degree Video Tile Preparation

Tile-based streaming systems cut the 360-degree video into tiles at
server side and then stream the tiles covering user viewport. The
saliency dataset could be used to improve tile preparation strategies.
For example, in videos where users tend to focus on few locations
such as Roller, Game, Drive, an aggressive tile preparation approach
could be used i.e. only those few tiles covering the salient region
would be prepared with higher bitrates while the remaining tiles
would be encoded in low bitrates only. This can expedite the tile
preparation and encoding at the server and is especially beneficial
for live broadcasting systems. This approach is scalable because
the server only needs to calculate saliency maps once in an offline
fashion before developing a streaming strategy.



MMSys ’19, June 18-21, 2019, Amherst, MA, USA

Anh Nguyen and Zhisheng Yan

Table 4: Median head movement velocity and saccade percentage of the dataset

Coaster Coaster2 Diving2 Landscape Pacman Panel Drive Ride Game  Sport Roller Venise
Velocity 4.609 5.602 12.226 12.701 7.678 15.619 10.505 9.523 7.27 12.508 8.468 11.326
Saccade pct.  0.35 0.265 0.723 0.503 0.266 0.61 0.453 0.339 0.252 0.492 0.369 0.427

Conanl Skiing Alien Conan2 Surfing War Cooking Football Rhinos Paris  Timelapse Diving
Velocity 6.183 9.2767 6.557 7.207 11.316 7.356 2.218 8.8711 6.297 9.016 15.275 11.959
Saccade pct.  0.323 0.380 0.320 0.348 0.425 0.366 0.217 0.395 0.337 0.388 0.429 0.512

6 CONCLUSION

In this paper, we introduce a saliency dataset for 360-degree videos
with more than 50,654 samples and an open-source software to ex-
tract saliency maps from 360-degree videos with head tracking data.
Motivated by psychology studies on user behavior in HMDs, we
propose a methodology to capture fixation maps and then generate
saliency maps for 360-degree videos. Evaluation results show that
the proposed saliency dataset is highly consistent with the ground
truth user fixation. Analytics of the dataset on the spatial and tempo-
ral are also presented to provide insight on user interaction pattern
in HMDs.

Both the dataset and the source code for saliency maps extraction
have been posted on public website for sharing. This work will
bring a large dataset of 360-degree video saliency to the research
community. It could potentially enable new powerful computational
models for saliency detection that were impossible with the existing
small datasets. The saliency dataset can also be used in various other
areas, such as 360-degree video streaming and compression.

By using the thresholds to remove saccade, we do not consider
the cases where users try to track fast-moving objects while their
head is still moving. In this case, head orientation might not per-
fectly address the eye fixation. To address this issue and improve the
accuracy of the saliency maps, we plan to incorporate the fixation
data from the eye tracking VR headset in our future work.
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