
Supplementary Material

1 Appendix A

1.1 Stochastic robust approximation

The stochastic robust approximation problem [1, 2] considers an optimization objective that ac-

counts for uncertainty or variations in the data. For example, given a basic quadratic cost function

∥f(x, b)∥2, where x represents the parameter to be estimated, and the data measurements are given

by b = b̄+δb, with b̄ as the mean and δb representing the uncertainty. A natural idea to incorporate

such uncertainty is to use expectation of the ∥f(x, b)∥2 as the final cost function, and formulate

the optimization problem as

min
x

Eb

(
∥f(x, b)∥2

)
(1)

Since the expectation Eb

(
|f(x, b)|2

)
is generally intractable, the optimization problem is typically

addressed by approximating the cost function. A commonly-adopted method to approximate this

cost function is to linearize it at b̄ using a first-order Taylor expansion as

f(x, b) ≈ f(x, b̄) +
∂f

∂b
(b− b̄) (2)

Substituting this approximation into the cost function and taking the expectation, we obtain:

Eb

(
∥f(x, b)∥2

)
≈ Eb(∥f(x, b̄)∥2) + Eb

(
∂f

∂b
(b− b̄)(b− b̄)⊤

∂f

∂b

⊤
)

= ∥f(x, b̄)∥2 + trace

(
∂f

∂b
Qb

∂f

∂b

⊤
)

(3)

Through this approximation, we transform the stochastic robust approximation problem into a

standard optimization problem, which can be efficiently solved using iterative methods such as

Gauss-Newton or Levenberg-Marquardt.
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1.2 Approximation of the cost function

Recall the cost function:

min
Gpa,γ

m∑
k=1

ExIk
(∥dk − h(xIk ,xU )∥2) (4)

where xU =
[
Gp⊤

a , γ
]⊤

, and the above expectation E(·) is taken over the instantiations of all

possible robot (IMU) state xIk . To simplify the notation, we omit the subscript xIk from the

expectation term ExIk
(·) in the subsequent derivations. We can linearize the cost function in (4)

at the current IMU state estimate x̂Ik as

m∑
k=1

E(∥dk − h(xIk ,xU )∥2) ≈
m∑
k=1

E(∥dk − h(x̂Ik ,xU )−HIk(xIk − x̂Ik)∥
2) (5)

where HIk denotes the corresponding jacobians. By defining the measurement residual as:

δk = dk − h(x̂Ik ,xU ), (6)

and substituting this into the expectation term, we rewrite the original expression as:

m∑
k=1

E
(
∥dk − h(xIk ,xU )∥2

)
=

m∑
k=1

E
(
∥δk −HIk(xIk − x̂Ik)∥

2
)

=
m∑
k=1

E
(
δ2k − 2δkHIk(xIk − x̂Ik) + (xIk − x̂Ik)

⊤H⊤
Ik
HIk(xIk − x̂Ik)

)
=

m∑
k=1

E(δ2k)− 2E (δkHIk(xIk − x̂Ik)) + E
(
(xIk − x̂Ik)

⊤H⊤
Ik
HIk(xIk − x̂Ik)

)
(7)

If x̂Ik is an unbiased estimate of xIk , i.e., E[xIk − x̂Ik ] = 0, then one has

m∑
k=1

E
(
∥dk − h(xIk ,xU )∥2

)
≈

m∑
k=1

E(δ2k) + E
(
(xIk − x̂Ik)

⊤H⊤
Ik
HIk(xIk − x̂Ik)

)
=

m∑
k=1

E(δ2k) + trace(HIkPIkH
⊤
Ik
)

=

m∑
k=1

∥dk − h(x̂Ik ,xU )∥2 + trace(HIkPIkH
⊤
Ik
) (8)

Compared to the cost of deterministic optimization, given by
∑m

k=1 ∥dk −h(x̂Ik ,xU )∥2, the derived
cost has an additional term trace(HIkPIkH

⊤
Ik
). It is important to note that this term is also a

function of the UWB state XU , since the jacobian HIk depends on the state xUk
. By incorporating

this term into the cost function, the uncertainty of the UAV’s pose is explicitly considered in the

optimization process, leading to a more robust initialization.
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2 Appendix B

Recall the formulation of the likelihood function:

p(d;xU ) =
1

(2π)
N
2 det(Σ)

1
2

exp
(
(d− h)⊤Σ−1 (d− h)

)
, (9)

and its corresponding log-likelihood function:

ℓ(d;xU ) = −1

2
(d− h)⊤Σ−1 (d− h) (10)

Given the log-likelihood function in (10), the (i, j)-th element of the FIM can be computed as

Fij = E

(∂ℓ(d;xi
U )

∂xU i

)(
∂ℓ(d;xj

U )

∂xj
U

)⊤
 , (11)

where xi
U and xj

U denotes the i-th and j-th element of the state vector xU , respectively. As

previously mentioned, the key distinction between our method and existing approaches lies in how

the uncertainty term Σ is handled. To provide a comprehensive analysis of its impact on the

computation of the overall Fisher Information Matrix (FIM) and the initialization performance, we

separately compute the FIM for both cases and conduct a detailed analysis:

FIM with UAV’s uncertainty: Since our method explicitly incorporates the UAV’s uncertainty

during the UWB initialization, the covariance term not only includes the the UWB measurement

covariance Qd, but also contains the uncertainty PIIk arising from the UAV’s localization. In

this case, the covariance matrix Σ = diag(Σ0, · · · ,Σk, · · ·Σm) should account for both the UWB

measurement noise covariance and the UAV’s uncertainty. Each block Σk is given by:

Σk = Qd +HIkPIIkH
⊤
Ik

(12)

It is important to note that the covariance Σ is also a function of the UWB estimate xU , as the

value of the jacobian HIk depends on the UWB state xU , as derived in Sec. IV-B of the paper.

Thus, the distribution of d can be written as d ∼ N (h(xU ),Σ(xU )), which is referred to as the

General Gaussian Distribution [3, Section 3.9] This ensures that the estimation process properly

considers the impact of pose uncertainty, leading to a more robust initialization. According to [3,

Section 3.9], (11) can be computed as

Fij =

(
∂h(xU )

∂xi
U

)⊤
Σ(xi

U )
−1

(
∂h(xU )

∂xj
U

)
+

1

2
trace

(
Σ(xi

U )
−1∂h(xU )

∂xi
U

Σ(xi
U )

−1∂h(xU )

∂xj
U

)
(13)

FIM without UAV’s uncertainty: If the UAV’s uncertainty is not taken into account, the

covariance Σk in (12) simplifies to a constant matrix:

Σk = Qd (14)
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which consists solely of the measurement noise covariance. Since Σ is not longer a function of the

UWB state xU , the FIM in (11) is simplified to [4]:

Fij =

(
∂h(xU )

∂xi
U

)⊤
Σ(xi

U )
−1

(
∂h(xU )

∂xj
U

)
(15)

We observe that, compared to the previous case, this FIM includes only the first term, while

the second term vanishes. This indicates that when the UAV’s uncertainty is not considered, its

contribution to the overall information gain is omitted, leading to a potentially less informative

estimation process.
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