Notes on Applied Statistics

Zhenbang Wang

This note is partially based on Statistical Concepts and Methods by G.K. Bhattacharyya and
R.A. Johnson.
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1 Basic Concepts of Testing Hypothesis
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A statistical hypothesis is a statement about the population. Its plausibility is to be evaluated

on the basis of information obtained by sampling from the population.

H' : Above is not true.

. Difference between mathematical proposition and statistical hypothesis is uncertainty
. The null is the negation of the assertion

. Type I error: rejection of null when null is true.

. Type Il error: failure to reject null when alternative is true.

. Power function : v(6) = P [rejects the Null when true value of the parameter is 0]

. Hypothesis H: The proportion of consumers preferring brand A to brand B is 0.4. Hypothesis



1.1 Selecting among several tests

Level of significance : max (p) < o under p € Hy
Size of the test : max v(p) = o under p € Hy

p - value(z) = sup P(X > x)
0€0Og
p - value : probability of obtaining a test statistic value as extreme as or more extreme than the

observed value under H,

1.2 General steps in testing hypothesis
2 The Normal Distribution and Random Samples

2.1 Random Samples, Statistic, Sampling Distributions

A random sample of size n from a population f(x) is a collection of n independent random vari-
ables X1, Xo, ..., each having the distribution f(x)

A statistic is a function of the sample observations.

Every statistic is, itself, a random variable. Its probability distribution is called the sampling distri-
bution of the statistic.

2.2 Distribution of the sample mean and the central limit theorem

2

Mean and standard deviation of X : E(X) = pand Var(X) = =
Central limit Theorem: In random sampling from an arbitrary population with mean y and standard
deviation o, the distribution of X when n is large is approximately normal, with mean p and
standard deviation o'//n.

In other words, Z = f/;\/% is approximately N (0, 1).
e.g. X follows Bernoulli(p). Then Z = % is approximately N (0, 1).
p(1—p)/n

2.3 Checking the assumption of a normal population
3 Inferences about a population

3.1 Point Estimation of parameter

Stand error: The standard deviation of the estimator 6 is called its standard error and is designated

~

S.E.(0)
Point estimator of the mean: X S.E.(X) = o//n , estimated S.E.(X) = s//n

Point estimator of the binomial Parameter: p = % S.E.(p) = /% and estimated S.E.(p) = 1/ iz

n

3.2 Estimation by confidence interval

CL (L,U) is 100(1-)% CI such that P(L(Xy, Xo, ..., X,,) <0 < U(X1, Xo, ... X)) =1 —«
Note P[41.1< p <44.3] = .95 is wrong.
Interpretation : If we conduct the same experiment independently many times, the confidence
interval estimator will cover the true value of # approximately 1 — « of the time.
Large Sample Confidence Interval for z When o is Unknown: (X — z, /2\/%7, X + 2, /2\%)



(n—1)S? (n—1)S2

2 9 2
Xn—l,a/Q Xn—l,l—a/Q

Large Sample Confidence Interval for o%: (

Large Sample Confidence Interval for p : (p — za/21/ £0=p) P+ Zas2 M)

Small Sample Confidence Interval for 1 when o is unknown: (X —t, /2,n—1 \/iﬁ, X +1, /Q,n,lx/iﬁ)
To be 100(1 — «) sure that the error | X — p| does not exceed d, the required sample size is n =

(ZQQQO' )2

If n is small and the population is nonnormal,take 5_; as upper bound.

3.3 One Sample binomial proportion
Xy, Xy, ..., X, ~bin(1,p) with X = 37| X,

Hoy:p<povsHi:p>po | Ho:p>povs Hi:p<po | Ho:p=povs Hi:p+#po

Test statistic X ~ bin(n,p)

RR {X > C} {X < C} {X < C1 or X > CQ}
p-value(x) P(X > z|po) P(X < z|po) P(|X —np| > |x — np||po)

Large Sample version

Test statistic X ~ N(np,np(1 —p))

RR: {X >¢} {X <¢} {X <e¢p or X >co}

T—npo T—npo ‘x,np0|

p-value(x) Pz z 7 P s i Pl2l=> =y

3.4 One Normal sampling
X1, ..., Xy ~ N(p, 0%) with o known

Ho:p<povsHy:p>po | Ho:p>povs Hy: o< pio | Ho:p=povs Hi:pn # po

Test statistic XorZ = f/_\;%’
RR {Z > ¢} {Z < ¢} {Z <c; orZ > co}
p-value(x)  P(Z > z[uo) =1 — ¢(2) P(Z < z|po) = ¢(2) P(1Z] > |2]|1o) = 2¢(—|2[)

X1,...; X ~ N(p, 0?) with o unknown

Ho:p<povsHy:p>po | Hotp>povs Hi i <po | Ho:p=povs Hy: p# po

Test statistic T= )éf /750
RR {T > ¢} {T < ¢} {T <c; orT > co}

p-value(x)  P(T' > tluo) =1 = Fi,_,(t) | P(T <tlpo) = Fi,_,(t) | P(T| = [t|[po) = 2F%,_, (—[t])

Large Sample Approximation :

T O X—
Test statistic : T = S/% ~ N(0,1)

RR and P - value are the same with o2 known case.

3.5 Inference about o of a normal population

1y@2
Test statistic : 012)5
0

.2 2 .2 2
Hy:0°<o5vsHy:0° > 0§



RR: (2=DS% > y2

n—1,«x
0

p-value(x) : 1 — Fxﬁfl((";—?k@)

0

H()'O' >O’0VSH1.O' <0'g
RR : (=09 < 42

0 n—1,1—«

p-value(x) : Fly2 1((" 12)52)
n— (o)

52 g2 £ o2
Hy : O'—UOVSHl. # 0§

n—1)S? —1)52
RR : 3% ) <X211 a/QOr( 0) >X31a/2

P- Value is complicated!
Notes : the inference procedures for o2 presented here are extremely sensitive to departures
from a normal population!

4 Comparing Two treatments

4.1 Independent Samples from two populations

Let Xi,..X,,, ~iid. as N(ui,0?) and let Yy, ..., Y, ~ iidas N(u,03). and 0} = 03 = o>
unknown o
Test statistic : T = X—¥—d ~ tping, 2
Spooled\/niﬁ% o
Hy @y — pg = 0o vs Hy @ pig — iz # do
RR: |T‘ > tnlJrnZ,Q’a/g
p-value : P(|T| > [t]|py — p2 = 60) = 2F,, ., o (=[t])

Ho i py — pg = 09 v8 Hy @ jig — pig > dg
RR: T Z tn1+n2—2,a
p-value: P(T > t{uy —pa=0d0) =1-F, . ,(t)

Hoy 2 piy — g = 09 vs Hy @ g — pio < dg
RR: T S tn1+n2—2,a
p-value : P(T <tlpy — po = o) = Fy, .., (t)

Let X;,...X,,, ~iid.as N(uy,0?) and let Yy, ..., Y, ~iidas N(us,03). and 07 # o2 known
Ho:pr—pa =100 _
Test statistic : Z = M ~ N(0,1)
Welch’s t test or Behrens-Fisher problem :

Let Xi,...X,,, ~iid.as N(uy,0?) and let Yy, ..., Y,, ~iidas N(us,02). and 07 # o2 unknown

Hy @ pn — pa = o

XV — (a1 —p2) (Sl 2)?
Test statistic : T = =——LF2) ~ ¢ where v = ;‘ L =2
s?  s2 1 ( Ly24 (222
— 4 —= ny—13ny n —1 ny

Large Sample inferences version :



Let X, ...X,,, ~iid. as N(uy,0?) and let Yy, ..., Y, ~iidas N(us,03). and 07 # o2 unknown
Hy @ py — pp = do

Test statistic : Z = X —U1-u2) N(0,1)

52 g2

71_’_572
ni n2

4.2 Comparing the variances of two normal populations

Let X1,...X,,, ~ii.d. as N(ui,0?) and let Yy, ..., Y,, ~iidas N(ug,03).

itic - F = Si/ot
Test statistic : F' = /ot

H, '—U%*lvsH 102> 02
0‘05— 1-01q 2
RR=5 >
== S; = L'(ni—1n2—1,c)
o} 2 2
Hy: =% =1vs Hy :0{ < 0j

1
s
RR =& > Finy—1n3—1,a/2) OF S—é < Flni—1ne—1,1-a/2)

4.3 Comparing Two proportions

X ~ Binomial(ny, p;) and Y ~ Binomial(ng, p2), p1 = n% and p, = n%

Test statistic 1 —2=22=1P2) _ -, N (0, 1)
\/p&(l—p"lupé(l—pa)

Hy:p1 =ps

C P1L—p2—0 s X4y
Large samples version : Z = /e where p = ==~
ny - ng

4.4 Paired Comparisons

D; = X;—Y; are independent with N'(§,0%). Let D = 3" | D;/n, Sp = \/>_i_(D; — D)?/(n — 1)

ceqin . D=
Test statistic : 1" = 55 /\/OH ~tn_1

H025:50VSH115>50
RR:{T > ¢}
p-value(x): P(T > x|dy) =1 — F}, ()

H025:50VSH12(5<(50
RR:{T < ¢}
p - value(x) : P(T < z|dy) = Fy, ()

H025:50VSH13(57£50
RR: {|T] < ¢}
p - value(x) : P(|T| < |z||do) = 2F,,_,(—|z])

A 100(1 — «) Confidence Interval for ¢ is given by : DT th—1,a/25D /\/n



5 Design of Experiments and Analysis of Variance

5.1 Comparison of several treatments

Data Structure :

Treatment 1 Treatment2 --- Treatment K

Y1 Y12 U1K

Y21 Y12 YK

Yni1 Yng2 - Yng K

Means U1 Yo v Uk

Decomposition of y;; = ¢ + (4, — y) + (vi; — ;)

Source SS DF MS
Treatments SST = Z]K (g — )2 K-1 et %ﬁgi
Error SSE=30, Sy — 4)° Yjemy — K #

Total S iy —5)° in — 1

5.2 Population model and inferences

K] = /L—Fﬂj +€'LJ’] = 17...,K,i = 17...,7”LJ
where 1 is overall mean and f; is the jth treatment effect, Zjil B; = 0, and ¢;; are i.i.d. N(0,0?).
The likelihood ratio test or F test of the null hypothesis Hy : 51 = s = 3 = ... = g = 0 vs

H, : some of the 3; values differ from zero is by using F' from above. Under H, F' = %ggg ~

Fr1n-k.
RR: F > FK—l,N—K,a
p-value : P(F > observed value)

Confidence interval for a single difference (1; — pu;):
Ui — Uy Ttn-KapVMSE /nij +-L
J

Multiple-t Confidence Intervals (Bonferroni Intervals)
A set of 100(1 — o) simultaneous confidence intervals for m = number of pairwise differences

(115 — p1;7) is given by
y y tin- K,a/2m V SENI_%»n_

5.3 One way ANOVA
5.3.1 Fixed Effect

Vg =p+Bi+eyi=1.,K,j=1,.
where (4 is overall mean, [3; is the ith treatment effect, e;; are i.i.d.N (0, 02)



5.3.2 Random effect

yij:M-l-Oéi—l—e”,i—l SK,3=1,..
where o; i.i.d. N(0,02) and 1ndependent of eij» €;; are 1.i.d.N(0, 02)

The F test of the null hypothesis Hy : 51 = o = 3 = ... = g =0
vs H; : some of the f3; values differ from zero is by using F' from above. Hy : 02 = 0 vs
H, : 02 > 0. Under Ho, F = 155 ~ Fic 18-k
RR: F > FKfl,NfK,a
p-value : P(F > observed value)

5.4 Two - Sample Median Test

Hy :Both population medians are the same
H; :Population medians differ

5.5 Randomized Block Experiments

Data Structure :

Block 1 Block2 --- Blockb| Treatment means
Treatment 1 Y11 Yz - Y1b Y1
Treatment 2 Y21 Yinoocce Y2b Ya.
Treatment K YK1 Yo - YKb UK.
Block means Y1 Yo o Yb 7.

Decomposition of y;; = (i — §.) + (55 — §.) + (yij — Ui — 9 + §.) + 5.

Source SS DF MS F
= MST

Treatments SST = bZZ (U —y.)? K-1 % 1\%
= SSB

Blocks . SSB = KZ] 1(9] Y. )z b-1 SSEle MSE

Error SSE = Zi:l Zj:l (yzj g ) (K — ].)(b — 1) m

Total Zszl Zz 1(,%] )2 bK —1

Population model :
Yy=p+ai+B+ej,i=1.,K j=1,.bwhere > a;=0,3" 4 =0and
€ij ~ N(O,O'2>.

Testing :
Reject Hy: o = ap = - - - = ag = 0 (no treatment differences) if Mgg > Fr 1 (Kk—1)(b-1),a
Reject Hy : p1 = P2 = B3 = - - - = B, = 0 (no block differences) if 11\\/[/[§1]3 > Fy 1 (K—1)(b-1),a

Confidence interval :
A 100(1—«) confidence interval for (3;— ;) is given by (4;..—¥.)Et(p—1)(k—1),a/2/MSE - 2/b

5.6 Factorial Experiment(Interaction)

Data Structure : Suppose we have r(r > 1) replicates, i.e., we repeat the experiment r times using
r sets of pq experimental units. Factor A has p levels and Factor B has q levels



Bl B2 Bq
Al yun w2 Y1q
A2 ya  yn Yaq
AP Ypt  Yp Y
Decomposition of v, = §... + (Gi.. — §...) + (U.5. — G..) + (Yij. — Gioo — Gjo +G.) + (Yijie — Uis-)
Source SS DF MS F
Factor A SSA=qrY " (yi. — G..)? p-1 % 11\\/[/[—5%
Factor B SSB=pry i, ( —9.)? q-1 ?IST? llt/I/I—S]é
Interaction AxB  SSAB=r>" 23:1(%3 Ui —¥j.+ 7.0 (p—1)(g—1) % 1\1/{/?3_:;]3
Error SSE=5%F > > 1(yzjk Yij-)? pq(r —1) pq(ffl)
Total Zk 1 Z ZZ (Wije — 1. )? pqr —1
Population model :
Yij=p+oa; +8;+vij+ejpw,i=1,...p,5=1,..,¢. k=1,...,n;; =r
Testmg
Reject Hy: ap = a9 = = =0if 1\1\//[[§% > F —1,pq(r—1),0x
Reject Hy : B1 = P = fB3 = :ﬁq—OIf%/I/[§]§>F —1,pg(r—1),x
Reiect Ho : vn — o — e — 0if MSAB |
gject Ho 171 =72 = 713 = =7 =V FGE = L(o-1)(a-1).pa(r-1)

5.7 Two way ANOVA
6 Analysis of Categorized Data

6.1 The multinomial model

Structure of Multinomial Data:

Cells 1 2 K Total
Probabilities pP1 P2 Pr 1
Frequencies in n trials n; no Nk n

6.2 Pearson’s Test for Goodness of fit

Case A : Cell Probabilities Completely Specified by H|
Null Hypothesis : Hy : p1 = P10, , Pk = Pko
. . )2 )2
Test statistic : X2 = S5 % = cell s %

The X statistic is approximately X | distributed for large n under the null.

RR=X?> X2,  andp - value = P(X;} , > observedX?)
Large sample approximation if all expected cell counts > 5

Case B : Cell Probabilities Not Completely Specified by H

First estimate the unknown parameter under the null assuming a parametric model.

Next calculate the expected cell counts under the null using the parameter value obtained in the

first step.
.)(2

9

Zce 1 % with d.f. = number of cells - 1 - (number of estimated parameters)



6.3 Contingency Tables

Anr x ¢ Contingency Table — Data Structure:

By By --- B.| Row Total
Ay niy Nz -+ Nie N1o
Ay No1 Moo -+ MNoe 20
Ar Nr1 ) e Nye Nro
Column Total ng; ng2 -+ Nge n

Bl Bg tee BC Row Total
Ay P11 P12 - Pile P1o
Ay P21 P22 - P2 D20
Ar Pr1 Dr2 et DPrc DPro
Column Total Por Po2 - Poc 1

Null hypothesis : the A and B classification are independent

H() : pij = piOpOj for cells (’L,j)
Under Hy, E(n;;) = npiopo;

Estimators of p;o and po; : pio = ™2, po; = —nsj
)2 : :
Test statistic : X2 = Y11 cells (i —Big)” E?”) where F;; = =0
ij

2

The distribution of X? under Hy can be approximated by X (r—1)(c—1)

cell counts > 5)

6.3.1 Measures of Association in a Contingency Table

¢ = min(r, ¢). Large values imply strong association :
Cramer’s contingency coefficient :

Qi=io5,0< Q<1

Pearson’s coefficient of mean square contingency

X2 [q—1
Q2 = m,OSQQS qT

for large sample (all expected

6.3.2 Contingency tables with one margin fixed(Test of Homogeneity)

Anr x ¢ Contingency Table — Data Structure:

By By --- B.| Row Total
Ay niz Nz -+ Nic nio
Ay No1 Moo -+ Nae 20
Ar Nyr1 ) e Nye Nro
Column Total Nor MNo2 -+ Noe n

10



By By --- B, RowTotal
A wy wip o Wie 1
Ay war wa W 1
Ar Wrp  Wr - Wre 1
Null hypothesis of homogeneity : wi; = wq; = - -+ = w,; forevery j = 1,...,c
The estimated probability is wy; = wy; = -+ = W,; = "% and the expected frequency in the

N0M0;

(i, j)th cell is Eij = ni()UA)ij = "

The test statistic is given by X* = 77, 577, % ~ AL e

6.3.3 2x2 Contingency Table

Ho :p1=pavs Hi :p1 # P2
Pearson’s X'? test, provided expected cell counts > 5

Z test by the normal(large - sample) approximations Z = D1 _p2 ~ N(0,1).
y (larg ple) app T ey~ V0.1

Ho :p1 =p2 vs Hy : p1 > pyor Hy i py < p2
Pearson’s X'? test not appropriate.

Z test by the normal approximations.

6.3.4 I x J Contingency Tables

6.3.5 Fisher’s exact test

6.3.6 Ordinal Tests
7 Nonparametric Inference

7.1 Paired Comparisons
7.1.1 The Sign Test

Hy:n=mno[ie. Ply<mny) =Py >mn) = %, Note this is no ties version.]
The test statistic : S = Y7, I{y; > no}, under the null, S ~ Binomial(n',p = 1) where
n=n-— (number of sample equals to 7)) is called effective sample size.

Hym >
RR = {S > c} where c satisfies P(S > ¢) < «
p-value(s) = P(S > s)

Hyzn <o
RR = {S < ¢} where csatisfies P(S < ¢) < «
p-value(s) = P(S < s)

Hy:n#no
RR ={S <c¢jorS > cy} where ¢ satisfies P(S < ¢1) + P(S > &) < «
S

P(S<s)+P(S>n" —s)

<n
p-value(s) = s 2
P(S<n —s)+P(S>s) s>%

11



Note that for n" > 25, we can use

~ N(0,1) as test statistic.

e

7.1.2 The Wilcoxon Signed Rank Test

The null hypothesis : the underlying cdf is symmetric about a specified value 7.
Steps in the signed-rank test:
1. Discard values of X; = 1
2. Let Y; = X; — no, let r; be the rank of |Y;| if there is a tie then average ranks for tied values

3. Define Ty =31 ri{Y; >0} = >0, >0 I{Y; +Y; > 0}

Hym >0
RR = {T" > ¢} where c satisfies P(T" > ¢|Hy) < «
p-value(tt) = P(T+ > t1)

Hy 2 <o
RR = {T* < ¢} where ¢ satisfies P(T+ < ¢|Hp) < «
p-value(t™) = P(T* < t*)

L1 7 1o
RR {TT <c¢yorTT > ¢y} where ¢ satlsﬁes P(TJr <c¢)+P(TH> cg) <a

P(T*+ < tt|Hy) + P(T* > (”2“ —tt|Hy) tt < %
p-value(s) = 'l 41) )
PCF+>t+u%)+}%I“W< nOFD | Hy) t+>>i%§J

, T+— (n +1)
When n > 25, we can use —2——
/nl(7L/+l)(2n/+1)
24

7.2 The Wilcoxon Rank-Sum test for comparing two treatments

~ N (0, 1) as test statistic.

Hj : The two population distributions are identical.[i.e. Fly, = Fx,]

One side alternative :

H;: The distribution of population A is shifted to the right/left of the distribution of population B.
Two sided alternative :

H;: The distribution of population A is different from the distribution of population B.

Test statistic : W4 = >4 R(Xy;) where R(Xj;) is the rank of X, in the pooled sample , W is
the rank sum for treatment A and W, is symmetric about na(n + np + 1)/2 under Hy

Note : We could use Wg = > " R(Xy;) where R(Xy;) is the rank of X; in the pooled sample,
W is the rank sum for treatment B and W is symmetric about ng(n4 + np + 1)/2 under Hy

Wy 4+ Wy = (natne )(S“"B *+1) which is a constant.
Let W, = sum of ranks of the smaller sample. [i.e. Determine whether W, = W4 or W, = W]
For H,: Population A is shifted to the right of population B; set the rejection region of the form
Ws > c.
For H;: Population A is shifted to the left of population B; set the rejection region of the form
W, <e.
For H,: Populations are different; set the rejection region of the form W, < ¢; or Wy > cs.

12



Large Sample Approximation :
Under Hy mean of W, = w, variance of W, = mans(natnp+l)

12
_ na(na+npg+1)
ue = ~ N(0,1)

\/"A"B(WA+TLB+1)
12

Test statistic : Z =

7.3 The Kruskal-Wallis Test

Hy : All K continuous population distributions are identical
H, : Not all K distributions are identical

Notes: 1. When K = 2, Kruskal-Wallis Test and Wilcoxon Rank sum test are the same.
2. Kruskal-Wallis setup is akin to conducting an ANOVA F test on ranks instead of y;;.

Procedures: 1. Get the rank table

Treatment 1 Treatment2 --- Treatment K

R Ry - Rik

Ry Ry - Rok

Rnll Rngl o RnKK

Rank sum W, Wy - Wy
Average Rank Ry Ry --- Ry

2 . The pooled-sample average rank is R = 425t — AL

3. Under H, , the sample average ranks are all close to the pooled average R.
4. The Kruskal-Wallis statistic H = N(N+1) ZZ cni(Ry — 2H) 2 or H = 12 [W + %

) N(N+1) na
C ZE]—3(N +1).
5. Large values of H support ;.
6. Approximately, H ~ X% | under H, for large samples.
7. p - value = P(X? | > observed H value)

7.4 Friedman’s rank test

The Friedman test is a non-parametric test for analyzing two-way models without interaction.
Extension of the sign test with more than two treatments.
Model : Y;; = pu+ a; + B + €5
H, : The treatment effects of factor A have identical effects
H, : At least one treatment of factor A is different from at least one other treatment

Hy : The treatment effects of factor B have identical effects
H; : At least one treatment of factor B is different from at least one other treatment

Bl B2 --- Bg
Al yun yi2 - Yiq
A2y oy o Yo
AP Ypt Yp2  Upg

Test statistic : Qu = o2 Yoi_ (R — B47)° ~ A7 where R, = 1 39| Ry
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Test statistic : Qp = gy > iy (R — 135)* ~ X7, where R; = 2 3°"_| Ry

Large Value of ()4 and Qg support H;.

8 Simple Linear Relation

Note : Be careful with population variance , sample variance of Y [i.e sample variance of Y =

Sy/(n—1)]

8.1 Correlation coefficient

Z?:I(XZ_X)(K_Y) — Szy
VIS (X-X2E, (i-Y)? /8257

Sample Correlation coefficient : r =

8.2 Simple linear regression

Statistical Model : YV; = a+ fBz; +e;,i=1,....n

x1, ..., T, are the set values of the independent variable x.

€1, ..., e, are the unknown random error, which we assume are i.i.d N (0, 02).
The intercept « and slope [ are unknown.

E(Y|x) = o+ Bz, i.e. the mean response changes linearly with x.

The Principle of Least Squares : X
Least squares regression (fitted) line : y = & + Sx
Residual or Error Sum of Squares : SSE = Y"1 (y; — 1) = Yo, (i — & — fz)?

& and B are selected to give minimum SSE

Formulas for Least Squares Estimates :
B = % and & = y — T where T = Zi:lxi and j = —Zi:lyi , 52 = Z(% —j)Z = > 22 —nz?,

S2=Y(yi — ) = Xy — nif, Sy = (e — )i — ) = Y —

ANOVA-Type Formulas :
SSTotal = S SRegn—i-S SFE, i.e. total variation = variation due to regression + residual variation.
where SSTota1 = > (¥ —7)° = S, » SSRegn = d(§—9)? = p?S; SSE =31 (vi—0:)* =
2 _ 32Q2
Sy - /6 Sx

s SRegn

R? = —=—
S5Total

with x.

, R? represents the proportion of the y variability explained by the linear relation

Other inference on o and 3 :

& ~ N(a, 02[1 + g—i])

B N(ﬁ) 52>

5?2 = SSE/(n — 2) is an unbiased estimator of 0
(n —2)s?/0? ~ X2 , and is independent of & and 3

72

Standard error estimate of & = s, /+ =+ 5z

Standard error estimate of B =<

14



Inference Concerning the Slope (3
Hypothesis Testing :
TeStHglﬁzﬂoVSAHl :ﬁ;«éﬁoorHl ZB>BQOI'H1 Zﬁ<ﬂ0
Test statistic : 1" = %
Under Hy, T ~ t,,_o
Confidence Interval Estimation
100(1 — @) CIfor B: 3 &ty 025

Hypothesis Testing :
Test Hy:a=agvs Hi:a# agor Hy : a > agor Hy : a < «q

Test statistic : T = —4=20
s l+i'2

n'sz
Under Hy, T ~ t,_»
Confidence Interval Estimation
100(1 — a) Clfor a: & £t, sapsy/t+ 5

Prediction Interval of the Mean Response for a Specified =* Value:

100(1 — o) Clfor B(Y]a") : &+ o™ £ b5y /L + £

Prediction Interval of a Single Response for a Specified 2* Value:

100(1 — ) CIL: & + fa* + tn_gva/gs\/l + 14

9 Logistic and Poisson Regression Models

9.1 Logistic Regression

T
lnﬂ—xﬂ

9.1.1 Estimating the Parameters in a Logistic Regression Model

9.1.2 Interpretation of the Parameters in a Logistic Regression Model

. ) .. odds,.
Assume that odds {7~ = e = e? 171 then estimated odds ratio is O = od dSle = eb1,

The estimated odds ratio can be interpreted as the estimated increase in the odds of success
associated with a one - unit change in the value of the predictor variable.

If b, is positive, this implies that every additional (x;) increase the odds of success by ¢ — 1
percent.

If b, is negative, this implies that every additional (z;) reduce the odds of failure by 1 — b
percent.
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9.1.3 Statistical Inference on Model Parameters

Likelihood ratio tests :
Test Goodness of Fit with Deviance :
Test Hypothesis on Subsets of Parameters Using Device :
Test on Individual Model Coefficients :
Lack of Fit Tests in Logistic Regression :
Diagnostic Checking in Logistic Regression :

9.2 Poisson Regression

We assume that the response variable y; is a count, such that the observation y; = 0, 1,2, ... f(y;) =
— g, Y

6;7‘%9 Yi = 07 17 27

Identity Link : g(y;) = p; = 2,3

Log Link : g(p;) = In(w;) = z,08 = p; = exp{z,;8}

Interpretation of [ : the additive change in the log mean count for each 1-unit increase in X.

Interpretation of e” : the multiplicative factor by which the mean count changes for each 1-unit
increase in X.
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