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1 Introduction

Keywords : Supervised (Predictive) Learning : Document classification and email spam filtering,
Classifying flowers, Image classification and handwriting recognition, Face detection and recogni-
tion and Regression Unsupervised (Descriptive) Learning : Discovering clusters, Discovering latent
factors(dimensionality reduction) and Discovering graph structure, Matrix completion(Image in-
painting, Collaborative filtering and Market basket analysis) Reinforcement Learning Parametric
vs non - Parametric models Curse of dimensionilty Overfitting Model Selection

2 Probability

Keywords : Discrete random variables, Continuous random variables, Probability of a union of
two events, Joint probabilities, Conditional probability, Bayes Rule, Independence and Conditional
Independence, Quantiles, Mean and variance, Some common discrete distribution and continuous
distribution, Joint probability distribution, Covariance and correlation , Transformations of random
variables, Monte Carlo approximation

Definition 2.1. The entropy of a random variable X with distribution p, denoted by H(X) or
sometimes H(p), is a measure of its uncertainty. In particular, for a discrete variable with K

states, it is defined by H(X) £ — Zlep(X =k)logy, p(X = k)

Usually, we use log base 2, in which case the units are called bits. If we use log base e, the units
are called nats.

Definition 2.2. Kullback - Leibler divergence (KL divergence) or relative entropy (discrete)
KL(p|lq) £ o4, pilog 2 = 30, prlog p — 3o, pi log g = —H(p) + H(p, q), where H(p,q) is
called the cross entropy.
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The KL divergence is not a distance, since it is asymmetric.

Theorem 2.1. (Information Inequality) KIL(p||q) > 0 with equality iff p = q.

Corollary 2.1. (Laplace’s principle of insufficient reason) Discrete distribution with the mazimum
entropy is the uniform distribution. (H(X) < log|X|), where |X| is the number of states for X,
with equality iff p(x) is uniform.

Definition 2.3. Mutual Information (MI)
I(X;Y) 2 KL(p(X,Y)[[p(X)a(Y)) = ¥, &, p(w, y) log 54

Definition 2.4. Pointwise mutual information (PMI) For two events (not random variables)

x and vy, this is defined as PMI(x,y) = log p?g(ﬁ;) = log pﬁg) = log pz()?ylf)’)

3 Generative models for discrete data

How to classify a feature vector x by applying Bayes rule to a generative classifier of the form
p(y = clx,0) o< p(x|y = ¢,0)p(y = c|6)

4 Gaussian Models
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Hence we can rewrite the Mahalanobis distance between a data vector x and the mean vector u as
follows:
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Theorem 4.1. (MLE for a Gaussian). If we have N i.i.d samples x; ~ N (u,Y), then the
MLE for the parameters is given by
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5 Statistics

5.1 Bayesian Statistics

Using the posterior distribution to summarize everything we know about a set of unknown variables
is at the core of Bayesian statistics.

haiap = argmax p(D|h)p(h) = argmax [logp(DIh) + log p(h)]
— _p(@m)p(m)

p(m|D) = S et P(m,D)

m = argmax p(m|D) is called Bayesian model selection.

If we use a uniform prior over models, p(m) 1, 7 = argmax p(D|m) = argmax [ p(D|0)p(d|m)db.
This quantity is called the marginal likelihood, the integrated likelihood, or the evidence for model
m.

BIC £ log p(D|é) — %@ log N = log p(D) where dof stands for degree of freedom and 0 is the MLE
for the model.

Example 5.1. Consider Linear regression, 6% = M, BIC 2 —% log(62) — % log N

po(0) = 12(0)

n—0—D
Two-Level model : (1, 0D) o p(DI@)p(6]n)p(n) 7 = argmax p(Dl) = argmas [ p(D|O)p(B]n)]
Method Definition
ML 6 = argmax, p(D|0)
ML - 1T (Empirical Bayes) 7) = argmax, [ p(D|68)p(8|n)d6 = argmax, p(D|n)
MAP estimation 6 = argmax, p(D|0)p(0|n)
MAP - 11 7) = argmax, [ p(D|0)p(8|n)p(n)dd = argmax, p(D|n)p(n)

We can formalize any given statistical decision problem as a game against nature. In this game,
nature pick y € Y(Unknown), and then generates an observation, € X', which we get to see.
Then we have to choose an action a € A. Finally, we incur some loss L(y,a) which measures how
compatible our action a is with nature’s hidden state y. Our goal is to devise a decision procedure
6 : X — A, which specifies the optimal action for each possible input.



o(x) = argeril‘in E[L(y,a)]

In the Bayesian approach, we consider minimizes the posterior expected loss

plalz) = Epyz) [L ZL Yy, a)p(ylz)

Hence the Bayes estimator(Bayes decision rule), is given by
0(x) = argmin p(alx)

acA

5.2 Frequentist statistics

In frequenti§t statistics, a parameter estimate 0 is computed by applying an estimator § to some
data D, so 6 = §(D). Having chosen an estimator, we define its expected loss or risk as follows :

RI6",5) £ Byqoior) (L6, 5(D))] = [ L(6".6(D))p(DI6")i

6 GLM and Exponential family

6.1 Logistic Regression

Generative Approach (From joint model p(y,x) to conditional model p(y|x)) VS Discriminative
Approach (Fit a model p(y|x))
Model (Binary - Class) : p(y|x, w) = Bernoulli(y|sigmoid(w’x))

Fitting : minimize the negative log-likelihood
1. Steepest Descent
2. Newton Method

3. IRLS

4. Quasi - Newton

Model (Multi - Class) : p(y|x, W) = %
7 exp(wl x

Why Exponential family

1. Under certain regularity conditions, the exponential family is the only family of distributions
with finite-sized sufficient statistics(Pitman-Koopman-Darmois Theorem), meaning that
we can compress the data into a fixed-sized summary without loss of information.

2. The exponential family is the only family of distributions for which conjugate priors exist,
which simplifies the computation of the posterior.



3. The exponential family is the only family of distributions for which conjugate priors exist,
which simplifies the computation of the posterior (Maximum Entropy).

7 Directed graphical models (Bayes Net)

Definition 7.1. Conditional Independence (CI) X 1Y |Z < p(X,Y|Z) = p(X|Z2)p(Y|Z)

Graphical Model is a way to represent a joint distribution by making CI assumptions.

Graph Keywords : Graph, nodes, vertices, edges, adjacency matrix, undirected, directed, self
loops, parent, child, family, root, leaf, ancestors, descendants, neighbors, degree, cycle, directed
acyclic graph(DAG), topological ordering, path, tree, forest, subgraph, clique

Definition 7.2. A directed graphical model or DGM is a GM whose graph is a DAG which is
also known as Bayesian networks, belief networks and causal networks.

Example 7.1. 1. Naive Bayes Classifiers : p(y,x) = p(y) Hfil p(z;ly)

2. (First-order) Markov and hidden Markov models : x; is the observed variable, z; is the hidden
variable. The p(z¢|zi—1) is the transition model, p(x:|z:) is the observation model.

Inference

Learning

8 Mixture models and The EM Algorithm

Definition 8.1. (Mixture Models) Define latent variable z; € {1,..., K} and p(z;) = Cat(r).
Denote p(x;|zi = k) = pr(x;), where Py is the k-th base distribution. Then p(x;|0) =
Zfil TPk (xi|0) is called the Mizture Models, where Zle e = 1.

Mixtures of Gaussians, Multinoullis, Clustering and Experts

8.1 EM/(Expectation maximization) algorithm
The goal is to maximize the log likelihood of the observed data : £(0) = Y logp(x;|0) =
>oig log[>7, p(xi, 2i|0)]. Complete data log likelihood : £.(8) = Y77, log p(x;, 2i|6).

E —Step: Q6,0 ') =E [(.(0)|D,0' "]
M — Step : ' = argmax Q(6,0"")
0



Theoretical basis for EM :

9 Latent Linear Models

9.1

Factor Analysis(FA)

Real-valued latent variables z; € RL. Gaussian prior p(z;) = N (zi|uo, Zo), If x; € RP, so the
"linear regression” model p(x;|z;,0) = N(Wz; + u, ¥) where W is a D x L matrix, known as the
factor loading matrix, and ¥ is a D x D diagonal matrix.

p(ZZ‘|Xi,9) = ,/\/'(zi|mi, Ez), by L (Zal —I-WT\IJ_lW)_l, m; = Zi(WT\IJ_l(Xi - /L) + Zal,u,o)

9.2

10

Principle Component Analysis(PCA)

Sparse Linear models

Useful Applications of feature selection(Sparsity) :

1.
2.

Small N, Large D problem [fatter data, gene microarrays]

Signal Processing, sparse representation of the signals in terms of a small number of wavelet
basis functions

Bayesian variable selection Let v; = 1 if feature j is "relevant” and let v; = 0 otherwise.

e where f(v) £ —[logp(Dly) +

Goal : compute the posterior over models p(y|D) = ST
1 e
R

log p()]

Interpreting the posterior over a large number of models is quite difficult, so we will seek
various summary statistics.
e— (v

Posterior mode, MAP estimate: 4 = argmax p(v|D) = argmax ST argmin f(+)
Median model : 4 = {j : p(y; = 1|D) > 0.5}

The spike and slab model From the Bernoulli - Gaussian model to ¢y regularization

. Since there are 2 possible models (bit vectors), it will be impossible to compute the full

posterior in general, and even finding summaries, such as the MAP estimate or marginal
inclusion probabilities will be intractable. We will therefore focus on algorithmic speedups.
Since there are 2P models, we cannot explore the full posterior or find the globally optimal
model. All of the methods we will discuss involve searching through the space of models
and evaluating the cost f(7) at each point. (Wrapper method) In order to make wrapper
methods efficient, it is important that we can quickly evaluate the score function for some
new model, 'y/, given the score of a previous model, .



Greedy Search : Single best replacement, Orthogonal least squares, Orthogonal matching
pursuits, Matching pursuits, Backwards selection, Forwards - backwards algorithm, Bayesian
Matching pursuit

Stochastic search : MCMC

10.1 /¢, regularization

Consider a prior of the form p(w|\) = HJD:1 Lap(w,;[0,1/A) x H?Zl e Alwsl
The penalized negative log likelihood has the form f(w) = —logp(D|w) — log p(w|\) = NLL(w) +
Aw||1. Note this can be thought of as a convex approximation to the non-convex ¢, objective.

In the case of linear regression, £; objective becomes f(w) = Zfil — 2 (yi — (wo +wT2:))2 + AlJwl |1

This method is known as basis pursuit denoising. The BPDN objective is the following non - smooth
objective function: min RSS(w) + A||w||;.
w

Definition 10.1. least absolute shrinkage and selection operator (lasso)

min RSS(w) s.t. ||w||1 < B

Definition 10.2. Ridge regression : min RSS(w) s.t. ||[w||3 < B
w

10.1.1 Why does ¢; regularization yield sparse solutions

From the theory of constrained optimization, we know that the optimal solution occurs at the point
where the lowest level set of the objective function intersects the constraint surface (assuming the
constraint is active). It should be geometrically clear that as we relax the constraint B, we “grow”
the ¢ “ball” until it meets the objective; the corners of the ball are more likely to intersect the
ellipse than one of the sides, especially in high dimensions, because the corners “stick out” more.
The corners correspond to sparse solutions, which lie on the coordinate axes. By contrast, when
we grow the /5 ball, it can intersect the objective at any point; there are no “corners”, so there is
no preference for sparsity.

The lasso objective has the form f(0) = RSS(6) + A||w]||;. Since ||w]||; term is not differentiable
whenever w; = 0.

Definition 10.3. subderivative (subgradient) of a convex function f : ™ — R at 6y to be g
such that f(0) — f(80) > (0 —00)Tg VYO € I where I containing 0y. Note g is a linear lower
bound to the function f at 0.

Definition 10.4. The set [a,b] of all subderivatives is called the subdifferential of the func-

tion f at 0y and is denoted Of(0)|g,, where a = limg_,q- %&(90), b = limg_,g+ %go(ﬂo).




(~1} fo<0
For example, in case of f(0) = |0, the subderivative is given by 0f(0) = < [-1,1] if 0 =0
(+1}  if6>0

10.1.2 Optimality conditions for lasso
10.1.3 Comparison of LS, Lasso, Ridge and subset selection

Suppose X are orthonormal (e.g XTX = I),

RSS(w) = [ly — Xw[3 = y"y + w'X"Xw — 2w' X"y = C+ > wi -2 ) wiwiy;
k k i

1. MLE
2. Ridge
3. Lasso

4. Subset selection

10.1.4 Regularization Path

Definition 10.5. Plot of @;(X\) vs A for each feature j;

LARS(least angle regression and shrinkage)

10.1.5 Algorithms
1. Coordinate Descent
2. LARS and other homotopy methods

3. Proximal and gradient projection method

4. EM for lasso



10.2 /; regularization : extensions
10.2.1 Group Lasso
10.2.2 Fused Lasso

10.2.3 Elastic net
10.3 Non - convex regularizers

10.4 Sparse Coding

11 Kernels

Definition 11.1. A real-valued function of two arguments, k(x,x’) € R, for x,x’ € X.

Note that the function can be symmetric and non-negative so it can be interpreted as measure of
similarity.

_lxe=x)?

Example 11.1. 1. Radial basis function(RBF) kernel k(x,x") = exp( T), squared ex-
ponential kernel (Gaussian kernel) k(x,x') = exp (—1(x — x/)TE 7 (x — x/))
x;-Txi/

2. Cosine similarity k(x;,X;) = LT

3. Mercer kernel (positive definite kernel) k(x,x’) = ¢(x)T ¢(x’) where ¢ depends on the eigen
functions of k (D is potentially infinite dimensional space).

k(x1,%x1) - k(x1,xNn)

Gram matric K = :

k(xn,x1) - k(XN,XN)

Theorem 11.1. (Mercer theorem) If the gram matriz is positive definite, we can compute
an eigenvector decomposition, K = UT AU, where A is a diagonal matriz of eigenvalues
i > 0. Then kij = ¢(x;)T d(x;) where ¢p(x;) = A2U,

4. Linear kernels k(x,x') = xT'x’

5. Matern kernel k(r) = %1(—;; ( 2;’”) K, (@) where r = [|[x —=x'||, v >0, £ >0 and K, is a

modified Bessel function.
6. String Kernels
7. Pyramid match kernels

8. Kernels derived from probabilistic generative models



11.1 Using kernels inside GLM

Definition 11.2. Kernel machine : the input feature vector has the form ¢(x) = [k(x, 1), , k(X, px)]
where p € X are a set of K centroids.

For logistic regression : p(y|x, 0) = Ber(w” ¢(x)). For linear regression : p(y|x, 0) = N (w¢(x),0?).
How do we choose the centroids py,? Simpler approach is ¢(x) = [k(x,x1), - , k(X,Xn)]

Sparse vector machine : L1VM (¢; - regularized vector machine), L2VM ({3 - regularized vector
machine), RVM(relevance vector machine) and SVM(support vector machine)

11.2 Kernel trick

Definition 11.3. Instead working with the original feature vectors x, but modify the algorithm
so that it replaces all inner products of the form (x,x") with a call to the kernel function k(x,x’).

11.2.1 Kernelized nearest neighbor classification
11.2.2 Kernelized K-medoids clustering
11.2.3 Kernelized ridge regression

11.2.4 Kernel PCA

11.3 Support vector machines

Consider ¢ regularized empirical risk function

N

T(W,A) =3 Ly, 5i) + Al
i=1

where §; = W’ x; + wg. Notes : If L is quadratic loss, this is equivalent to ridge regression, and if
L is the log-loss, this is equivalent to logistic regression.

Definition 11.4. Support vector machine is combination of the kernel trick (replace xTx’ by
k(x,x ) ) and modified loss function (to ensure the solution is sparse)

11.3.1 Regression

0 ifly—19l <e
ly — §| — € otherwise

Definition 11.5. Epsilon insensitive loss function L¢(y,q) = {

10



The corresponding objective is

i (oo 5) + 2w
p 2

>f\'—‘

Note that the objective is convex and unconstrained but not differentiable. So we introduce slack
variable & > y; — §; — e and —&; <y; — i + €.

So we can rewrite the objective as follows :
J=

1 1, o
3 (€ + 6+ gl

uMz

with the passivity constraints & > 0 and & > 0. This is a standard quadratic program in
2N + D + 1 variables. The soultion is given by w = . a;x;. The x; for which o; > 0 are called
the support vectors.

11.3.2 Classification

Definition 11.6. (Hinge Loss) Lpinge(y,n) = max(0,1 —y-n) =(1—y-n)+

The objective has the form

N
1
2,
- SN 1-y
ming IIWII 3 §: yi(whx + wp)) +
Since this is not differenetiable, by introducing slack variable &;, the object has the form

N
1 1 .

This is a quadratic program in N + D + 1 variables subject to O(NN) constraints.

The solution is W = Y, a;x; where a; = \;y; and a is sparse. The prediction is § = sgn(wo+ W’ x)

11.4 Kernels for building generative models

11
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