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Abstract

In ‘big data’ era, making optimal spatial prediction(kriging) can be challenging. Moti-
vated by the fact that traditional method involves inverting n× n covariance matrix which is
computational expensive and problematic when n is very large, we study a flexible family of
non-stationary covariance functions is defined by using a set of basis functions that is fixed
in number r � n , which leads to significant time reduction spatial prediction method that
we call fixed rank kriging (FRK) [Cressie and Johannesson, 2008]. We applied FRK to make
prediction on a synthetic CO2 data and meuse data, which includes hundreds of thousands
observations.

1 Introduction

In geostatistics, kriging which gives the best linear unbiased prediction under appropriate assump-
tions, has been systematically studied and successfully applied to achieve data interpolation, espe-
cially in earth and environmental sciences. Kriging captures the information in spatial data through
the spatial variability (i.e. covariance function) to obtain spatial prediction. Associated spatial pre-
diction map is available and it is extremely informative if we wish to study the general trend of some
spatial data. In [Cressie and Johannesson, 2008], the FRK methodology was proposed and well
studied to speed up the computation of original kriging by modeling covariance function through
basis function.

Comparing to past, spatial datum are more ubiquitous and accessible in this ”Big Data” age.
However, the benefits of this ubiquity also come with the challenge for original kriging method-
ology. The computation burden of straightforward kriging is extremely unacceptable for massive
dataset such as data from satellites when it comes to obtain meaningful results in reasonable time.
Obtaining spatial prediction when equations in original kriging requires solving the inverse of n×n
variance-covariance matrix Σ. The computational cost of getting Σ−1 in straightforward kriging
is O(n3). While in proposed FRK method, the computational cost of obtaining Σ−1 reduced to
O(nr2), which is linear on the sample size(n) of your data.

In section 2, we presents the kriging methodology and gives the equations that define FRK. In
section 3, how to estimate covariance matrix K and the choice of basis function were discussed.
The application of FRK methodology to a global CO2 dataset was achieved in section 4.
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2 Kriging: optimal linear spatial prediction

2.1 The kriging overview

Let {Y (s) : s ∈ D ∈ Rd} be real-valued spatial process. Based on the observed spatial process
Z(·) that contain measurement error, we are interested in making inference on Y-process.

Z(s) = Y (s) + ε(s) s ∈ D (2.1)

where ε(s) is for measurement error and {ε(s) : s ∈D} is spatial white noise process with mean 0
and variance var{ε(s)} = σ2υ(s) ∈ (0,∞), s ∈D, for σ2 > 0 and υ(·) is known.
Also, we only know Z(·) at finite number of spatial locations {s1, s2, ...sn}, then the observed data
vector is

Z = (Z(s1), ..., Z(sn)) (2.2)

We are interested in making inference on hidden Y process. Linear mean structure is assumed for
Y process, i.e.

Y (s) = t(s)′α+ v(s) s ∈ D (2.3)

where t(·) = (t1(·), ...tp(·))′ are a process of known covariates, α = (α1, ...αp)
′

are the unknown
coefficients, υ(s) : E{υ(s)} = 0, 0 < Var{υ(s)} <∞, s ∈ D.

Generally non-stationary spatial covariance function,

cov{υ(u), υ(v)} = C(u,v) u,v ∈ D (2.4)

(2.1)-(2.4) above imply a general linear mixed model,

Z = Tα+ ε δ = V + ε (2.5)

where T is n×p matrix of covariates (t(s1), ...t(sn))
′
, α = (α1, ...αp)

′
are the unknown coefficients

δ addition of two independent, zero-mean components, then we have E(δ) = 0, var(δ) = Σ = (σij)

σij =

{
C(si, sj) + σ2υ(sj) i = j

C(si, sj) i 6= j

Put it in the matrix form, we have
Σ = C + σ2V (2.6)

whereC = (C(si, sj)) and V = diag{υ(s1)...υ(sn)}. Note that no assumptions such as stationarity
and isotropy have been made on convariance function.

We observed Z process at finite number of locations(s1, ...sn). However, we are interested in
making inference on Y-process, i.e. making point prediction on unobserved location s0, s0 ∈ D.
[Cressie, 1992], gave the formula of kriging predictor Y (s0)

Ŷ (s0) = t(s0)′α̂+ k(s0)′(Z − T α̂) (2.7)

where
α̂ = (T ′Σ−1T )−1T ′Σ−1Z (2.8)
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k(s0)′ = c(s0)′Σ−1 (2.9)

where c(s0) = (C(s0, s1), ..., C(s0, sn))
′

The kriging standard error is the root-mean-squared prediction error of Ŷ (s0), σk(s0) =
[
E{Y (s0)− Ŷ (s0)}2

] 1
2

σk(s0) = {C(s0, s0)− k(s0)′Σk(s0) + (t(s0)− T ′k(s0))′(T ′Σ−1T )−1(t(s0 − T ′k(s0))} 1
2 (2.10)

Through equations from (2.7)-(2.10), we could make kriging prediction map and kriging standard
error map based on Ŷ (s0) and σk(s0), s0 ∈ D. However, they involve solving the inverse of Σ,
which has computational cost of O(n3). What we discussed above is feasible when the number of
observations(n) is small. When n is large, the computation will not be handled in a reasonable
time. In the following subsection, we will propose a new method that can significantly reduce
computational cost by on the choice of covariance function.

2.2 Spatial covariance function

From (2.3), we have
Y (s) = t(s)′α+ v(s) s ∈ D

By setting v(s) = S(s)′η, we have

Y (s) = t(s)′α+ S(s)′η

which is called a spatial mixed effects linear model. Intuitive idea behind this is to model the
covariance function C(u,v) through a set of r(not necessarily orthogonal) basis functions.

S(u) = (S1(u), ...Sr(u))
′

u ∈ Rd (2.11)

where r is fixed. [Cressie and Johannesson, 2006] discussed that cov {Y (u), Y (v)} could be modeled
as

C(u,v) = S(u)′KS(v) u,v ∈ Rd (2.12)

where K is any r × r positive definite matrix. Also note that η is an r-dimensional vector with
var(η) = K

2.3 Fixed rank kriging

Recall in (2.6), we have Σ = C + σ2V . By modeling covariance C(u,v) function through basis,
we have

Σ = SKS′ + σ2V (2.13)

where K is a unknown, positive definite r × r matrix, S is a n × r matrix whose (i, l) element
is Sl(si), assumed known V is a diagonal matrix with entries given by the measurement error
variance; assumed known σ2 > 0 Also note that

c(s0)′ = cov{Y (s0),Z} = S(s0)′KS′ (2.14)

As we mentioned before, we are interested in making inference on Y process, i.e. obtaining
Ŷ (s0)(2.7) and σk(s0)(2.10). Through modeling covariance function in (2.12), we could do kriging
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prediction with appropriate choice of matrix K and basis function S(u). We discussed the choice
of K and S in section 3.

As we mentioned before, the original way to achieve kriging prediction involves calculating the
inverse n×n matrix Σ. The advantage of modeling covariance function in (2.12) is that it provides
us an alternative way to compute Ŷ (s0) (2.7) and σk(s0)(2.10), which only involves the inverse of
r × r matrix when calculating Σ−1.

Recall (2.13) Σ = SKS′ + σ2V , then

Σ−1 = σ−1V −1/2{I + (σ−1V −1/2S)K(σ−1V −1/2S)′}σ−1V −1/2 (2.15)

According to Sherman-Morrison-Woodbury formula [Henderson and Searle, 1981], we have follow-
ing results, for any n× r matrix P ,

I + PKP ′ = I + (I + PKP ′)PK(I + P ′PK)−1P ′

Multiplying by (I + PKP ′)−1 yields

(I + PKP ′)−1 = I − P (K−1 + P ′P )−1P ′

We have
Σ−1 = (σ2V )−1 − (σ2V )−1S{K−1 + S′(σ2V )−1S}−1S′(σ2V )−1 (2.16)

In (2.16), it only involves the inverse of fixed rank r×r positive definite matrix K and the diagonal
matrix V . Based on (2.17), an efficient spatial kriging prediction is obtained.

Ŷ (s0) = t(s0)′α̂+ S(s0)′KS′Σ−1(Z − T α̂) (2.17)

σk(s0) ={S(s0)′KS(s0)− S(s0)′KS′Σ−1SKS(s0)+

(t(s0)− T ′Σ−1SKS(s0))′(T ′Σ−1T )−1(t(s0) − T ′Σ−1SKS(s0)))}−1/2
(2.18)

where α̂ = (T ′Σ−1T )−1T ′Σ−1Z Σ in (2.16)

(2.17) - (2.18) are the spatial kriging prediction for FRK method [Cressie and Johannesson, 2006].
The FRK spatial kriging prediction method still provides prediction map as the original method.
However, the computational cost has been reduced tremendously since it only involves solving r× r
matrix not n× n matrix as before. The original computational cost is O(n3) and now it decreased
to O(nr2) that is linear on sample size n. Details about how to compute computational burden
discussed in [Cressie and Johannesson, 2008].

The estimation of fixed rank positive matrix K from data and the choice of basis functions {Sl(·)}
become the crucial problems to apply FRK method which provides flexibility in spatial covariance
function, followed by computationally efficient in kriging predictors and kriging standard error es-
timation in very large dataset.

In the following section, we will discuss more details about the estimation of K and the basis
functions {Sl(·)}.

4



3 The class of covariance functions

Recall from (2.12), the covariance function is given by

C(u,v) = S(u)′KS(v) u,v ∈ Rd

where K is any r × r positive definite matrix estimated from the data and S(·) is an r × 1 vector
made up of basis functions S1(·), · · · , Sr(·) where r is fixed.

3.1 Choice of basis functions

Since we do not pose any assumption on basis function (e.g. orthogonality), so the following
basis functions are free to use including smoothing spline basis functions, wavelet basis func-
tions, radial basis functions. While is worth mentioning that from computational prospective,
we recommend choosing class of basis functions such that the evaluation of S

′
V −1S is fast. By

using bisquare class or wavelet class, the computational cost will be reducted from O(nr2) to
O(kr2) where k << n. In the experiments, we will use bisquare basis function (i.e φ(s1, s2) =

A
(

1−
(
||s1−s2||2

R

))2
I(||s1 − s2|| < R)) to make kriging where R is the range of support of the

bisquare function [Zammit-Mangion and Cressie, 2017].

3.2 Estimation of Covariance matrix K

Following the classical approach in [Matheron, 1963], an empirical method of moments estimator
Σ̂MM is first obtained for Σ. Since Σ̂MM is noisy and may not be positive definite, so one chooses
a K ∈ Rr×r, σ2 ∈ (0,+∞) such that Σ(K̂, σ̂2) is close to Σ̂MM. So, we can write this in terms of
optimization problem which is given by

min
K∈Rr×r,σ2∈(0,+∞)

||Σ(K̂MM, σ̂
2)− Σ̂||2F (3.1)

Finally, the resulting Σ(K̂, σ2) is substituted into the kriging equations (2.17) and (2.18). For
clarity, we omit the detail process for solving above optimization problem. The detail can be found
in [Cressie and Johannesson, 2008].

4 Experiments

4.1 Synthetic data

4.1.1 Model

[Katzfuss and Cressie, 2011] gives detailed tutorial on the generic recipe for FRK using a global
dataset of CO2 measurements. Starting with linear model Z = Y + ε , by breaking down Y into
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deterministic component Xβ and random spatial-variation component Sη + ξ, so the model is

Z = Xβ + Sη + ξ + ε

The covariance matrix is that
Σ = S

′
KS + σ2

ξVξ + σ2
εVε

In terms of hierarchical form with respect to the unknown parameter, we have that

Z|Y , σ2
ε ∼ Nn(Y , σ2

εVε)

Y |β,η, σ2
ξ ∼ Nm(Xβ + Sη, σ2

ξVξ)

η|K ∼ Nr(0,K)

So we have trend parameter β, Measurement-Error Variance σ2
ε , Spatial-Dependence Parameters

σ2
ξ and K to be estimated from the data.

4.1.2 Basis function

Figure 1: CO2 data

In this example, we chose r = 396 bisquare functions of 3 different resolutions. The 32 basis
functions of resolution 1 have a great-arc radius of 6241km, the 92 functions of resolution 2 have a
great-arc radius of 3491km, and the 292 functions of resolution 3 have a great-arc radius of 2047km.
The locations of the basis-function centers are shown in Figure 1.

4.1.3 Parameter Estimation

First, from expert knowledge Michalak, A. (2010) personal communication, define the covariates

to be x = (1, latitude), we estimate the β by least square estimator which is given by β̂ =
(X
′
X)−1X

′
Z.
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Then for the Measurement-Error Variance σ2
ε can either be specified from experiments with the

measurement instrument or as line’s intercept [Kang et al., 2010].

For the Spatial-Dependence Parameters σ2
ξ and K, we can either use binned MM estimation from

(3.1) or ML estimation via the EM algorithm given in [Katzfuss and Cressie, 2011].

4.1.4 Kriging(Prediction)

By plugging in the estimator into (2.17) and (2.18), we have kriging (prediction) is given by figure 2.
The predictions using EM estimations is close to the true data. Also the standard error using EM
estimates, is significantly small than the estimator using MM estimates. As the author suggested
that the reason is because the EM estimator of K is closer to the empirical covariance structure.

Figure 2: CO2 data

4.2 Real data

In this section, we present how to apply FRK method we developed earlier to meuse data. The
meuse data set provided by package sp is a data set comprising of four heavy metals measured in
the top soil in a flood plain along the river Meuse, along with a handful of covariates. The process
governing heavy metal distribution seems that polluted sediment is carried by the river, and mostly
deposited close to the river bank, and areas with low elevation [Pebesma, 2019].

Package FRK construct an SRE model on a discretised domain, where the discrete element is
known as a basic areal unit (BAU). BAUs essentially allow one to easily combine multiple ob-
servations with different supports. Further, the consideration of a discrete element allows one to
distinguish between measurement error and fine-scale variation at the resolution of the discrete
element which leads to better uncertainty quantification [Zammit-Mangion and Cressie, 2017].

As we can see from the figure 4, the prediction standard error using FRK is very low.
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Figure 3: Comparison between predictions and standard error using MM estimates and EM esti-
mates. (A) FRK predictions using MM estimates. (B) FRK predictions using EM estimates. (C)
FRK standard errors using MM estimates. (D) FRK standard errors using EM estimates.

5 Conclusion

In summary, we study the fixed rank kriging method for large data set in [Cressie and Johannesson, 2008].
Specifically, fixed rank kriging is kriging within the class of non-stationary covariance functions. It
relies on computational simplifications when n is very large, for obtaining the spatial best linear
unbiased predictor and its mean-squared prediction error for a hidden spatial process. A method
based on minimizing a weighted Frobenius norm yields best estimators of the covariance func-
tion parameters, which are then substituted into the fixed rank kriging equations. We applied the
method to both synthetic and real data. The result is pretty ”good” in terms of prediction standard
error. While in real scenarios, we need lots of rules of thumb comes to play in model selection and
basis function. So it needs further study to investigate whether the proposed model is truly better
than the traditional model.
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Figure 4: FRK for meuse data. (Left) FRK predictions (Right) FRK standard errors
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