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1 Intro to High-dimensional statistical models

1.1 Recap of Parametric Statistical Models

Definition 1.1. P = {Pθ : θ ∈ Θ} where Θ ∈ Rd and Pθ is a probability distribution on Rn.

Example 1.1. Normal case : Θ = {(µ,
∑

) : µ ∈ Rk,
∑
∈ Sk+} where Sk+ is the cone of positive

definite k × k matrices. Then Pθ ∼ N (µ,
∑

) and dim(Θ) = k + k(k+1)
2 = k2

2 + 3
2k

Example 1.2. Linear Regression : Y ∼ N (Xβ, σ2In) where Y ∈ Rn, X ∈ Rn×d, β ∈ Rd×1 and
σ > 0.

Model: Y = Xβ + ε where ε = (ε1, ..., εn) i.i.d. from N (0, σ2). Observe X = (x1, ..., xn) i.i.d. from
Pθ0 . Goal : Draw inference on θ0.
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Important Assumption : P, θ0 are fixed as n → ∞. In high dimensional statistics, we assume
d→∞ as n→∞. In non-parametric statistics, we assume P grows as n→∞.

1.2 High-dimensional statistical models

Definition 1.2. A high-dimensional parametric statistical model is a sequence of parametric
statistical models {Pn}∞n=1 where for each n, the sample space has size Sn and the parameter
space has dimension dn, where Sn, dn are allowed to grow with n.

Example 1.3.

1.3 Different Types of Parametric Models

1. Fixed d models

2. dn is allowed to change but dn ∈ o(n)

3. dn >> n ; Not generally possible without additional structural assumptions (sparsity, data
near a low - dimensional manifold, etc.)

2 Examples of high dimensional statistical models

2.1 Covariance Estimation

In the problem setting, we obtain vector samples X1, ..., Xn i.i.d. (0,Σ) in Rd where Σ is a d × d
matrix. We want to estimate Σ using the empirical covariance matrix, given by Σ̂n = 1

n

∑n
i=1XiX

T
i .

Note that the empirical covariance matrix is an unbiased estimator of the covariance matrix.

We are interested in finding ||Σ̂n −Σ||∞, to quantify the goodness of the estimator. If this is fairly
small, we could possibly say we have a good estimator. But we can’t be sure if the estimate is
positive definite or not. How do we measure this?

There are two cases that we need to consider. Case 1, where d is fixed and Case 2 where the
dimension of the problem d grows with n.

2.1.1 Fixed d

For a given pair (i, j) in < 1, ..., d >, let Σ̂n(i,j) = 1
n

∑n
k=1 Z

(i,j)
k where Z

(i,j)
k = Xk,iXk,j . This

implies that every entry is an average of product of two things. In particular, Z
(i,j)
1 , ..., Z

(i,j)
n are

i.i.d. with E[Σ̂n(i,j)]→ Σ(i,j). By WLLN, Σ̂n(i,j)
P−→ Σ(i,j) ∀ (i, j). Following this, we see that

||Σ̂n − Σ||∞ ≤
∑
i,j

|Σ̂n(i,j) − Σ(i,j)| (1)

Since |Σ̂n(i,j) − Σ(i,j)|
P−→ 0 ∀ (i, j), each term can be expressed as op(1).
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Notes: We defined o(n). In particular, if xn = o(1), this is equivalent to saying that, xn → 0 as
n→∞. Here, xn represents a deterministic sequence. What if we had random sequences?

Definition 2.1. If {Xn}n=1,2,... is a sequence of random vectors and {yn}n=1,2,... is a sequence

of positive numbers, then Xn = op(1)⇐⇒ Xn
P−→ 0.

This tells us that (1) can be expressed as

||Σ̂n − Σ||∞ ≤
∑
i,j

op(1) =
d(d+ 1)

2
op(1)

If d is fixed as n goes to infinity, ||Σ̂n−Σ||∞ ≤ op(1) since the rest can be written of as a constant.

Furthermore, if Z
(i,j)
k has a second moment (that is entries of the random vector have a fourth

moment) then, by CLT

||Σ̂n − Σ||∞ ≤ Op(
1√
n

)

Notes : The Big - O notation may be familiar, and is defined for deterministic sequences, say {xn},
{yn}. If xn = O(yn),∃ c > 0, and n0 = n0(c) such that ∀n > n0 : |xnyn | < c.

Definition 2.2. For a sequence of random vectors {Xn} and a sequence of positive numbers
yn where Xn = Op(yn), ∀ε > 0, ∃ c = c(ε) such that ∀n > n0 : P (|xnyn | > c) < ε.

This implies that the sequence of random vectors is bounded in probability.

Continuing with our covariance estimation problem, let X1, ..., Xn ∼ (µ, σ2).

Then X̄n = 1
n

∑n
i=1Xi

P−→ µ, X̄n = µ + op(1). By central limit theorem,
√
n
σ (X̄n − µ)

D−→ N (0, 1),
X̄n = µ+Op(

1√
n

).

We are ignoring σ here because it is a constant. The statement obtained through CLT implies the
first statement and also gives us a rate.

2.1.2 d increases with n

If d is a function of n, we need different tools. In HW1, you will show that with probability at least
1− 1

n ,

||Σ̂n − Σ||∞ ≤ C(
log dn + log n

n
)

1
2 = Op(

log dn
n

)
1
2

The increased rate of convergence shows the price you pay for the growing dimension. This may
be a misleading result because it seems to imply you can do well for d >> n but you should recall
that the metric under study is not a good one to begin with.

4



2.2 High Dimensional Probability Distributions

Commonly known probability distributions do not look similar in a high dimensional space. How-
ever, the good part is that they tend to concentrate.

Definition 2.3. Euclidean ball : Bd(0, r) = {x ∈ Rd : ||x||2 ≤ r}
Cube : Cd(0, r) = {x ∈ Rd : ||x||∞ ≤ r}

In two dimensions the Euclidean unit ball, B2(0, 1) is a circle with radius 1 and the unit cube
C2(0, 1) is a square symmetric about the origin with each side = 2.

Let’s look at the volume of the sets considered above. Volume of the Euclidean norm ball Bd(0, r) =
rdvd, where

vd = Vol(Bd(0, 1)) =
π
d
2

Γ(d/2 + 1)
∼ (

2πe

d
)
d
2

The gamma function is given by Γ(x) =
∫ +∞

0
exp(−z)zx−1dz. Note that the volume of the Euclidean

unit ball goes to zero really fast in high dimensions. Although, this doesn’t hold for Cd(0, 1) which
is equal to 2d even in higher dimensions.

Assume X is uniformly distributed over Bd(0, 1), E||X|| = d
d+1 . Now, pick ε ∈ (0, 1)

P (||X|| ≥ 1− ε) =
vd − (1− ε)dvd

vd
= 1− (1− ε)d ≥ 1− exp(−εd)

The probability that ||X|| is close to 1 goes to 1 exponentially fast in d. Similarly, for the normal
distribution, if X ∼ Nd(0, Id), then with high probability ||X|| ∼

√
d. This implies that if you

distribute points according to the normal distribution, the whole space never gets filled in.

Let’s go back to the unit cube, cd(0, 1) = {x ∈ Rd : ||x||∞ ≤ 1}. It turns out that

lim
d→∞

P

(√
d

3
(1− ε) ≤ ||X|| ≤

√
d

3
(1 + ε)

)
∀ε ∈ (0, 1).

The main idea is that if X1, ..., Xn are independent random variables and f : Rn → R such
that it doesn’t depend too much on any of its coordinates, then f(X1, ..., Xn) is very close to
E[f(X1, ..., Xn)].

3 Sub-Gaussian random variables

3.1 Basic concentration inequalities

Let X1, ..., Xn ∼ (µ, σ2). By central limit theorem, X̄n = 1
n

∑
iXi = µ+Op(

1√
n

). Note that this is

a purely asymptotic statement and doesn’t tell us about the behaviour for intermediate values of
n, say n = 30. We would like to know P (|X̄n − µ| ≥ t) for some t > 0.
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We know that limn→+∞ P (
√
n
σ (X̄n − µ) > t) = P (Z ≥ t), ( 1

t −
1
t3 )φ(t) ≤ 1 − φ(t) ≤ 1

tφ(t) ≤
1
2 exp{− t

2

2 }, Following this, we may be tempted to conclude that P (|X̄n − µ| ≥ t) ≤ exp
(
−nt

2

2θ2

)
.

Although this is good for intuition, this isn’t exactly correct. We now look at the finite version of
CLT, also known as Berry Essen Bound.

Theorem 3.1. (Berry Essen Bound) Let X1, ..., Xn ∼ (µ, σ2), third moments exist then

sup
x∈R
|P (

∑
i(Xi − µ)√

nσ
≤ x)− P (Z ≤ x)| ≤ C γ

n
; γ =

E[|Xi − µ|3]

σ3
, C ≤ 1

2

We know that Gaussian random variables concentrate around their mean, i.e. for X1, ..., Xn ∼
N (µ, σ2), it holds P (|X̄n − µ| ≥ t) ≤ exp

(
− nt2

2σ2

)
for every t ≥ 0. Thus, the probability that the

sample average X̄n is far away from the mean µ decays rapidly. We want to replicate this type
of behavior for other random variables in a manner that allows us to (1) obtain finite samples
guarantees (i.e. for every n), and (2) circumvent the need for too many distributed assumptions on
X1, ..., Xn.

Goal : Given some X ∼ P with mean µ, we want to derive an upper bound on P (|X − µ| ≥ t)
which holds for all t ≥ 0.

3.1.1 Markov Inequality

We make a first attempt at bounding the above probability in terms of moments of X based on
Markov’s inequality.

Theorem 3.2. (Markov’s Inequality) Let X be a random variable and E(X) = µ. Then,

P (|X − µ| ≥ t) ≤ min
q∈N

E[|X − µ|q]
tq

This procedure often yields an analytically sharp bound. However, it requires us to compute
the centered moments of X which is often infeasible or computationally expensive.

3.1.2 Chernoff bound

For a second approach to bounding of the above probability, we draw on the moment generating
function of the centered version of X, i.e. ψX(λ) = log(E[eλ(X−µ)]), which is well-defined for all
λ ∈ (−b, b) for some 0 ≤ b ≤ ∞. Assuming a 0 ≤ λ ≤ b, we get with Markov’s inequality that

P (X − µ ≥ t) = P (eX−µ ≥ et)
= P (eλ(X−µ) ≥ eλt)

≤ E[eλ(X−µ)]

eλt
= exp(ψX(λ)− λt)

which results in the following bound.
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Theorem 3.3. (Chernoff Bound) Let X be a random variable and E(X) = µ. Then,

P (X − µ ≥ t) ≤ exp(−ψ∗X(t))

where ψ∗X(t) = supλ∈(0,b)(λt− ψX(λ)).

In some sense, deriving a Chernoff bound does not require less knowledge about a distribution than
a Markov - based bound since we need the moment generating function of X − µ. In fact, we
have to assume the existence of infinity many moments. A main advantage is that these moments
do not have to be painstakingly calculated, and in turn, Chernoff bounds are usually the way to
go when having enough knowledge about the distribution although they are not as sharp as the
Markov-based bounds.

Example 3.1. (Chernoff bound for Gaussian) Let X ∼ N (µ, σ2), then E[eλX ] = eµλ+σ2λ2/2 for
all λ ∈ R. So, we have that

sup
λ>0

(
λt− log(E[eλ(X−µ)])

)
= sup

λ>0
(λt− λ2σ2

2
) =

t2

2σ2
,

which yields the bound

P (X − µ ≥ t) ≤ e−
t2

2σ2 for all t > 0.

Theorem 3.4. (Two - sided Chernoff bound) Let X be a random variable and E[X] = µ.
Then,

P (|X − µ| ≥ t) ≤ 2 exp(−ψ∗X(t)),

where ψ∗X(t) = supλ∈(−b,b)(λt− ψX(λ))

3.2 Sub-Gaussian random variables

In order to be able to derive Chernoff bounds, we need a bound for ψX(λ) which is not always easily
attainable. A sufficient condition in this setting is that the random variable is sub-Gaussian, i.e. its
tails decay faster than the tails of some Gaussian. An extensive overview over sub-Gaussian random
variables can be found in Metric Characterization of Random Variables and Random Processes.

Definition 3.1. (Sub - Gaussian) A random variable X is sub-Gaussian with parameter σ if

E[eλ(X−E[X])] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R. In that case, we write X ∈ SG(σ2).

A first simple observation is given by X ∈ SG(σ2) iff −X ∈ SG(σ2).

Now, if X ∈ SG(σ2), then the mgf of X can be bounded by the Gaussian mgf which yields the same
Chernoff bound as in Example 3.1.
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Proposition 3.1. We observe several properties of sub-Gaussian random variables.

(1) Let X ∈ SG(σ2), then V(X) ≤ σ2 with V[X] = σ2 if X is Gaussian.

(2) If there are a, b ∈ R, such that a ≤ X − µ ≤ b almost everywhere, then X ∈ SG( (b−a)2

2 ).

(3) Let X ∈ SG(σ2) and Y ∈ SG(τ2), then

1. αX ∈ SG(α2σ2) for all α ∈ R with α 6= 0.

2. X + Y ∈ SG((τ + σ)2), and

3. if X |= Y , X + Y ∈ SG(τ2 + σ2).

Proof. (1) It holds by assumption that E[eλ(X−E[X])] ≤ exp
(
λ2σ2

2

)
for all λ ∈ R, and applying the

Taylor expansion on both side,

1 + λE[X − µ]︸ ︷︷ ︸
=0

+λ2E
[
(X − µ)2

]
2

+ o
(
λ2
)
≤ 1 +

λ2σ2

2
+ o

(
λ2
)

We divide both sides of this inequality by λ2(and assume λ 6= 0), and let λ→ 0.

(2) Without Loss Of Generality, let µ = 0. We show that log(E[eλX ]) ≤ (b−a)2λ2

8 for all λ ∈ R.

First, notice that V(X) ≤ ( b−a2 )2. For any λ ∈ R, let Xλ be a RV with distribution that has

density of the form x 7→ eλxe−ψX(λ)fX(x) if a ≤ x ≤ b. Then, V[Xλ] = ψ
′′

X(λ) ≤ ( b−a2 )2. Since

ψλ(0) = ψ
′

λ(0) = 0, we have with the fundamental theorem of calculus that

ψX(λ) =

∫ λ

0

ψ′X(u)du =

∫ λ

0

∫ µ

0

ψ′′X(w)dwdu ≤
∫ λ

0

∫ µ

0

λ2 (b− a)2

4
dwdu = λ

(b− a)2

8

(3) We prove (ii) and (iii) and assume that E[X] = E[Y ]. If X |= Y , the proof is immediate. If not,
it holds for every λ ∈ R that E[eλ(X+Y )] = E[eλXeλY ], then apply Hölder’s inequality and obtain

E
[
eλ(X+Y )

]
= E

[
eλXeλY

]
≤
(
E
[
eλpX

])1/p (E [eλqY ])1/q ≤ exp

(
λ2p2σ2

2

1

p
+
λ2q2τ2

2

1

q

)
= exp

(
λ2

2

(
pσ2 + qτ2

))
= exp

(
λ2

2
(σ + τ)2

)
where we set p = τ/σ + 1 in the last step.

3.2.1 Hoeffding inequality

Theorem 3.5. (Hoeffding inequality) Let X1, ..., Xn be independent random variables such
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that Xi ∈ SG for all i. Then,

P

(∣∣∣∣∣
n∑
i=1

Xi −E[Xi]

n

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−n2t2

2
∑n
i=1 σ

2
i

)

Example 3.2. (Hoeffding for Bernoulli RV) Let X1, ..., Xn be independent RV with Xi ∼ Bernoulli(pi)
for some pi ∈ (0, 1). Then, Xi ∈ SG(1/4) and thus,

P (|X̄n − p̄n| ≥ t) ≤ 2 exp(−2nt2)

Thus, we have that

P

(
|X̄n − p̄n| ≤

√
1

2n
log

(
1

δ

))
≥ 1− δ.

3.2.2 Comparing Hoeffding and Chernoff Bounds

3.2.3 Equivalent Definitions of Sub-Gaussian Random Variables

Sub - Gaussianity can equivalently be characterized using Orlicz norms, as will be explored in the
second assignment. It turns out that Sub - Gaussian random variables are also uniquely character-
ized by their moments.

Proposition 3.2. Let Γ(x) =
∫∞

0
tx−1e−tdt be the Gamma function. If X ∈ SG(σ2), then

E [|X|p] ≤ p2p/2σpΓ(p/2), ∀p > 0, In particular, there exists C > 0 not depending on p such

that (E [|X|p])
1
p ≤ Cσ√p.

Proof. We have that

E[|X|p] =

∫ +∞

0

P (|X|p ≥ u)du =

∫ +∞

0

P (|X| ≥ u
1
p )du ≤ 2

∫ ∞
0

exp

{
− u2

2σ2

}
du

≤ (2σ2)
p
2 p

∫ ∞
0

exp

{
u2/p

2σ2

}(
u2/p

2σ2

) p
2−1

d
u2/p

2σ2
= (2σ2)

p
2 pΓ(

p

2
)

4 Sub-Exponential random Variables

In this section, we consider a broader class of distributions than the Sub - Gaussian family, call the
Sub - Exponential family. We will see that interesting tail bounds can still be derived for random
variables belonging to this collection. One motivation for its definition is that Sub - Gaussian
random variables are not closed under taking squares, in the sense that X ∈ SG(σ2) does not imply
X2 is Sub - Gaussian. For example, the square of a standard Gaussian is a Chi - Squared random
variable, which cannot be Sub - Gaussian since its moment generating function is not defined on
the entire real line.
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Example 4.1. Let X ∼ Laplace(b) for b > 0. Then it can be shown that

P(|X| ≥ t) ≤ exp(−tb), ∀t > 0

This is a different tail behaviour than what we are used to for Sub - Gaussian random variables,
and indeed, we note that X 6∈ SG(σ2) since its moment generating funciton is only defined on a
subset of the real line.

E
[
eλX

]
=

1

1− λ2
b2, ∀|λ| < 1

b

Definition 4.1. (Sub - Exponential Random Variable) We say that a random variable X is
Sub - Exponential with parameters v, α > 0, and we write X ∈ SE(v2, α), if

E
[
eλ(X−E(X))

]
≤ exp

(
λ2ν2

2

)
, ∀|λ| < 1

α

Observe that the moments of X are still well defined since they can be found as the derivative of
the MGF (moment generating function) at zero. An immediate consequence of the definition is
that SG(σ2) ⊂ SE(σ2, 0). Thus, all Sub - Gaussian random variables are also Sub - Exponential.

Example 4.2. Let Z ∼ N (0, 1), and X = Z2 ∼ X 2
(1), E(X) = 1. Let λ < 1

2 . Then, E
[
eλ(X−1)

]
=

e−λ√
1−2λ

≤ exp
{

λ2

1−2λ

}
≤ exp

{
4λ2

2

}
. Thus, X ∈ SE(4, 4). Note that above follows from the following

inequality: − log(1− u)− u ≤ u2

2(1−u) , ∀u ∈ (0, 1) with u = 2λ.

Proposition 4.1. (1) Squares and products of centered Sub - Gaussian are Sub - Exponential:
X ∈ SG(σ2)⇒ X2 ∈ SE(256σ2, 16σ2)

(2) Suppose X is a random variable with Var[X] = σ2 and |X − E[X]| ≤ b almost everywhere,
for some b > 0. Then, X ∈ SE(2σ2, 2b). Unlike Sub - Gaussian bounded random variables, the
variance of X appears in the Sub - Exponential parameters.

Proof. Let |λ| < 1
2b . Then,

E[eλ(X−E(X))] = 1 +
λ2σ2

2
+

∞∑
k=3

λn E[(X −E(X))k]

k!

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2

≤ 1 +
λ2σ2

2

∞∑
k=0

(|λ|b)k ≤ 1 +
λ2σ2

2

1

1− |λ|b

≤ exp

{
λ2σ2

1− |λ|b

}
≤ exp{λ2σ2}
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4.1 Tail behavior for Sub-Exponential Random Variables

Theorem 4.1. (Tail Bounds for Sub - Exponential Random Variables) Let X ∈ SE(v2, α),

and t > 0. Then, P{|X − E(X)| ≥ t} ≤ 2 exp
{
− 1

2 min
(
t2

ν2 ,
t
α

)}
Proof. Assume that µ = 0. Then repeating Chernoff argument, one obtains :

P(X ≥ t) ≤ exp

{
−λt+

λ2v2

2

}
= exp{g(λ, t)}, ∀λ ∈ (0,

1

α
)

To obtain the tightest bound one needs to find: g∗(t) = inf
λ∈(0, 1α )

g(λ, t) = inf
λ∈(0, 1α )

− λt+ λ2v2

2

Consider two cases: 1. 0 < t ≤ v2

α , λ∗ = t
v2 , g(t) = − t2

2v2 , we obtains the bound describing

sub-Gaussian behavior. 2. t > v2

α , λ∗ = 1
α , g(t) = − t

α + v2

2α2 ≤ − t
2α

Recall that sufficient conditions for a random variable to be a Sub-Gaussian include:

• Boundedness of a random variable.

• Condition on the moments (E|X|k)1/k

One would like to obtain a similar condition allowing unbounded random variables to behave sub-
exponentially. One such condition is called Bernstein condition.

Definition 4.2. (Bernstein condition) Let X be a random variable with mean µ and vari-
ance σ2. Assume that ∃b > 0 : E |X − µ|k ≤ 1

2k!σ2bk−2, k = 3, 4, .... Then one says that X
satisfies Bernstein condition.

Lemma 1. If random variable X satisfies Bernstein condition with parameter b, then : E eλ(X−µ) ≤
e
λ2σ2

2
1

1−b|λ| , ∀|λ| < 1
b . Additionally, from the bound on moment generating function one can obtain

the following tail bound(also known as a Bernstein inequality)

P(|X − µ| ≥ t) ≤ 2 exp

(
− t2

2(σ2 + bt)

)
, ∀t > 0

Proof. Pick λ : |λ| < 1
b (allowing interchanging summation and taking expectation) and expand

the MGF in a Taylor series :

E expλ(X − µ) = 1 +
λ2σ2

2
+

∞∑
k=3

E |X − µ|k

k!
λk ≤ 1 +

λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2

≤ 1 +
λ2σ2

2

1

1− b|λ|

≤ exp

{
λ2σ2

2

1

1− b|λ|

}

11



where we used 1 + x ≤ ex. To show the final bound, take λ : |λ| < 1
2b . Then the bound becomes :

exp

{
λ2σ2

2

1

1− b|λ|

}
≤ expλ2σ2 = exp

λ2(2σ2)

2

implying that X ∈ SE(2σ2, 2b). The concentration result then follow by taking λ = t
bt+σ2 .

4.2 Composition property of Sub - Exponential random variables

Let X1, ..., Xn be independent random variables such that EXi = µi and Xi ∈ SE(v2
i , αi). Then

n∑
i=1

(Xi − µi) ∈ SE

(
n∑
i=1

v2
i ,max

i
αi

)

In particular, denote v2
∗ =

∑n
i=1 v

2
i , α∗ = maxi αi. Then :

P

(
1

n
|
n∑
i=1

(Xi − µi)| ≥ t

)
≤

2 exp
(
−nt2

2v2∗

)
, 0 < nt ≤ v2∗

α∗

2 exp
(
− nt

2α∗

)
, otherwise

or, equivalently,

P

(
1

n
|
n∑
i=1

(Xi − µi)| ≥ t

)
≤ 2 exp

{
−n

2
min

(
t2

ν2
∗
,
t

α∗

)}
Example 4.3. Let X ∼ X 2

n i.e.X =
∑n
i=1 Z

2
i where Zi ∼ N (0, 1). Then X ∈ SE(4n, 4) and thus,

P

(
1

n

∣∣∣∣∣
n∑
i=1

(Z2
i − 1)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
−n

2
min

(
t2

4
,
t

4

)}

4.3 Orlicz norms

Everything said so far can be handled in more general way using Orlicz norms.

Definition 4.3. (ψ - Orlicz norm) Let function ψ : R+ → R+ satisfy the following properties
: 1. ψ(X) is strictly increasing function 2. ψ(X) is a convex function 3. ψ(0) = 0. Then the

ψ - Orlicz norm of a random variable X is defined as : ||X||ψ = inf{t > 0 : Eψ
(
|X|
t

)
≤ 1}

Let us look at several examples :

1. Let ψ(x) = xp, p ≥ 1. Then : ||X||ψ = ||X||p = (E |X|p)
1
p

2. Let ψp(x) = ex
p − 1, p ≥ 1

(a) p = 1: then ||X||ψ1
<∞ is equivalent to X belonging to the class of Sub - Exponential

random variables.

12



(b) p = 2: then ||X||ψ2 < ∞ is equivalent to X belonging to the class of Sub - Gaussian
random variables.

It is easy to show that : ||X2||ψ1 = (||X||ψ2)2, ||XY ||ψ1 ≤ ||X||ψ2 ||Y ||ψ2

Theorem 4.2. (Concentration of a sub-Gaussian random vector) Let X = (X1, ..., Xd)
T ∈

Rd be such that : EXi = 0,V(Xi) = 1 and assume that Xi ∈ SG(σ2). Then we can show that

||X||2 =
√∑d

i=1X
2
i concentrated around

√
d.

Proof. Since ||X||22 =
∑d
i=1X

2
i , so X2

i − 1 ∈ SE(v2, α) where both parameters are determined by
σ2. Thus, by the property of Composition property of Sub - Exponential, we have that

P

(
1

d

∣∣∣∣∣
d∑
i=1

(X2
i − 1)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

{
−d

2
min

(
t2

ν2
,
t

α

)}
, ∀t > 0

We will need to use the following fact : fix c > 0. Then for any numbers z > 0 :

|z − 1| ≥ c implies−−−−→ z2 − 1 ≥ max{c, c2}

Using this fact allows to conclude that :

P

(∣∣∣∣‖X‖2√
d
− 1

∣∣∣∣ ≥ u) = P

(∣∣∣∣‖X‖22d
− 1

∣∣∣∣ ≥ max{u, u2}
)
≤ 2 exp

(
−du

2

2C

)

4.4 Hoeffding vs Bernstein

Denote µ = E(X) and σ2 = V(X). Assume that |X − µ| ≤ b a.e. Then :

P(|X − µ| ≥ t) ≤

2 exp
(
− t2

2b2

)
Hoeffding

2 exp
(
− t2

2(σ2+bt)

)
Bernstein

For small t (meaning bt� σ2) Bernstein’s inequality gives rise to a bound of the order:

P(|X − µ| ≥ t) ≤ 2 exp

(
− t2

cσ2

)
while Hoeffding’s gives:

P(|X − µ| ≥ t) ≤ 2 exp

(
− t2

cb2

)
But σ2 ≤ b2 and thus, Bernstein’s bound is better / tighter.

13



Theorem 4.3. (Classic Bernstein inequality) Let X1, · · · , Xn be independent random variables
such that |Xi −EXi| ≤ b, a.e and max

i
V(Xi) ≤ σ2. Then

P

(
1

n

∣∣∣∣∣
n∑
i=1

(Xi −EXi)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2σ2 + 2bt
3

)
, ∀t > 0

Theorem 4.4. (Laurent-Massart bounds for X 2) Let Z1, · · · , Zd ∼ N (0, 1) and a = (a1, · · · , ad)
with ai ≥ 0,∀i ∈ {1, · · · , n}. Let X =

∑n
i=1 ai(X

2
i −1). Then for right-tail behavior is described

by
P(X ≥ 2‖a‖2

√
t+ 2‖a‖∞t) ≤ e−t,∀t > 0

and for left - tail behavior:

P(X ≤ −2‖a‖2
√
t) ≤ e−t,∀t > 0

5 The bounded differences inequality

5.1 Bounded Difference Property

5.2 Application

6 Bound for Sub-gaussian vector and Covariance matrix

6.1 SG vectors and bound for the their norm

Definition 6.1. (Sub-Gaussian random vectors) A random vector X ∈ Rd is a sub - Gaussian
random vector with parameter σ2 if vTX ∈ SG(σ2), v ∈ Sd−1 where Sd−1 = {x ∈ Rd : ‖x‖2 =
1} is d - 1 unit sphere. We denote X ∈ SGd(σ

2).

Claim : If X ∼ N (0,Σ), then X ∈ Rd is a sub - Gaussian random vector with parameter ‖Σ‖op.

Proof. For any v ∈ Sd−1, vTΣv ≤ ‖Σ‖op. Take MGF : E[eλv
TX ] = eλ

2vTΣv/2 ≤ eλ2‖Σ‖op/2.

Theorem 6.1. Let X ∈ SGd(σ
2), then E‖X‖2 ≤ 4σ

√
d. Moreover, with probability at least

1− δ for δ ∈ (0, 1), ‖X‖2 ≤ 4σ
√
d+ 2σ

√
log( 1

δ ).

Proof.
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6.2 Covariance matrix estimation in the operator norm.

Theorem 6.2. Let X1, · · · , Xn be iid samples from a distribution with mean 0 and covariance
matrix Σ. Assume Xi ∈ SGd(σ

2) and are centered. Let Σ̂n = 1
n

∑n
i=1XiX

T
i . Then there exists

a universal constant C > 0 s.t.

P

‖Σ̂n − Σ‖op
σ2

≥ C max


√
d+ log( 2

δ )

n
,
d+ log( 2

δ )

n


 ≤ δ, δ ∈ (0, 1)

Proof.

7 Matrix Concentration Inequalities

7.1 Matrix Bernstein Inequality

Theorem 7.1.

Proof.

7.2 Matrix Hoeffding Inequality

7.3 Application

8 Ordinary and Penalized regression

8.1 OLS regression in high dimension

Recall : Y = Xβ∗ + ε where X is the fixed design matrix, ε ∈ SGn(σ2). We have that β∗ =
(XTX)−1XTY as the OLS solution (which can be one of infinitely many solutions).

Theorem 8.1. There exists universal constants C > 0 s.t. 1
n‖X(β̂−β∗)‖22 ≤ Cσ2

(
r+log(1/d)

n

)
where r = rank(XTX).

Proof.

8.2 Penalized regression

β̂ ∈ min
β∈Rd
‖Y −Xβ‖22 + λnf(β)
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A classic penalty term is f(β) = ‖β‖22 (ridge regression) :

βridge = (XTX + λnI)−1XTY

which is always unique even if n > d.

The interpretation is, consider the SVD decomposition of X = UΛUT . Plugging this into Xβ̂ridge,
we have

Xβ̂ridge = X(XTX + λnI)−1XTY = UHUTY =

r∑
j=1

uj
σ2
j

σ2
j + λ

〈uj , Y 〉

where H is a diagonal matrix with Hjj =
σ2
j

σ2
j+λ

. We can see that ridge gives higher weight to

directions uj with large σ2
j and may be considered a smarter projection, whereas for OLS, all basis

uj is weighted the same amount.

8.3 Slow and Fast rates for Lasso

9 Principle Component Analysis

10 Uniform Law of Large number
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