Notes on Applied Statistics

Zhenbang Wang

This note is partially based on Statistical Concepts and Methods by G.K. Bhattacharyya and R.A. Johnson.

Contents

1	Basi	ic Concepts of Testing Hypothesis	2
	1.1	Selecting among several tests	3
	1.2	General steps in testing hypothesis	3
2	The	Normal Distribution and Random Samples	3
	2.1	Random Samples, Statistic, Sampling Distributions	3
	2.2	Distribution of the sample mean and the central limit theorem	3
	2.3	Checking the assumption of a normal population	3
3	Infe	rences about a population	3
	3.1	Point Estimation of parameter	3
	3.2	Estimation by confidence interval	3
	3.3	One Sample binomial proportion	4
	3.4	One Normal sampling	4
	3.5	Inference about σ^2 of a normal population	4
4	Con	nparing Two treatments	5
	4.1	Independent Samples from two populations	5
	4.2	Comparing the variances of two normal populations	6
	4.3	Comparing Two proportions	6
	4.4	Paired Comparisons	6
5	Desi	ign of Experiments and Analysis of Variance	7
	5.1	Comparison of several treatments	7
	5.2	Population model and inferences	7
	5.3	One way ANOVA	7
		5.3.1 Fixed Effect	7
		5.3.2 Random effect	8
	5.4	Two - Sample Median Test	8
	5.5	Randomized Block Experiments	8
	5.6	Factorial Experiment(Interaction)	8
	5.7	Two way ANOVA	9

6	Ana	llysis of Categorized Data	9						
	6.1	6.1 The multinomial model							
	6.2	Pearson's Test for Goodness of fit	9						
	6.3	Contingency Tables	10						
		6.3.1 Measures of Association in a Contingency Table	10						
		6.3.2 Contingency tables with one margin fixed(Test of Homogeneity)	10						
		6.3.3 2×2 Contingency Table	11						
		6.3.4 I × J Contingency Tables	11						
		6.3.5 Fisher's exact test	11						
		6.3.6 Ordinal Tests	11						
7	Non	parametric Inference	11						
	7.1	Paired Comparisons	11						
		7.1.1 The Sign Test	11						
		7.1.2 The Wilcoxon Signed Rank Test	12						
	7.2	The Wilcoxon Rank-Sum test for comparing two treatments	12						
	7.3	The Kruskal-Wallis Test	13						
	7.4	Friedman's rank test	13						
8	Sim	ple Linear Relation	14						
Ŭ	8.1	Correlation coefficient	14						
	8.2	Simple linear regression	14						
9		istic and Poisson Regression Models	15						
	9.1	Logistic Regression	15						
		9.1.1 Estimating the Parameters in a Logistic Regression Model	15						
		9.1.2 Interpretation of the Parameters in a Logistic Regression Model	15						
	9.2	9.1.3 Statistical Inference on Model Parameters	16 16						
	9.2	Poisson Regression	10						
1	D								
1	В	asic Concepts of Testing Hypothesis							
		statistical hypothesis is a statement about the population. Its plausibility is to be evaluant the basis of information obtained by sampling from the population.	ted						
		sypothesis H : The proportion of consumers preferring brand A to brand B is 0.4. Hypother T' : Above is not true.	esis						
	3. D	ifference between mathematical proposition and statistical hypothesis is uncertainty							
	4. Tl	he null is the negation of the assertion							
	5. Ty	ype I error: rejection of null when null is true.							
	6. Ty	ype II error: failure to reject null when alternative is true.							
	7. Po	ower function : $\gamma(\theta) = \mathbf{P}$ [rejects the Null when true value of the parameter is θ]							

1.1 Selecting among several tests

Level of significance : max $\gamma(p) \leq \alpha$ under $p \in H_0$

Size of the test : max $\gamma(p) = \alpha$ under $p \in H_0$

p - value $(x) = \sup_{x \in C} P(X \ge x)$

p - value : probability of obtaining a test statistic value as extreme as or more extreme than the observed value under H_0

1.2 General steps in testing hypothesis

2 The Normal Distribution and Random Samples

2.1 Random Samples, Statistic, Sampling Distributions

A random sample of size n from a population f(x) is a collection of n independent random variables $X_1, X_2, ...$, each having the distribution f(x)

A *statistic* is a function of the sample observations.

Every statistic is, itself, a random variable. Its probability distribution is called the sampling distribution of the statistic.

2.2 Distribution of the sample mean and the central limit theorem

Mean and standard deviation of \bar{X} : $E(\bar{X}) = \mu$ and $Var(\bar{X}) = \frac{\sigma^2}{n}$

Central limit Theorem: In random sampling from an arbitrary population with mean μ and standard deviation σ , the distribution of \bar{X} when n is large is approximately normal, with mean μ and standard deviation σ/\sqrt{n} .

In other words, $Z = \frac{\dot{\vec{X}} - \mu}{\sigma/\sqrt{n}}$ is approximately N(0, 1).

e.g. X follows Bernoulli(p). Then $Z=\frac{\hat{p}-p}{\sqrt{p(1-p)/n}}$ is approximately N(0,1).

2.3 Checking the assumption of a normal population

3 Inferences about a population

3.1 Point Estimation of parameter

Stand error: The standard deviation of the estimator $\hat{\theta}$ is called its standard error and is designated $S.E.(\hat{\theta})$

Point estimator of the mean: \bar{X} $S.E.(\bar{X}) = \sigma/\sqrt{n}$, estimated $S.E.(\bar{X}) = s/\sqrt{n}$

Point estimator of the binomial Parameter: $\hat{p} = \frac{\sum X}{n} S.E.(\hat{p}) = \sqrt{\frac{pq}{n}}$ and estimated $S.E.(\hat{p}) = \sqrt{\frac{\hat{p}\hat{q}}{n}}$

3.2 Estimation by confidence interval

CI: (L,U) is $100(1-\alpha)\%$ CI such that $P(L(X_1,X_2,...,X_n)<\theta< U(X_1,X_2,...,X_n))=1-\alpha$ Note P[41.1< $\mu<$ 44.3] = .95 is wrong.

Interpretation: If we conduct the same experiment independently many times, the confidence interval estimator will cover the true value of θ approximately $1-\alpha$ of the time.

Large Sample Confidence Interval for μ When σ is Unknown: $(\bar{X} - z_{\alpha/2} \frac{s}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{s}{\sqrt{n}})$

Large Sample Confidence Interval for σ^2 : $\left(\frac{(n-1)S^2}{\mathcal{X}_{n-1,\alpha/2}^2}, \frac{(n-1)S^2}{\mathcal{X}_{n-1,1-\alpha/2}^2}\right)$

Large Sample Confidence Interval for p : $(\hat{p}-z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}})$

Small Sample Confidence Interval for μ when σ is unknown: $(\bar{X} - t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}, \bar{X} + t_{\alpha/2,n-1} \frac{s}{\sqrt{n}})$ To be $100(1-\alpha)$ sure that the error $|\bar{X}-\mu|$ does not exceed d, the required sample size is n=0

If n is small and the population is nonnormal, take $\frac{\sigma^2}{\alpha d^2}$ as upper bound.

One Sample binomial proportion

$$X_1, X_2, ..., X_n \sim \text{bin}(1, p)$$
 with $X = \sum_{i=1}^n X_i$

One Normal sampling

$$X_1,...,X_n \sim N(\mu,\sigma^2)$$
 with σ^2 known

 $X_1,...,X_n \sim N(\mu,\sigma^2)$ with σ^2 unknown

Large Sample Approximation : Test statistic : $T=\frac{\bar{X}-\mu_0}{S/\sqrt{n}}\sim N(0,1)$ RR and P - value are the same with σ^2 known case.

Inference about σ^2 of a normal population

Test statistic : $\frac{(n-1)S^2}{\sigma_0^2}$

$$\overline{H_0: \sigma^2 \leq \sigma_0^2 \text{ vs } H_1: \sigma^2 > \sigma_0^2}$$

$$RR: \frac{(n-1)S^2}{\sigma_0^2} \ge \mathcal{X}_{n-1,\alpha}^2$$

p-value(x):
$$1 - F_{\chi_{n-1}^2}(\frac{(n-1)S^2}{\sigma_0^2})$$

$$\frac{H_0: \sigma^2 \ge \sigma_0^2 \text{ vs } H_1: \sigma^2 < \sigma_0^2}{\text{RR}: \frac{(n-1)S^2}{\sigma_0^2} \le \mathcal{X}_{n-1, 1-\alpha}^2}$$

$$\operatorname{p-value}(\mathbf{x}): F_{\mathcal{X}_{n-1}^2}(\frac{(n-1)S^2}{\sigma_0^2})$$

$$H_0: \sigma^2 = \sigma_0^2 \text{ vs } H_1: \sigma^2 \neq \sigma_0^2$$

Notes: the inference procedures for σ^2 presented here are extremely sensitive to departures from a normal population!

Comparing Two treatments 4

Independent Samples from two populations

Let $X_1,...X_{n_1} \sim \text{i.i.d.}$ as $N(\mu_1, \sigma_1^2)$ and let $Y_1,...,Y_{n_2} \sim \text{i.i.d}$ as $N(\mu_2, \sigma_2^2)$. and $\sigma_1^2 = \sigma_2^2 = \sigma^2$ unknown

Test statistic:
$$T = \frac{\bar{X} - \bar{Y} - \delta_0}{S_{\text{pooled}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

$$H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 - \mu_2 \neq \delta_0$$

$$RR: |T| > t_{n_1+n_2-2,\alpha/2}$$

p -value :
$$P(|T| \ge |t| | \mu_1 - \mu_2 = \delta_0) = 2F_{t_{n_1+n_2-2}}(-|t|)$$

$$H_0: \mu_1 - \mu_2 = \delta_0$$
 vs $H_1: \mu_1 - \mu_2 > \delta_0$

$$RR: T \ge t_{n_1+n_2-2,\alpha}$$

p-value:
$$P(T \ge t | \mu_1 - \mu_2 = \delta_0) = 1 - F_{t_{n_1 + n_2 - 2}}(t)$$

$$H_0: \mu_1 - \mu_2 = \delta_0 \text{ vs } H_1: \mu_1 - \mu_2 < \delta_0$$

$$RR: T \le t_{n_1 + n_2 - 2, \alpha}$$

p -value :
$$P(T \le t | \mu_1 - \mu_2 = \delta_0) = F_{t_{n_1+n_2-2}}(t)$$

Let $X_1,...X_{n_1} \sim \text{i.i.d.}$ as $N(\mu_1, \sigma_1^2)$ and let $Y_1,...,Y_{n_2} \sim \text{i.i.d}$ as $N(\mu_2, \sigma_2^2)$. and $\sigma_1^2 \neq \sigma_2^2$ known

$$H_0: \mu_1 - \mu_2 = \delta_0$$

$$H_0: \mu_1 - \mu_2 = \delta_0$$
Test statistic: $Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$

Welch's t test or Behrens-Fisher problem:

Let $X_1,...X_{n_1} \sim \text{i.i.d.}$ as $N(\mu_1,\sigma_1^2)$ and let $Y_1,...,Y_{n_2} \sim \text{i.i.d}$ as $N(\mu_2,\sigma_2^2)$. and $\sigma_1^2 \neq \sigma_2^2$ unknown $H_0: \mu_1 - \mu_2 = \delta_0$

Test statistic :
$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_v \text{ where } v = \frac{(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2})^2}{\frac{1}{n_1 - 1}(\frac{S_1^2}{n_1})^2 + \frac{1}{n_2 - 1}(\frac{S_2^2}{n_2})^2}$$

Large Sample inferences version:

Let $X_1,...X_{n_1}\sim \text{i.i.d.}$ as $N(\mu_1,\sigma_1^2)$ and let $Y_1,...,Y_{n_2}\sim \text{i.i.d}$ as $N(\mu_2,\sigma_2^2)$. and $\sigma_1^2\neq\sigma_2^2$ unknown $H_0: \mu_1 - \mu_2 = \delta_0$ Test statistic: $Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$

4.2 Comparing the variances of two normal populations

Let $X_1, ... X_{n_1} \sim \text{i.i.d.}$ as $N(\mu_1, \sigma_1^2)$ and let $Y_1, ..., Y_{n_2} \sim \text{i.i.d}$ as $N(\mu_2, \sigma_2^2)$. Test statistic : $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1 \text{ vs } H_1: \sigma_1^2 > \sigma_2^2$$
 $RR = \frac{S_1^2}{S_2^2} \ge F_{(n_1 - 1, n_2 - 1, \alpha)}$

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1 \text{ vs } H_1: \sigma_1^2 < \sigma_2^2$$

 $RR = \frac{S_1^2}{S_2^2} \le F_{(n_1 - 1, n_2 - 1, \alpha)}$

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1 \text{ vs } H_1: \sigma_1^2 \neq \sigma_2^2$$

$$RR = \frac{S_1^2}{S_2^2} \geq F_{(n_1 - 1, n_2 - 1, \alpha/2)} \text{ or } \frac{S_1^2}{S_2^2} \leq F_{(n_1 - 1, n_2 - 1, 1 - \alpha/2)}$$

Comparing Two proportions 4.3

 $X \sim \text{Binomial}(n_1, p_1) \text{ and } Y \sim \text{Binomial}(n_2, p_2), \hat{p_1} = \frac{X}{n_1} \text{ and } \hat{p_2} = \frac{Y}{n_2}$

Test statistic: $\frac{\hat{p_1} - \hat{p_2} - (p_1 - p_2)}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n_1} + \frac{\hat{p_2}(1 - \hat{p_2})}{n_2}}} \sim N(0, 1)$

 $H_0: p_1 = p_2$

Large samples version : $Z = \frac{\hat{p_1} - \hat{p_2} - 0}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ where $\hat{p} = \frac{X+Y}{n_1+n_2}$

4.4 **Paired Comparisons**

 $D_i=X_i-Y_i$ are independent with $N(\delta,\sigma_D^2)$. Let $\bar{D}=\sum_{i=1}^n D_i/n$, $S_D=\sqrt{\sum_{i=1}^n (D_i-\bar{D})^2/(n-1)}$ Test statistic : $T=\frac{\bar{D}-\delta_0}{S_D/\sqrt{n}}\sim t_{n-1}$

 $H_0: \delta = \delta_0 \text{ vs } H_1: \delta > \delta_0$

 $RR: \{T \geq c\}$

p - value(x) : $P(T \ge x | \delta_0) = 1 - F_{t_{n-1}}(x)$

 $H_0: \delta = \delta_0 \text{ vs } H_1: \delta < \delta_0$

 $RR: \{T \leq c\}$

p - value(x): $P(T \le x | \delta_0) = F_{t_{n-1}}(x)$

 $H_0: \delta = \delta_0 \text{ vs } H_1: \delta \neq \delta_0$

 $RR : \{ |T| < c \}$

p - value(x): $P(|T| \le |x||\delta_0) = 2F_{t_{n-1}}(-|x|)$

A $100(1-\alpha)$ Confidence Interval for δ is given by : $\bar{D} \mp t_{n-1,\alpha/2} S_D / \sqrt{n}$

5 Design of Experiments and Analysis of Variance

5.1 Comparison of several treatments

Data Structure:

	Treatment 1	Treatment 2	• • •	Treatment K
	y_{11}	y_{12}		y_{1K}
	y_{21}	y_{12}	• • •	y_{2K}
	:	:		:
	$y_{n_{1}1}$	$y_{n_2 2}$	• • •	y_{n_KK}
Means	$ar{y}_1$	\bar{y}_2	• • •	\bar{y}_K

Decomposition of $y_{ij} = \bar{y} + (\bar{y}_j - \bar{y}) + (y_{ij} - \bar{y}_j)$

Source	SS	DF	MS	F
Treatments	$SST = \sum_{j=1}^{K} n_j (\bar{y}_j - \bar{y})^2$	K - 1	$\frac{SST}{K-1}$	$\frac{MS(T)}{MS(E)}$
Error	SSE = $\sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2$	$\sum_{j=1}^{K} n_j - K$	$\frac{SSE}{\sum_{i=1}^{K} n_i - K}$	· /
Total	$\sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \bar{y})^2$		→ J = 1 J	

5.2 Population model and inferences

$$Y_{ij} = \mu + \beta_j + e_{ij}, j = 1, ..., K, i = 1, ..., n_j$$

where μ is overall mean and β_j is the jth treatment effect, $\sum_{i=1}^K \beta_j = 0$, and e_{ij} are i.i.d. $N(0, \sigma^2)$.

The likelihood ratio test or F test of the null hypothesis $H_0: \beta_1 = \beta_2 = \beta_3 = ... = \beta_K = 0$ vs $H_1:$ some of the β_j values differ from zero is by using F from above. Under H_0 , $F = \frac{MS(T)}{MS(E)} \sim F_{K-1,N-K}$.

 $RR: F > F_{K-1,N-K,\alpha}$

p-value : P(F > observed value)

Confidence interval for a single difference $(\mu_j - \mu_{j'})$:

$$\bar{y}_j - \bar{y}_{j'} \pm t_{N-K,\alpha/2} \sqrt{MSE} \sqrt{\frac{1}{n_j} + \frac{1}{n_{j'}}}$$

Multiple-t Confidence Intervals (Bonferroni Intervals)

A set of $100(1-\alpha)$ simultaneous confidence intervals for $m={K \choose 2}$ number of pairwise differences $(\mu_j-\mu_{j'})$ is given by

$$\bar{y}_j - \bar{y}_{j'} \pm t_{N-K,\alpha/2m} \sqrt{MSE} \sqrt{\frac{1}{n_j} + \frac{1}{n_{j'}}}$$

7

5.3 One way ANOVA

5.3.1 Fixed Effect

 $y_{ij} = \mu + \beta_i + e_{ij}, i = 1, ..., K, j = 1, ..., n_i$

where μ is overall mean, β_i is the ith treatment effect, e_{ij} are i.i.d. $N(0, \sigma_e^2)$

5.3.2 Random effect

 $y_{ij} = \mu + \alpha_i + e_{ij}, i = 1, ..., K, j = 1, ..., n_i$ where α_i i.i.d. $N(0, \sigma_a^2)$ and independent of e_{ij}, e_{ij} are i.i.d. $N(0, \sigma_e^2)$

The F test of the null hypothesis $H_0: \beta_1=\beta_2=\beta_3=...=\beta_K=0$

vs H_1 : some of the β_j values differ from zero is by using F from above. H_0 : $\sigma_a^2=0$ vs H_1 : $\sigma_a^2>0$. Under H_0 , $F=\frac{MS(T)}{MS(E)}\sim F_{K-1,N-K}$.

 $RR: F > F_{K-1,N-K,\alpha}$

p-value : P(F > observed value)

5.4 Two - Sample Median Test

 H_0 :Both population medians are the same

 H_1 : Population medians differ

5.5 Randomized Block Experiments

Data Structure:

i <u>a Siructure.</u>					
	Block 1	Block 2	• • •	Block b	Treatment means
Treatment 1	y_{11}	y_{12}	• • •	y_{1b}	$ar{y}_{1}$.
Treatment 2	y_{21}	y_{11}	• • •	y_{2b}	$ar{y}_2$.
:	:	:		:	:
Treatment K	y_{K1}	y_{K2}		y_{Kb}	$ar{y}_{K\cdot}$
Block means	$y_{\cdot 1}$	$y_{\cdot 2}$		$y_{\cdot b}$	$ar{y}_{\cdot\cdot}$

Decomposition of $y_{ij} = (\bar{y}_{i.} - \bar{y}_{..}) + (\bar{y}_{.j} - \bar{y}_{..}) + (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..}) + \bar{y}_{..}$

1				
Source	SS	DF	MS	F
Treatments	$SST = b \sum_{i=1}^{K} (\bar{y}_{i\cdot} - \bar{y}_{\cdot\cdot})^2$	K - 1	$\frac{SST}{K-1}$	MST MSE
Blocks	$SSB = K \sum_{j=1}^{b} (\bar{y}_{\cdot j} - \bar{y}_{\cdot \cdot})^2$	b - 1	$\frac{SSB}{b-1}$	MSB MSE
Error	$SSE = \sum_{i=1}^{K} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{})^{2}$	(K-1)(b-1)	$\frac{SSE}{(K-1)(b-1)}$	11152
Total	$\sum_{j=1}^{K} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_{})^2$	bK-1	. , , ,	

Population model:

 $Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$, i = 1, ..., K, j = 1, ..., b where $\sum_{i=1}^K \alpha_i = 0$, $\sum_{j=1}^b \beta_j = 0$ and $e_{ij} \sim N(0, \sigma^2)$.

Testing:

Reject H_0 : $\alpha_1=\alpha_2=\cdots=\alpha_K=0$ (no treatment differences) if $\frac{\text{MST}}{\text{MSE}}>F_{K-1,(K-1)(b-1),\alpha}$ Reject $H_0: \beta_1=\beta_2=\beta_3=\cdots=\beta_b=0$ (no block differences) if $\frac{\text{MSB}}{\text{MSE}}>F_{b-1,(K-1)(b-1),\alpha}$ Confidence interval:

A $100(1-\alpha)$ confidence interval for $(\beta_i-\beta_{i'})$ is given by $(\bar{y}_{i\cdot\cdot}-\bar{y}_{i'\cdot})\pm t_{(b-1)(K-1),\alpha/2}\sqrt{\text{MSE}\cdot 2/b}$

5.6 Factorial Experiment(Interaction)

Data Structure: Suppose we have r(r > 1) replicates, i.e., we repeat the experiment r times using r sets of pq experimental units. Factor A has p levels and Factor B has q levels

	B 1	B 2		Вq
A 1	y_{11}	y_{12}		y_{1q}
A 2	y_{21}	y_{11}	• • •	y_{2q}
:	÷	÷		÷
A p	y_{p1}	y_{p2}	• • •	y_{pq}

Decomposition of $y_{ijk} = \bar{y}_{...} + (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (y_{ij.} - \bar{y}_{i...} - \bar{y}_{.j.} + \bar{y}_{...}) + (y_{ijk} - \bar{y}_{ij.})$

Source	SS	DF	MS	F
Factor A	$SSA = qr \sum_{i=1}^{p} (\bar{y}_{i} - \bar{y}_{})^2$	p - 1	$\frac{SSA}{p-1}$	MSA MSE MSB
Factor B	SSB = $pr \sum_{j=1}^{q} (\bar{y}_{.j.} - \bar{y}_{})^2$	q - 1	$\frac{SSB}{q-1}$	MSE
Interaction $A \times B$	SSAB = $r \sum_{i=1}^{p} \sum_{j=1}^{q} (y_{ij.} - \bar{y}_{i} - \bar{y}_{.j.} + \bar{y}_{})^2$	(p-1)(q-1)	$\frac{SSAB}{(q-1)(p-1)}$	MSAB MSE
Error	$SSE = \sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} (y_{ijk} - \bar{y}_{ij.})^{2}$	pq(r-1)	$\frac{(q-1)(p-1)}{SSE \over pq(r-1)}$	11102
Total	$\sum_{k=1}^{r} \sum_{j=1}^{q} \sum_{i=1}^{p} (y_{ijk} - \bar{y}_{})^2$	pqr-1		

Population model:

$$Y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$
, $i = 1, ..., p, j = 1, ..., q, k = 1, ..., n_{ij} = r$.

Reject
$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_p = 0$ if $\frac{MSA}{MSE} > F_{p-1,pq(r-1),\alpha}$

Reject
$$H_0: \beta_1 = \beta_2 = \beta_3 = \dots = \beta_q = 0$$
 if $\frac{\text{MSB}}{\text{MSE}} > F_{q-1,pq(r-1),\alpha}$

Reject
$$H_0$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_p = 0$ if $\frac{\text{MSA}}{\text{MSE}} > F_{p-1,pq(r-1),\alpha}$
Reject H_0 : $\beta_1 = \beta_2 = \beta_3 = \cdots = \beta_q = 0$ if $\frac{\text{MSB}}{\text{MSE}} > F_{q-1,pq(r-1),\alpha}$
Reject H_0 : $\gamma_1 = \gamma_2 = \gamma_3 = \cdots = \gamma_r = 0$ if $\frac{\text{MSAB}}{\text{MSE}} > F_{(p-1)(q-1),pq(r-1),\alpha}$

5.7 Two way ANOVA

6 Analysis of Categorized Data

6.1 The multinomial model

Structure of Multinomial Data:

Cells	1	2	 K	Total
Probabilities	p_1	p_2	 p_K	1
Frequencies in n trials	n_1	n_2	 n_K	n

6.2 Pearson's Test for Goodness of fit

Case A : Cell Probabilities Completely Specified by H_0

Test statistic:
$$\mathcal{X}^2 = \sum_{i=1}^k \frac{(n_i - np_{i0})^2}{np_{i0}} = \sum_{\text{cell } i} \frac{(O_i - E_i)^2}{E_i}$$

Null Hypothesis : $H_0: p_1 = p_{10}, \cdots, p_k = p_{k0}$ Test statistic : $\mathcal{X}^2 = \sum_{i=1}^k \frac{(n_i - np_{i0})^2}{np_{i0}} = \sum_{\substack{\mathbf{Cell} \ i}} \frac{(O_i - E_i)^2}{E_i}$ The \mathcal{X}^2 statistic is approximately \mathcal{X}^2_{k-1} distributed for large n under the null.

$$RR = X^2 \ge \mathcal{X}_{k-1,\alpha}^2$$
 and p - value = $P(\mathcal{X}_{k-1}^2 \ge \text{observed}X^2)$

Large sample approximation if all expected cell counts ≥ 5

Case B : Cell Probabilities Not Completely Specified by H_0

First estimate the unknown parameter under the null assuming a parametric model.

Next calculate the expected cell counts under the null using the parameter value obtained in the

$$\mathcal{X}^2 = \sum_{\text{cell } i} \frac{(O_i - E_i)^2}{E_i}$$
 with d.f. = number of cells - 1 - (number of estimated parameters)

Contingency Tables 6.3

An $r \times c$ Contingency Table – Data Structure:

	B_1	B_2		B_c	Row Total
A_1	n_{11}	n_{12}		n_{1c}	n_{10}
A_2	n_{21}	n_{22}	• • •	n_{2c}	n_{20}
:	:	÷		:	:
A_r	n_{r1}	n_{r2}		n_{rc}	n_{r0}
Column Total	n_{01}	n_{02}		n_{0c}	n

	B_1	B_2		B_c	Row Total
A_1	p_{11}	p_{12}		p_{1c}	p_{10}
A_2	p_{21}	p_{22}	• • •	p_{2c}	p_{20}
:	:	:		:	:
A_r	p_{r1}	p_{r2}		p_{rc}	p_{r0}
Column Total	p_{01}	p_{02}		p_{0c}	1

Null hypothesis: the A and B classification are independent

 $H_0: p_{ij} = p_{i0}p_{0j}$ for cells (i, j)

Under H_0 , $E(n_{ij}) = np_{i0}p_{0j}$

Estimators of p_{i0} and p_{0j} : $\hat{p}_{i0} = \frac{n_{i0}}{n}$, $\hat{p}_{0j} = \frac{n_{0j}}{n}$ Test statistic: $X^2 = \sum_{\substack{\text{all cells}}} \frac{(n_{ij} - E_{ij})^2}{E_{ij}}$ where $E_{ij} = \frac{n_{i0}n_{0j}}{n}$ The distribution of X^2 under H_0 can be approximated by $X^2_{(r-1)(c-1)}$ for large sample (all expected cell counts ≥ 5)

Measures of Association in a Contingency Table

 $q = \min(r, c)$. Large values imply strong association:

Cramer's contingency coefficient :
$$Q_1=\frac{X^2}{n(q-1)}$$
, $0\leq Q_1\leq 1$
Pearson's coefficient of mean square contingency

$$Q_2 = \sqrt{\frac{X^2}{n+X^2}}, 0 \le Q_2 \le \sqrt{\frac{q-1}{q}}$$

6.3.2 Contingency tables with one margin fixed(Test of Homogeneity)

An $r \times c$ Contingency Table – Data Structure:

	B_1	B_2		B_c	Row Total		
A_1	n_{11}	n_{12}	• • •	n_{1c}	n_{10}		
A_2	n_{21}	n_{22}	• • •	n_{2c}	n_{20}		
:	÷	÷		:	:		
A_r	n_{r1}	n_{r2}	• • •	n_{rc}	n_{r0}		
Column Total	n_{01}	n_{02}		n_{0c}	n		

	B_1	B_2	 B_c	Row Total
$\overline{A_1}$	w_{11}	w_{12}	 w_{1c}	1
A_2	w_{21}	w_{22}	 w_{2c}	1
:	÷	÷	 :	:
A_r	w_{r1}	w_{r2}	 w_{rc}	1

Null hypothesis of homogeneity: $w_{1j} = w_{2j} = \cdots = w_{rj}$ for every j = 1, ..., c

The estimated probability is $\hat{w}_{1j} = \hat{w}_{2j} = \cdots = \hat{w}_{rj} = \frac{n_{0j}}{n}$ and the expected frequency in the (i,j)th cell is $E_{ij} = n_{i0}\hat{w}_{ij} = \frac{n_{i0}n_{0j}}{n}$ The test statistic is given by $X^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{ij} - E_{ij})^2}{E_{ij}} \sim \mathcal{X}_{(r-1)(c-1)}^2$

6.3.3 2×2 Contingency Table

 $H_0: p_1 = p_2 \text{ vs } H_1: p_1 \neq p_2$

Pearson's \mathcal{X}^2 test, provided expected cell counts ≥ 5

Z test by the normal(large - sample) approximations $Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{(1/n_1) + (1/n_2)}} \sim N(0,1)$.

 $H_0: p_1 = p_2 \text{ vs } H_1: p_1 > p_2 \text{ or } H_1: p_1 < p_2$

Pearson's \mathcal{X}^2 test not appropriate.

Z test by the normal approximations.

6.3.4 $I \times J$ Contingency Tables

6.3.5 Fisher's exact test

6.3.6 Ordinal Tests

Nonparametric Inference

7.1 Paired Comparisons

The Sign Test

 $H_0: \eta = \eta_0$ [i.e. $P(y < \eta_0) = P(y > \eta_0) = \frac{1}{2}$, Note this is no ties version.]

The test statistic: $S = \sum_{i=1}^{n} I\{y_i > \eta_0\}$, under the null, $S \sim \text{Binomial}(n', p = \frac{1}{2})$ where n'=n- (number of sample equals to η_0) is called effective sample size.

$$H_1: \eta > \eta_0$$
 $RR = \{S \ge c\}$ where c satisfies $P(S \ge c) \le \alpha$ p-value $(s) = P(S \ge s)$

$$H_1: \eta < \eta_0$$

 $RR = \{S \le c\}$ where c satisfies $P(S \le c) \le \alpha$
 $p\text{-value}(s) = P(S \le s)$

$$H_1: \eta \neq \eta_0$$

$$RR = \{S \leq c_1 \text{ or } S \geq c_2\} \text{ where } c \text{ satisfies } P(S \leq c_1) + P(S \geq c_2) \leq \alpha$$

$$\text{p-value}(s) = \begin{cases} P(S \leq s) + P(S \geq n' - s) & s \leq \frac{n'}{2} \\ P(S \leq n' - s) + P(S \geq s) & s \geq \frac{n'}{2} \end{cases}$$

Note that for n'>25, we can use $\frac{S-\frac{n'}{2}}{\frac{1}{2}\sqrt{n'}}\sim N(0,1)$ as test statistic.

7.1.2 The Wilcoxon Signed Rank Test

The null hypothesis: the underlying cdf is symmetric about a specified value η_0 . Steps in the signed-rank test:

- 1. Discard values of $X_i = \eta_0$
- 2. Let $Y_i=X_i-\eta_0$, let r_i be the rank of $|Y_i|$ if there is a tie then average ranks for tied values 3. Define $T_+=\sum_{i=1}^{n'}r_iI\{Y_i>0\}=\sum_{i=1}^{n'}\sum_{j=1}^{i}I\{Y_i+Y_j>0\}$

$$\begin{aligned} H_1: \eta > \eta_0 \\ RR &= \{T^+ \geq c\} \text{ where } c \text{ satisfies } P(T^+ \geq c | H_0) \leq \alpha \\ \text{p-value}(t^+) &= P(T^+ \geq t^+) \end{aligned}$$

$$\begin{array}{l} H_1: \eta < \eta_0 \\ RR = \{T^+ \leq c\} \text{ where } c \text{ satisfies } P(T^+ \leq c|H_0) \leq \alpha \\ \text{p-value}(t^+) = P(T^+ \leq t^+) \end{array}$$

$$\begin{split} &H_1: \eta \neq \eta_0 \\ &RR = \{T^+ \leq c_1 \text{ or } T^+ \geq c_2\} \text{ where } c \text{ satisfies } P(T^+ \leq c_1) + P(T^+ \geq c_2) \leq \alpha \\ &\text{p-value}(s) = \begin{cases} P(T^+ \leq t^+ | H_0) + P(T^+ \geq \frac{n'(n'+1)}{2} - t^+ | H_0) & t^+ \leq \frac{n'(n'+1)}{4} \\ P(T^+ \geq t^+ | H_0) + P(T^+ \leq \frac{n'(n'+1)}{2} - t^+ | H_0) & t^+ > \frac{n'(n'+1)}{4} \end{cases} \end{split}$$
 When $n' > 25$, we can use $\frac{T_+ - \frac{n'(n'+1)}{4}}{\sqrt{\frac{n'(n'+1)(2n'+1)}{24}}} \sim N(0,1)$ as test statistic.

When
$$n' > 25$$
, we can use $\frac{T_+ - \frac{n'(n'+1)}{4}}{\sqrt{\frac{n'(n'+1)(2n'+1)}{24}}} \sim N(0,1)$ as test statistic.

7.2 The Wilcoxon Rank-Sum test for comparing two treatments

 H_0 : The two population distributions are identical.[i.e. $F_{X_A} = F_{X_B}$] One side alternative:

 H_1 : The distribution of population A is shifted to the right/left of the distribution of population B. Two sided alternative:

 H_1 : The distribution of population A is different from the distribution of population B.

Test statistic: $W_A = \sum_{i=1}^{n_A} R(X_{1i})$ where $R(X_{1i})$ is the rank of X_{1i} in the pooled sample, W_A is the rank sum for treatment A and W_A is symmetric about $n_A(n_A + n_B + 1)/2$ under H_0 Note: We could use $W_B = \sum_{i=1}^{n_B} R(X_{2i})$ where $R(X_{2i})$ is the rank of X_{2i} in the pooled sample, W_B is the rank sum for treatment B and W_B is symmetric about $n_B(n_A + n_B + 1)/2$ under H_0

 $W_A+W_B=rac{(n_A+n_B)(n_A+n_B+1)}{2}$ which is a constant. Let $W_s=$ sum of ranks of the smaller sample. [i.e. Determine whether $W_s=W_A$ or $W_s=W_B$] For H_1 : Population A is shifted to the right of population B; set the rejection region of the form $W_s \geq c$.

For H_1 : Population A is shifted to the left of population B; set the rejection region of the form

For H_1 : Populations are different; set the rejection region of the form $W_s \leq c_1$ or $W_s \geq c_2$.

Large Sample Approximation:

Under H_0 mean of $W_A = \frac{n_A(n_A + n_B + 1)}{2}$, variance of $W_A = \frac{n_A n_B(n_A + n_B + 1)}{12}$ Test statistic : $Z = \frac{W_A - \frac{n_A(n_A + n_B + 1)}{2}}{\sqrt{\frac{n_A n_B(n_A + n_B + 1)}{12}}} \sim N(0, 1)$

7.3 The Kruskal-Wallis Test

 H_0 : All K continuous population distributions are identical

 H_1 : Not all K distributions are identical

Notes: 1. When K = 2, Kruskal-Wallis Test and Wilcoxon Rank sum test are the same.

2. Kruskal-Wallis setup is akin to conducting an ANOVA F test on ranks instead of y_{ij} .

Procedures: 1. Get the rank table

	Treatment 1	Treatment 2		Treatment K
	R_{11}	R_{12}		R_{1K}
	R_{21}	R_{11}	• • •	R_{2K}
	:	:		:
	R_{n_11}	$R_{n_2 1}$		R_{n_KK}
Rank sum	W_1	W_2		W_K
Average Rank	$ar{R}_1$	$ar{R}_2$	• • •	$ar{R}_K$

- 2 . The pooled-sample average rank is $\bar{R} = \frac{1+2+\cdots+N}{N} = \frac{N+1}{2}.$
- 3. Under H_0 , the sample average ranks are all close to the pooled average \bar{R} .
- 4. The Kruskal-Wallis statistic $H = \frac{12}{N(N+1)} \sum_{i=1}^{K} n_i (\bar{R}_i \frac{N+1}{2})^2$ or $H = \frac{12}{N(N+1)} \left[\frac{W_1^2}{n_1} + \frac{W_2^2}{n_2} + \frac{W_2^2}{n_2} \right]$
- $\cdots + \frac{W_K^2}{n_K}] 3(N+1).$ 5. Large values of H support H_1 .
 - 6. Approximately, $H \sim \mathcal{X}_{K-1}^2$ under H_0 for large samples. 7. p value = $P(\mathcal{X}_{k-1}^2 \geq \text{ observed H value})$

Friedman's rank test 7.4

The Friedman test is a non-parametric test for analyzing two-way models without interaction.

Extension of the sign test with more than two treatments.

 $\mathsf{Model}: Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$

 H_0 : The treatment effects of factor A have identical effects

 H_1 : At least one treatment of factor A is different from at least one other treatment

 H_0 : The treatment effects of factor B have identical effects

 H_1 : At least one treatment of factor B is different from at least one other treatment

	B 1	B 2		Вq
A 1	y_{11}	y_{12}		y_{1q}
A 2	y_{21}	y_{11}	• • •	y_{2q}
÷	÷	÷		÷
A p	y_{p1}	y_{p2}	• • •	y_{pq}

Test statistic : $Q_A = \frac{12q}{p(p+1)} \sum_{i=1}^{p} (\bar{R}_{i\cdot} - \frac{p+1}{2})^2 \sim \mathcal{X}_{p-1}^2$ where $\bar{R}_{i\cdot} = \frac{1}{q} \sum_{j=1}^{q} R_{ij}$

13

Test statistic : $Q_B = \frac{12p}{q(q+1)} \sum_{i=1}^q (\bar{R}_{\cdot j} - \frac{q+1}{2})^2 \sim \mathcal{X}_{q-1}^2$ where $\bar{R}_{\cdot j} = \frac{1}{p} \sum_{j=1}^p R_{ij}$ Large Value of Q_A and Q_B support H_1 .

Simple Linear Relation 8

Note: Be careful with population variance, sample variance of Y [i.e sample variance of Y = $S_u^2/(n-1)$]

8.1 **Correlation coefficient**

Sample Correlation coefficient :
$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{[\sum_{i=1}^{n} (X_i - \bar{X})^2][\sum_{i=1}^{n} (Y_i - \bar{Y})^2]}} = \frac{S_{xy}}{\sqrt{S_x^2 S_y^2}}$$

8.2 Simple linear regression

Statistical Model: $Y_i = \alpha + \beta x_i + e_i$, i = 1, ..., n

 $x_1, ..., x_n$ are the set values of the independent variable x.

 $e_1, ..., e_n$ are the unknown random error, which we assume are i.i.d $N(0, \sigma^2)$.

The intercept α and slope β are unknown.

 $E(Y|x) = \alpha + \beta x$, i.e. the mean response changes linearly with x.

The Principle of Least Squares:

Least squares regression (fitted) line : $\hat{y} = \hat{\alpha} + \hat{\beta}x$ Residual or Error Sum of Squares : $SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x)^2$

 $\hat{\alpha}$ and $\hat{\beta}$ are selected to give minimum SSE

Formulas for Least Squares Estimates:

$$\hat{\beta} = \frac{S_{xy}}{S_x^2} \text{ and } \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \text{ where } \bar{x} = \frac{\sum_{i=1}^n x_i}{n} \text{ and } \bar{y} = \frac{\sum_{i=1}^n y_i}{n}, S_x^2 = \sum (x_i - \bar{x})^2 = \sum x_i^2 - n\bar{x}^2,$$

$$S_y^2 = \sum (y_i - \bar{y})^2 = \sum y_i^2 - n\bar{y}^2, S_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - n\bar{x}\bar{y}$$

ANOVA-Type Formulas:

 $SS_{Total} = SS_{Regn} + SSE$, i.e. total variation = variation due to regression + residual variation. where $SS_{\text{Total}} = \sum (y_i - \bar{y})^2 = S_y^2$, $SS_{\text{Regn}} = \sum (\hat{y} - \bar{y})^2 = \hat{\beta}^2 S_x^2$, $SSE = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - \hat{y}_i$ $S_u^2 - \hat{\beta}^2 S_r^2$

 $R^2 = \frac{SSRegn}{SSTotal}$, R^2 represents the proportion of the y variability explained by the linear relation with x.

Other inference on α and β :

$$\hat{\alpha} \sim N(\alpha, \sigma^2[\frac{1}{n} + \frac{\bar{x}^2}{S_x^2}])$$

$$\hat{\beta} \sim N(\beta, \frac{\sigma^2}{S^2})$$

 $s^2 = SSE/(n-2)$ is an unbiased estimator of σ^2

 $(n-2)s^2/\sigma^2 \sim \chi_{n-2}^{'2}$ and is independent of $\hat{\alpha}$ and $\hat{\beta}$

Standard error estimate of $\hat{\alpha} = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_x^2}}$

Standard error estimate of $\hat{\beta} = \frac{s}{S_x}$

$$\frac{\frac{(\hat{\beta}-\beta)}{s/S_x} \sim t_{n-2}}{\frac{(\hat{\alpha}-\alpha)}{s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_x^2}}} \sim t_{n-2}$$

Inference Concerning the Slope β

Hypothesis Testing:

Test
$$H_0: \beta = \beta_0$$
 vs $H_1: \beta \neq \beta_0$ or $H_1: \beta > \beta_0$ or $H_1: \beta < \beta_0$

Test statistic: $T = \frac{\hat{\beta} - \beta_0}{s/S_x}$ Under H_0 , $T \sim t_{n-2}$

Confidence Interval Estimation

$$100(1-\alpha)$$
 CI for $\beta: \hat{\beta} \pm t_{n-2,\alpha/2} \frac{s}{S_X}$

Hypothesis Testing:

Test
$$H_0: \alpha = \alpha_0$$
 vs $H_1: \alpha \neq \alpha_0$ or $H_1: \alpha > \alpha_0$ or $H_1: \alpha < \alpha_0$
Test statistic: $T = \frac{\hat{\alpha} - \alpha_0}{s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_x^2}}}$

Under H_0 , $T \sim t_{n-2}$

Confidence Interval Estimation

100(1 -
$$\alpha$$
) CI for α : $\hat{\alpha} \pm t_{n-2,\alpha/2} s \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_x^2}}$

Prediction Interval of the Mean Response for a Specified x^* Value:

$$100(1-\alpha) \text{ CI for } E(Y|x^*): \hat{\alpha} + \hat{\beta}x^* \pm t_{n-2,\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_x^2}}$$

Prediction Interval of a Single Response for a Specified x^* Value:

$$100(1-\alpha) \text{ CI}: \hat{\alpha} + \hat{\beta}x^* \pm t_{n-2,\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_x^2}}$$

9 **Logistic and Poisson Regression Models**

Logistic Regression

$$\ln\frac{\pi}{1-\pi} = \mathbf{x}'\beta$$

Estimating the Parameters in a Logistic Regression Model

Interpretation of the Parameters in a Logistic Regression Model

Assume that odds $\frac{\pi}{1-\pi} = e^{\hat{\eta}} = e^{b_0 + b_1 x_1}$, then estimated odds ratio is $O_R = \frac{\text{odds}_{x_i+1}}{\text{odds}_{x_i}} = e^{b_1}$.

The estimated odds ratio can be interpreted as the estimated increase in the odds of success associated with a one - unit change in the value of the predictor variable.

If b_1 is positive, this implies that every additional (x_1) increase the odds of success by $e^{b_1} - 1$

If b_1 is negative, this implies that every additional (x_1) reduce the odds of failure by $1-e^{b_1}$ percent.

9.1.3 Statistical Inference on Model Parameters

Likelihood ratio tests:

Test Goodness of Fit with Deviance:

Test Hypothesis on Subsets of Parameters Using Device:

Test on Individual Model Coefficients:

Lack of Fit Tests in Logistic Regression:

Diagnostic Checking in Logistic Regression:

9.2 **Poisson Regression**

We assume that the response variable y_i is a count, such that the observation $y_i = 0, 1, 2, ...$ $f(y_i) = 0$ $\begin{array}{l} \frac{e^{-\mu_i \mu_i^{y_i}}}{y_i!},\,y_i=0,1,2,\dots\\ \text{Identity Link}:\,g(\mu_i)=\mu_i=x_i^{'}\beta\\ \text{Log Link}:\,g(\mu_i)=\ln(\mu_i)=x_i^{'}\beta\Rightarrow\mu_i=\exp\{x_i^{'}\beta\} \end{array}$

Interpretation of β : the additive change in the log mean count for each 1-unit increase in x. Interpretation of e^{β} : the multiplicative factor by which the mean count changes for each 1-unit increase in x.