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Abstract—Demonstrating firefighting operations in search and
rescue missions through videos is a common approach to in-
classroom firefighter training. Unfortunately, traditional 2D cam-
eras have fundamental weaknesses – they can only capture a
narrow field of view and miss a lot of information coming
from the surroundings of the firefighter, which may become the
matter of life and death in certain situations. In this paper, we
propose a system combining the advantage of 360◦ videos and
deep learning to automatically detect important objects in the
panoramic scene, assisting firefighting instructors in classroom
teaching scenarios. Specifically, we summarize the salient objects
and events relevant to firefighting through an interview with an
experienced firefighting instructor. Leveraging this knowledge,
we investigate the detection of firefighting objects on 360◦ videos
through a transfer learning approach. We report insightful results
for object detectors trained on generic objects and 2D videos and
discuss the next steps in designing a customized object detector.

Index Terms—360◦ video, firefighting, object detection

I. INTRODUCTION

Firefighting is a dangerous activity that demands extensive
training of firefighters both inside and outside of the class-
room. Instructors (often the Incident Commanders) are in need
of advanced cyber-tools inside of the classroom to point out,
demonstrate, and show to trainees the appropriate behaviors
needed to contain fire effectively before the trainees go out to
a training ground to learn in a hands-on fashion how to act
to save lives. Firefighting institutes such as the Illinois Fire
Service Institute [2] provide training capabilities for future
firefighters. They use several techniques in the classroom
involving animations, slide-lectures, and recordings that are
created using 2D video cameras to showcase both proper and
faulty behaviors in firefighting while also educating trainees
about diverse situations that firefighters can face at the incident
scene.

However, existing 2D video-based tools suffer a fundamen-
tal limitation – incident commanders (ICs) are only able to
view and display a single view of a scene at a time. This makes
it infeasible for ICs and firefighter trainees to discuss the entire
picture of the emergency scene, as events of interest can occur
outside of a camera’s coverage. With the advances of new
camera hardware such as 360◦ video cameras and artificial
intelligence (AI) technologies utilizing deep learning, new
innovative tools and techniques can be investigated to assist
firefighting instructors more efficiently during in-classroom
teaching.
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Fig. 1: The main viewport of a 360◦ firefighting video overlaid
with a mini-view showing an event of interest – fire rollover.

360◦ video cameras offer multiple views, allowing the
ICs to leverage broader content from different views to
demonstrate firefighting objects and events. Deep learning AI
algorithms can allow for the intelligent selection and inference
of events and objects on top of these teaching videos. We
present the vision of a 360◦ video analytics service that enables
ICs to interact with and showcase all views in the entire
emergency scene. This is achieved by allowing the ICs to not
only switch the viewport manually within a 360◦ panoramic
scene, but also visualize machine-detected events of interest
that are highlighted on the teaching videos. As shown in Fig. 1,
if the video can show not only the first-person view of a room
under search, but also has “eyes in the back” to identify the fire
rollover behind through a mini-view, the IC is better equipped
to educate trainees about the best practices in such a chaotic
environment.

Achieving this vision requires us to overcome two major
challenges. The first challenge is to understand which events
are of higher and lower importance in 360◦ firefighting videos.
This is important because showing and detecting too many
visuals might cause information overload. While common
sense is often utilized in prior firefighting technology design,
they may not meet the domain need. One needs domain
expertise from firefighting institutes to identify salient events
and objects. The second challenge is to develop a 360◦

service pipeline that would automatically analyze the recorded
360◦ videos via appropriate machine learning algorithms and
infer the desired objects that the IC can then use to achieve
teaching objectives for the trainees. Despite prior research in
object detection, the second challenge is non-trivial, as it is
unknown whether existing detectors for general purposes can
detect specialized firefighting-related objects and events. The



accuracy of detecting firefighting objects in 360◦ videos is also
in question, as these videos are stored in an equirectangular
format which distorts objects in each frame (e.g., stretched
objects at the top and bottom of each video frame).

In this paper, we present a novel 360◦ video analytics ser-
vice framework that will be used in a training tool for ICs. We
make two important contributions. First, we conduct extensive
interviews with our collaborator Richard Kesler, an expert in
the IFSI (Illinois Fire Service Institute), to understand the
needs for detecting objects and events in firefighter training.
We summarized the list of important firefighting objects and
events that can be used by the community for the future design
of firefighting tools. We show the interview results in Section
III. Second, we conducted a study to understand whether or
not and how accurately existing object detectors developed
for generic 2D videos can perform on 360◦ firefighting videos.
This is the first step towards utilizing a transfer learning mech-
anism to design 360◦ firefighting object and event detectors,
which can potentially deal with the lack of the ground-truth-
annotated 360◦ firefighting videos. The results and analysis
are shown in Section IV. In Section V, we discuss next steps
regarding our cyber-tool that can allow ICs to showcase events
and objects in real-time to the trainees via pop-up mini-views.
We conclude the paper in Section VI.

II. RELATED WORK

Media Technologies in Firefighting. Research has been
conducted to understand how audio and video can improve
the training and operation for firefighters. In [6], the authors
specified a list of requirements in terms of services and
security for wireless communications among first responders.
Later, the same authors proposed a framework to evaluate
the performance of media-assisted firefighting systems. Their
evaluation approach relied on the movement patterns of first
responders [7], [8]. However, previous first responder systems
focused on 2D videos were limited by the field-of-view of 2D
cameras. The situational awareness of these media systems can
be enhanced to further assist training and operation.

Recently, immersive media technology has begun to attract
attention in firefighting studies. Bellemans et al. [3] simulated
various hazard training scenarios happening on Navy decks
using virtual reality. It provides a realistic, flexible, and cheap
way to train firefighters while reducing the associated risks.
However, their main focus is training in virtual environments.
This is different from our work since we are using 360◦ videos
and identifying events of interest happening in the real world
in order to assist training.

Object Detection. Object detection is one of the fundamen-
tal problems in computer vision. In early days, handcrafted
features such as Kalman filtering were widely used to identify
objects, but they were less robust as they could not cope with
the variety of textures in images. To overcome this limitation,
later works applied deep learning to train a model directly
on image pixels without relying on a fixed and limited set
of handcrafted heuristics. Modern detectors, such as SSD
[11] and algorithms in the YOLO family, rely on a one-shot

architecture, allowing them to perform detection in real time
while maintaining competitive detection accuracy. Despite
this fact, modern object detectors can only detect a small
number of generic object categories [5]. These categories do
not necessarily cover objects/events considered important by
firefighters. Furthermore, these detectors are mostly trained
on 2D videos/images, which are free from the projection
distortions inherent in 360◦ videos. In this paper, we take
the first step to understand how modern object detection
architectures perform on firefighting objects and 360◦ videos.
We aim to shed some light on the design of a full-scale object
and event detector customized to 360◦ firefighting videos.

III. IDENTIFYING SIGNIFICANT OBJECTS AND EVENTS

Typical firefighting scenarios involve a myriad of objects
and events that can potentially be detected and identified; how-
ever, many of these instances are nonessential and contribute
little towards firefighter in-classroom training. To achieve
visual clarity for trainees in the classroom setting, the 360◦

analytics framework must only highlight salient objects and
events that demand high priority while also emphasizing swift
scene comprehension. This begs the fundamental question that
has not been addressed by previous studies - what critical ob-
jects and events should be explicitly highlighted for firefighter
training? Answering this question is not straightforward and
requires specialized knowledge from domain experts. To this
end, we conducted an interview with a domain expert.

A. Identifying Subject to Interview

We conducted an interview with Richard Kesler, the Deputy
Director of Research Programs at the IFSI. His work focuses
on examining the physiological demands of firefighting activ-
ity and the impact of firefighting on the firefighter. He serves
on the technical committee for the National Fire Protection
Association. He teaches in numerous IFSI classes and is
a physical training instructor for the IFSI Basic Operations
Firefighter Academy. Richard is currently pursuing his PhD
in Kinesiology and serves as a volunteer Assistant Chief with
the Savoy Fire Department.

B. Data Collection

We prepared a series of questions to ask Richard during a
qualitative virtual interview:

1) What objects and events require an alert during fire-
fighter operations?

2) What are your requirements for remote incident com-
mand systems? What types of information signals would
you prefer, and what would be the preferred frequencies
and durations of these signals?

3) What is the priority of objects/events that you would
like to highlight for firefighter trainees?

4) Should environmental events be flagged and differenti-
ated from events involving people?

Based on the answers to these questions, we were able to com-
pile a list of important objects and events during firefighting
scenarios. Each object or event is classified based on whether



TABLE I: Events and objects of importance in firefighting
Type Context Name Priority

Object Training Helmet off Low
Object Training Unfastened SCBA strap High
Object Training SCBA facepiece not secure High
Action General Changes in fire condition Very High
Action General Increases in smoke density Very High
Object General Person (Non-firefighter) Very High
Object General Person (Firefighter) Low
Action General Human entering/exiting building High
Action General Integrity of building material High
Action General Water coming out of hose Low

they can be detected through either object detection or action
detection. We further grouped each object or event based on
the context of the situation – training-specific objects/events
and general objects/events important in both training and
emergency scenarios. Table 1 lists the results with the priority
value signifying relative importance.

General Objects and Events. We found that events of the
highest priority always involved occupants within a building or
structure. It was important to explicitly signal when an individ-
ual entered and exited a structure, and the most important alerts
involved movement inside of a structure that did not belong to
a member of the fire crew. An example of an important event
would include an occupant hanging outside of a window. It
was also considered a priority to differentiate environmental
events from events involving people. Environmental events
to consider involved changes in smoke and fire condition,
changes imperative to highlight to let the IC know whether
the frontline firefighters are able to contain the fire effectively.

Training-Specific Objects and Events. Training-specific
objects and events are closely related to the errors that trainees
often commit during their lessons but are not highly pertinent
to emergency incident response scenarios. These mistakes
are important to highlight during the in-classroom session,
particularly the errors involving the self-contained breathing
apparatus (SCBA), a respiratory device that delivers breathable
compressed air to firefighters to help them in lethal envi-
ronments involving toxic particulates. Detecting the mistakes
involving the SCBA are of high priority, as they are not
as salient and the instructor may possibly miss them during
the live session. The training specific instances involving the
SCBA starkly contrast with the training-specific case of a
firefighter’s helmet falling off. This is because the latter case is
very salient in the training videos without explicit highlighting
and the error itself is detected quite easily by the trainees.

C. Analysis of Interview Data

The collected expert insight provided us with a better
understanding of what objects to detect for specifically training
purposes. We conclude that many events (e.g., water failing
to flow out of the hose), while considered critical and of
high priority during incidence response, are of low priority to
highlight because they are immediately noticeable by trainees
in the classroom. This is somewhat unexpected from a non-
expert point of view. However, it provides significant insight
for future design of firefighting technologies. To achieve teach-
ing objectives for trainees, ICs must prioritize visual clarity.

This fundamental idea also applies to the priority difference
between firefighters and non-firefighters. During incident re-
sponse, the safety of individuals not part of the fire crew,
such as occupants within a burning structure, intrinsically
carries more importance than the location of firefighters within
the crew. Firefighters typically take up large portions of the
video, but highlighting each and every instance of a firefighter
throughout the video leads to more clutter and information
overload.

IV. DETECTING OBJECTS FOR FIREFIGHTING

Detecting firefighting-related objects in 360◦ videos is non-
trivial. First, specialized objects, e.g., fire, present radically
different textures, shape, and color from everyday objects.
There is additional complexity even for the same typical
objects - among humans, a firefighter is considered to be in
a different class from a non-firefighter, such as an occupant
within a structure. Moreover, distorted objects in 360◦ videos
may further confuse the object detectors.

Modern object detectors have been applied in general 2D
video content. We ask ourselves a question – can a deep learn-
ing model, trained on large public non-firefighting datasets,
be applicable to firefighting object detection tasks? If yes,
then how effective will the trained classifiers and model
parameters be, and what needs to be done to further extend
the object detector to be applicable to 360◦ firefighting videos?
Successfully addressing these questions is important in 360◦

firefighting object detection as it could save a tremendous
amount of effort in data collection, annotation and modeling.
However, they have never been answered before. Previous
object detection frameworks primarily focused on finding
humans and everyday objects in 2D videos where smoke
and other fire hazards were not presented [15], [17]. In this
paper, we focus on understanding whether or not and how a
specialized detector can be designed.

A. Object Detection for Firefighting Operations

To answer the aforementioned questions, we employ
YOLOv3 [16], a state of the art one-stage object detector
known for its speed and accuracy. YOLOv3 will be trained
on the COCO dataset and evaluated on 2D videos provided
by the IFSI as well as sample 360◦ videos collected online.
We chose COCO due to its size and versatility of annotated
data (1.5 million 2D images). On the other hand, the dataset
from IFSI [2] includes 28 2D videos. These videos range from
instruction and handling equipment to firefighting in a practical
environment.

At this moment, we focus on investigating the potential
of domain adaptation with transfer learning, testing the ef-
ficacy of object detectors trained with COCO on the IFSI-
provided videos and our self-collected videos. We investigate
two levels of knowledge transfer – transfer learning from
everyday objects to firefighting objects and transfer learning
from 2D videos to 360◦ videos. Details regarding the potential
of transfer learning are discussed in section V-A1.



Fig. 2: Architecture of the 360◦ video analytics service.

Details of our approach are described in Fig. 2. There
are two main steps. In the training phase, YOLOv3 was
trained on the COCO dataset. In the evaluation phase, we used
the trained YOLOv3 framework to perform detection on test
videos, as indicated by the red arrow. All videos were stored
locally and then later delivered to the back end. Here, videos
containing objects defined in Section III-C were selected for
evaluation. After the YOLOv3 framework performs detection
on the videos, relevant objects can be highlighted to assist the
commander when he/she is reviewing the videos.

B. Detection Experiments and Results

1) Results on 2D Videos: We utilized the YOLOv3 ar-
chitecture to perform detection frame-by-frame on our 2D
videos. We discovered that firefighting-relevant objects such
as the firefighters and their SCBA breathing air cylinders
were detected accurately, demonstrating the potential of a
transfer learning approach. However, YOLOv3’s performance
degrades significantly when detecting objects in low-light and
smoke-filled conditions. Fig. 3 demonstrates the degradation
in performance of the detection model for 3 IFSI videos. The
first video (the first row) captures a scene of a firefighter team
crawling into a burning building. The second video (the second
row) is of a scene during which two firefighters are dragging a
downed, unconscious firefighter out of a smoke-filled environ-
ment. The third video (the third row) consists of a firefighter
assist and search team searching the interior of a flaming
building for other firefighters in distress. For the first video, the
detection confidence score for humans dropped from 0.95 (left
figure) down to 0.53 when the firefighter entered the smoke-
filled environment (right figure). In this environment, YOLOv3
failed to track the breathing air cylinders and the firefighter in
front of the one detected, as their textures were blurred and
occluded. For the second video, none of the firefighters were
detected in the smoke-filled environment (right figure). They
became detectable once on the verge of exiting the building
(left figure). The third video also demonstrates a stark contrast
– almost all of the individuals in the video are perfectly
detected once they have exited the smoke-filled building (left
figure). However, the firefighter inside the building was not
detected (right figure).

Fig. 3: Difference in performance when the model detects
objects in normal conditions (left) versus smoke-filled and
low-light conditions (right) for 3 videos (3 rows).

In addition, we quantitatively evaluated the model perfor-
mance on 2D firefighting videos. We evaluated the model
performance as well as the change of model score when the
video content transitions from a normal training condition to
a fire hazard environment. In these testing videos, half of the
content included the inside of the building, which was dark
and covered in smoke.

We use mAP scores to benchmark the detection accu-
racy [10]. The mAP metric is commonly used to reflect
the reliability of predicted bounding boxes, requiring two
types of input, the ground-truth bounding boxes and predicted
bounding boxes. The predicted bounding boxes are produced
directly from YOLOv3. On the other hand, since firefighting
objects have never been annotated in previous video datasets
including the IFSI dataset, the ground truth bounding boxes
must be manually annotated by us. We manually annotated the
positions of bounding boxes of objects appearing in the video
frames, and to facilitate the annotation process, we developed
a Python program plotting positions of ground truth bounding
boxes on frames given the input positions in numerical format.
The plotted images provide visual cues, allowing the annotator
to shift the bounding boxes until they fit the target objects
in the images. The adjusted bounding boxes are accepted as
ground truth if the annotator cannot find gaps between an
object and its bounding box within three seconds.

Table II reports the average mAP results. We observe
that the mAP score when YOLOv3 performs detections for
normal conditions ranges from 13 to 44 points higher than
that of hazard conditions. This big drop further confirms
the significant impact of factors such as light condition and
fire/smoke occlusion on model performance. We also notice
that the YOLOv3 performance in normal conditions is not
far from the typical performance of YOLOv3 on the COCO
dataset, proving the potential of transfer learning from regular



TABLE II: The mAP scores for all training videos
Average duration (seconds) mAP normal mAP hazard

16.5 44.2 15.6

Fig. 4: The distorted detection results on a 360◦ video.

objects to firefighting objects.
We conclude that current off-the-shelf object detectors could

detect some important objects closely related to the context
of a firefighting operation. However, the performance of these
detectors degrades in the face of smoke-filled and fire environ-
ments, demanding that our training data incorporate images of
objects within these scenarios. Further improvement directions
are discussed in detail in the Discussion Section.

2) Preliminary Results on 360◦ Videos: We looked to
evaluate how the performance of the object detector trained on
2D videos degrades for firefighting-specific 360◦ content. We
had YOLOv3 perform detection tasks on a publicly available
360◦ fire safety video stored as equirectangular format [1].
Many objects in this video were close to the equator of the
projection, allowing for many successful detections as the
distortions near the equator are small. Despite this, many
objects were still misclassified or not detected at all due to
the small distortions of the equirectangular 360◦ format. We
point out one particularly egregious misclassification caused
from the distortion of the video in Fig. 4 – the stretching of
the building structure coupled with the elongated curvature
of a firefighter’s shadow led the YOLOv3 object detector to
classify a large area of the video as a boot. In another instance,
a firefighter crawling near the camera was misclassified as a
motorbike due to the distortions from the projection elongating
his arms and legs substantially more than his back.

V. DISCUSSION

A. Improving Event-Object Detectors

Event-Object detector is the core component in our system.
The following discuss several approaches to improve its per-
formance.

1) Transfer Learning: Transfer learning is a popular tech-
nique to reduce the limitation of the small data size. The idea
is to have the model trained on a large dataset originating
from a closely related domain before continuing the training
on the target dataset. By doing this, the model remembers
some universal basic patterns across domains such as color
and texture, which helps increase the model accuracy. Transfer
learning has been successfully applied to transfer knowledge
in some computer vision tasks e.g. transferring 2D saliency to
panoramic saliency [13].

We have completed initial steps towards using transfer
learning to solve our problem. In particular, we showed
that YOLOv3 can leverage some knowledge of the COCO
dataset to identify important firefighting objects we previously
identified on both 2D videos and 360◦ videos. To fully utilize
transfer learning techniques, our next step is to design a train-
ing procedure to force YOLOv3 to learn features for hazardous
environments and distorted objects in 360◦ videos using a
customized dataset while still retaining previous knowledge
from COCO.

2) Data Collection: To conduct the transfer learning pro-
cess, an annotated dataset for 360◦ firefighting videos is
needed. To our best knowledge, such a dataset does not exist.
We plan to collect and manually annotate our own dataset.
Regarding the data sources, gathering data from firefighting
training sites of the IFSI is certainly not enough. We also need
to collect relevant videos from other digital platforms such
as YouTube and Vimeo. To ensure the success of the model
training, collected videos must include the previously defined
important objects/events. Furthermore, the content should be
diverse enough to reduce the overfitting effect.

3) Working with 360◦ Video: We see that YOLOv3 detects
objects reasonably well in the regions near the equator but per-
forms poorly near the pole areas due to the distortion from the
projection in 360◦ videos. To overcome this challenge, we plan
to employ a multi-directional projection (MDP) technique in
our algorithm [14]. This technique generates different versions
of a 360◦ frame, each with a different projection orientation.
The fundamental idea is to alter the original projection of
the panoramic frame to force distorted objects near the pole
areas towards the equator in new versions of the frame with
different projection orientations. This method could allow a
YOLO-based object detection framework to perform well for
360◦ formats even if it is largely being trained on 2D video
datasets.

4) Dealing with smoke-filled conditions: As previously
discussed in Section IV-B, the detection performance dropped
significantly due to the interference of smoke. To deal with
these challenges, we plan to investigate two potential ap-
proaches. Firstly, frames could be transformed from the RGB
color space to YUV, or the event-object detector could utilize
a thermal imaging component to highlight features in dim or
smoke-filled environments, where RGB images fail. Secondly,
we will try augmenting frames with simulated smoke and a
low light level to adapt the model to fire hazard conditions.

5) Event Detection: Our current system can detect objects
of various types. We aim to improve the model to detect both
objects and events. To accomplish this goal, our model should
be able to accommodate spatiotemporal data from multiple
consecutive frames to detect time-dependent events such as
increases in smoke density, changes in fire condition, and the
structural collapse of building materials. There are multiple
techniques to solve these problems, involving long short term
memory networks [12], transformers [9], or 3D convolutional
networks [4]. Finding the suitable method for our problem
will be left for future work. The developed event detection



Fig. 5: Future system architecture.

model and the object detector will constitute an Event-Object
Detector that can be used in more emergency management
scenarios outside of firefighter in-classroom training.

B. Future System Architecture

While the service framework discussed in this paper focuses
on an offline instruction system in classrooms, our vision in
the long term is to bring the 360◦ video analytics service
into real world situations, e.g., deploy the system online for
active firefighting operations. We plan to create a real-time
system transferring omnidirectional information captured from
frontline responders to the IC, allowing him/her to quickly
grasp the situation and make the most-informed decision.

The details of this future system are described in Fig. 5.
In the system, 360◦ cameras are attached to each dispatched
frontline responder. As the frontline responders proceed to
engage and interact with the environment, the panoramic cam-
eras capture the scene. The 360◦ video data for each frontline
responder is encoded and transferred over the network to a
server at the back end. The main viewport corresponding to the
current orientation of the firefighter carrying the 360◦ camera
is rendered and displayed to the IC. At the same time, a
deep learning model performs directly on the video frames
in the playback buffer to detect critical objects and events.
Relevant information not shown in the current viewport will
be displayed in a mini-view. The commander will then achieve
an enhanced situational awareness by viewing the mini-view
or quickly switching to a new viewport using the mini-view.

VI. CONCLUSION

This research addresses the lack of situational awareness
of traditional 2D video tools when they are used to moni-
tor search and rescue operations in firefighter training. Our
main contributions are two fold. First, we perform a thor-
ough interview process to identify objects/events relevant to
search/rescue in firefighter training. We discover that objects
of high priority in real-world scenarios may not need to
be highlighted in the training because they may be easily
noticeable. Second, we propose a framework to combine the
advantages of 360◦ cameras and deep learning to help the
IC in teaching firefighting operations. Our preliminary result
shows that the detector trained on generic 2D video datasets
can predict the existence of several important objects relevant
to the firefighting operations on both 2D and 360◦ videos. We
also point out our next steps for the system to reliably and
accurately perform in real time. The insight from this research
will help the community to better understand the need for
technology in firefighting as well as how existing technologies
may be adapted to the emergency response domain.
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