Supplementary Material

1 Appendix A

1.1 Stochastic robust approximation

The stochastic robust approximation problem [1, 2] considers an optimization objective that ac-
counts for uncertainty or variations in the data. For example, given a basic quadratic cost function
| f(z,b)||?, where = represents the parameter to be estimated, and the data measurements are given
by b = b+ 0b, with b as the mean and b representing the uncertainty. A natural idea to incorporate
&

such uncertainty is to use expectation of the ||f(x,b)||* as the final cost function, and formulate

the optimization problem as
minEy (|f(z,b)[*) (1)

Since the expectation Ey (| f(z,b)[?) is generally intractable, the optimization problem is typically
addressed by approximating the cost function. A commonly-adopted method to approximate this
cost function is to linearize it at b using a first-order Taylor expansion as
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fla,b) ~ f(w,0) + Z-(b—b) (2)

Substituting this approximation into the cost function and taking the expectation, we obtain:
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Ey (1 (@.8)|) ~ Eo( (2. B)I) + By (%(b— 0(o-0)7 )
T
= /(@D + trace (%Qb% ) 3

Through this approximation, we transform the stochastic robust approximation problem into a
standard optimization problem, which can be efficiently solved using iterative methods such as
Gauss-Newton or Levenberg-Marquardt.



1.2 Approximation of the cost function

Recall the cost function:

m
qin Y By, (ldx — h(xp, xv)|*) (4)
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where xy = [Gp;r,v} , and the above expectation E(-) is taken over the instantiations of all

possible robot (IMU) state x7,. To simplify the notation, we omit the subscript x, from the
expectation term Ey, () in the subsequent derivations. We can linearize the cost function in (4)
at the current IMU state estimate X, as

> E(lldi — h(xp, x0)l1”) & Y E(lldi — h(Xs,, xv) — Hy (x5, — %1,)|1%) (5)
k=1 k=1

where Hj, denotes the corresponding jacobians. By defining the measurement residual as:
(5k’ = dk - h(&ImXU% (6)

and substituting this into the expectation term, we rewrite the original expression as:
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If X, is an unbiased estimate of xz,, i.e., E[x;, — X7, | = 0, then one has

SE (s — hlxr x0)|2) & S EG) + B ((xr, — %1) THE Hy, (x1, — %1,))
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Compared to the cost of deterministic optimization, given by > 3L, ||dx — (X1, xr)||?, the derived
cost has an additional term trace(H[kP IkHITk) It is important to note that this term is also a
function of the UWB state Xy, since the jacobian Hj, depends on the state xi7, . By incorporating
this term into the cost function, the uncertainty of the UAV’s pose is explicitly considered in the

optimization process, leading to a more robust initialization.



2 Appendix B

Recall the formulation of the likelihood function:

pldixi) = e ((d-0) S (d-h)), )

(27) 2 det(%)?

and its corresponding log-likelihood function:

U(d;xy) = —=(d—h)'=7'(d - h) (10)
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Given the log-likelihood function in (10), the (7, j)-th element of the FIM can be computed as
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where x’& and X{J denotes the i-th and j-th element of the state vector xy, respectively. As
previously mentioned, the key distinction between our method and existing approaches lies in how
the uncertainty term X is handled. To provide a comprehensive analysis of its impact on the
computation of the overall Fisher Information Matrix (FIM) and the initialization performance, we
separately compute the FIM for both cases and conduct a detailed analysis:

FIM with UAV’s uncertainty: Since our method explicitly incorporates the UAV’s uncertainty
during the UWB initialization, the covariance term not only includes the the UWB measurement
covariance Qg, but also contains the uncertainty Py, arising from the UAV’s localization. In
this case, the covariance matrix ¥ = diag(Xo, -, Xk, - - - Xy, ) should account for both the UWB
measurement noise covariance and the UAV’s uncertainty. Each block ¥y is given by:

Sk =Qq+H, P Hj (12)

It is important to note that the covariance 3 is also a function of the UWB estimate x;7, as the
value of the jacobian Hj, depends on the UWB state xi;, as derived in Sec. IV-B of the paper.
Thus, the distribution of d can be written as d ~ N (h(xy), X(xy)), which is referred to as the
General Gaussian Distribution [3, Section 3.9] This ensures that the estimation process properly
considers the impact of pose uncertainty, leading to a more robust initialization. According to [3,
Section 3.9], (11) can be computed as

F;; = (8h(xU)>T >(xi) ! <8h(X.U)) + 1tlt'ace (E(x}'])_lah(XU)E(x"U)_lah(x,U)> (13)

axg oxy; 2 ax?} oxy,

FIM without UAV’s uncertainty: If the UAV’s uncertainty is not taken into account, the
covariance Y in (12) simplifies to a constant matrix:

Yr = Qq (14)



which consists solely of the measurement noise covariance. Since ¥ is not longer a function of the
UWB state xg7, the FIM in (11) is simplified to [4]:
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F;j = <8};£%U>> »(xk) (‘%(U)) (15)
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We observe that, compared to the previous case, this FIM includes only the first term, while
the second term vanishes. This indicates that when the UAV’s uncertainty is not considered, its
contribution to the overall information gain is omitted, leading to a potentially less informative

estimation process.
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