
Supplementary Material

This supplementary material provides a comprehensive introduction and detailed derivations

related to the paper. Since our algorithm is built upon matrix Lie group theory and Lie group-

based invariant filter, the associated derivations are not as straightforward as those in vector spaces.

Therefore, the primary goal of this material is to provide a clear demonstration of the key theo-

retical foundations and derivation steps, making it easier for readers to follow and understand the

underlying mathematical principles.

1 Preliminaries and Notations

In this section, we provide a brief overview of the notations and the fundamentals of matrix Lie

group theory that form the basis for deriving our algorithm.

1.1 Notations

Let Ir(0r) denote the r × r identity (zero) matrix; 0m×n denote the m × n zeros matrix; Tr(·)
denote the trace of a matrix. When applied to a set, | · | denotes the cardinality. We use q ∈ Rr to

represent a vector of dimension r with all real entries. Given a 3× 1 vector q =
[
q1 q2 q3

]⊤
, its

skew-symmetric matrix is defined as

⌊q×⌋ =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 (1)

1.2 Matrix Lie Group and Lie Algebra

A matrix Lie group G ∈ RN×N is a subset of square invertible matrices with the following three

properties holding:

IN ∈ G;
∀X ∈ G, X−1 ∈ G;

∀X1, X2 ∈ G, X1X2 ∈ G (2)

The corresponding Lie algebra of a matrix Lie group G denoted as g, is a vector space with the

same dimension as G. For any element ξ in g denoted as ξ ∈ Rdim(g), it can be transformed to its
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Lie group using the exponential map expG(·) : Rdimg → G as

expG(ξ) = exp(ξ∧) =
∞∑
k=1

ξ∧

k!
(3)

where the ”hat” operator (·)∧ denotes the linear mapping Rdimg → g, that transform the element

in the Lie algebra g to the corresponding matrix form. exp(·) denotes the matrix exponential. The

inverse function of the exponential map, that is, the logarithm map logG : G → Rdim(g), can be

defined as

logG(expG(ξ)) = ξ (4)

We also encourage readers to refer to [1] for a more comprehensive introduction to matrix Lie

groups and Lie algebras, including topics such as group-affine dynamics and the log-linear property

of the invariant error.

2 System Propagation

Recall the definition of the state XIk

XIk = (Tk,Bk), Bk =
[
b⊤
ak

b⊤
ωk

]⊤
Tk =

[
G
Ik
R GvIk

GpIk
Gpu

03 I3

]
(5)

and its kinematics model

G
Ik
Ṙ = G

Ik
R⌊Ikω×⌋, Gv̇Ik = G

Ik
R(Ika) + Gg

GṗIk = GvIk ,
Gṗf = 0, ḃωk

= wω, ḃak = wa (6)

2.1 State transition and covariance propagation

Given the state XIk and its corresponding estimate X̂Ik , we first formulate the estimation error as

X̃Ik = (ηk, B̃k) (7)
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where ηk represents the corresponding right invariant error as

ηk = T̂kT
−1
k =

[
G
Ik
R̃ Γ1 Γ2 Γ3

03 I3

]
G
Ik
R̃ = G

Ik
R̂(GIkR)−1

Γ1 =
Gv̂Ik −

G
Ik
R̃GvIk

Γ2 =
Gp̂Ik

− G
Ik
R̃GpIk

Γ3 =
Gp̂u − G

Ik
R̃Gpu (8)

and

B̃k =
[
(b̂ak − bak)

⊤, (b̂ωk
− bωk

)⊤
]⊤

(9)

The combined error term X̃Ik is commonly referred to as the augmented right-invariant error, as it

includes both a right-invariant error term and an appended error vector. By applying the log-linear

property of the invariant error [2], errors ηk can be approximated using a first-order approximation

as follows:

ηk = expG(ξIk) ≈ I6 + ξ∧Ik ∈ R6×6 (10)

where (·)∧ : Rdimg → g be the linear map that transforms the error vector ξIk and ξck defined in

the Lie algebra to its corresponding matrix representation [2] as

ξIk
△
=
[
(ξθk)

⊤ (ξvk)
⊤ (ξpk)

⊤ (ξuk
)⊤
]⊤

∈ R12

ξθk = θ̃k = log(GIkR̃) ∈ R3

ξvk = Gv̂Ik − (I3 + ⌊θ̃k×⌋)GvIk ∈ R3

ξpk = Gp̂Ik
− (I3 + ⌊θ̃k×⌋)GpIk ∈ R3

ξuk
= Gp̂u − (I3 + ⌊θ̃k×⌋)Gpu ∈ R3, (11)

Give the error definitions in (9), (11), we define the error state vector of the state XIk as

x̃Ik
△
=
[
ξ⊤Ik B̃⊤

k

]⊤
∈ R18 (12)

To compute the linearized error dynamics, denoted as

d

dt
x̃Ik = Fkx̃Ik +Gknk, (13)
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we first make the first-order approximation (cf. (10)) to each individual term of the invariant error

ηk, which yields

d

dt

(
G
Ik
R̃
)
=

d

dt

(
G
Ik
R̂
)
(GIkR)⊤ + (GIkR̂)

d

dt

(
G
Ik
R
)⊤

= G
Ik
R̂⌊Ikωm − b̂ωk

×⌋(GIkR)⊤ + (GIkR̂)
(
G
Ik
R⌊Ikωm − bωk

− nωk
×⌋
)⊤

= G
Ik
R̂⌊Ikωm − b̂ωk

×⌋(GIkR̂)⊤G
Ik
R̃− (GIkR̂)⌊Ikωm − bωk

− nωk
×⌋(GIkR̂)⊤G

Ik
R̃

≈ (GIkR̂)⌊−b̃ωk
+ nωk

×⌋(GIkR̂)⊤(I3 + ⌊ξθk×⌋)
≈ ⌊GIkR̂(−b̃ωk

+ nωk
×)⌋(I3 + ⌊ξθk×⌋)

≈ ⌊GIkR̂(−b̃ωk
+ nωk

×)⌋

⇒ d

dt
(⌊ξθk×⌋) ≈ ⌊GIkR̂(−b̃ωk

+ nωk
)×⌋

⇒ d

dt
(ξθk) ≈

G
Ik
R̂(−b̃ωk

+ nωk
) (14)

d

dt
(Γ1) =

d

dt

(
Gv̂Ik −

G
Ik
R̃GvIk

)
= G

Ik
R̂(Ikam − b̂ak) +

Gg − ⌊GIkR̂(−b̃ωk
+ nωk

)×⌋GIkR̃
GvIk

− G
Ik
R̂
(
Ikam − bak − nak

)
− G

Ik
R̃Gg

≈ G
Ik
R̂(b̃ak + nai,k)− ⌊GIkR̂(−b̃ωk

+ nωk
)×⌋GvIk + (I3 − G

Ik
R̃)Gg

≈ G
Ik
R̂(b̃ak + nak) + ⌊GvIk×⌋GIkR̂(−b̃ωk

+ nωk
) + (I3 − G

Ik
R̃)Gg

⇒ d

dt
(Γ1) ≈ −⌊ξθk×⌋Gg + G

Ik
R̂(−b̃ak + nak) + ⌊GvIk×⌋GIkR̂(−b̃ωk

+ nωk
)

≈ ⌊Gg×⌋ξθk +
G
Ik
R̂(−b̃ak + nak) + ⌊Gv̂Ik×⌋GIkR̂(−b̃ωk

+ nωk
)

⇒ d

dt
(ξvk) ≈ ⌊Gg×⌋ξθk +

G
Ik
R̂(−b̃ak + nak) + ⌊Gv̂Ik×⌋GIkR̂(−b̃ωk

+ nωk
), (15)

d

dt
(Γ2) =

d

dt

(
Gp̂Ik

− G
Ik
R̃GpIk

)
= Gv̂Ik − ⌊GIkR̂(−b̃ωk

+ nωi,k)×⌋GIkR̃
GpIk −

G
Ik
R̃GvIk

≈ Gv̂Ik − ⌊GIkR̂(−b̃ωi,k + nωk
)×⌋(I3 + ⌊ξθk×⌋)GpIk − (I3 + ⌊ξθk×⌋)GvIk

≈ Gv̂Ik − ⌊GIkR̂(−b̃ωk
+ nωk

)×⌋GpIk − (I3 + ⌊ξθk×⌋)GvIk

≈ Gv̂Ik −
GvIk + ⌊GpIk×⌋GIkR̂(−b̃ωk

+ nωk
) + ⌊GvIk×⌋ξθk

≈ ξvk + ⌊Gp̂Ik×⌋GIkR̂(−b̃ωk
+ nωk

)

⇒ d

dt
(ξpk) ≈ ξvk + ⌊Gp̂Ik×⌋GIkR̂(−b̃ωk

+ nωk
), (16)
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and

d

dt
(Γ3) =

d

dt

(
Gp̂u − G

Ik
R̃Gpu

)
≈ −⌊GIkR̂(−b̃ωk

+ nωk
)×⌋GIkR̃

Gpu

≈ −⌊GIkR̂(−b̃ωk
+ nωk

)×⌋(I3 + ⌊ξθk×⌋)(Gp̂u)

≈ ⌊Gp̂u×⌋GIkR̂(−b̃ωk
+ nωk

)

⇒ d

dt
(ξu) ≈ ⌊Gp̂u×⌋GIkR̂(−b̃ωk

+ nωk
) (17)

Then, a linearized error state system can be constructed from the above equations as

d

dt
x̃Ik = Fkx̃Ik +Gknk, (18)

where the jacobian Fk can be computed as

Fk =

[
FA FBk

06×12 06

]
, FA =


03 03 03 03

⌊Gg×⌋ 03 03 03

03 I3 03 03

03 03 03 03

 , FBk
=


−G

Ik
R̂ 03

−⌊Gv̂Ik×⌋GIkR̂ −G
Ik
R̂

−⌊Gp̂Ik×⌋GIkR̂ 03

−⌊Gp̂u×⌋GIkR̂ 03

 (19)

and the jacobian Gk can be computed as

Gk =

[
AdX̂k

012×6

06×12 06

]
, AdX̂k

=


G
Ik
R̂ 03 03 03

⌊Gv̂Ik×⌋GIkR̂
G
Ik
R̂ 03 03

⌊Gp̂Ik×⌋GIkR̂ 03
G
Ik
R̂ 03

⌊Gp̂u×⌋GIkR̂ 03 03
G
Ik
R̂

 (20)

By considering the time interval δt between the time tk and tk−1 is a small constant value, the

corresponding discrete-time state transition matrix Φk|k−1 from time tk−1 to tk can be computed

using the matrix exponential as

Φk|k−1 = exp

([
FA FBk

06×12 06

]
δt

)
=

[
ΦA ΦBk

06×12 I6

]
(21)

where

ΦA = I12 + FAδt+
1

2!
F2
Aδt

2 + · · ·+ 1

n!
Fn
Aδt

n

ΦBk
= FBk

δt+
1

2!
FAFBk

δt2 + · · ·+ 1

n!
Fn−1
A FBk

δtn (22)
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Since F3
A = 0, the above equation yields

ΦA = I12 + FAδt+
1

2!
F2
Aδt

2 =


I3 03 03 03

⌊Gg×⌋δt I3 03 03
1
2⌊

Gg×⌋δt2 I3δt I3 03

03 03 03 I3


ΦBk

= FBk
δt+

1

2!
FAFBk

δt2 +
1

3!
F2
AFBk

δt3

=


−G

Ii,k
R̂ 03

−⌊Gv̂Ik×⌋GIkR̂ −G
Ik
R̂

−⌊Gp̂Ik×⌋GIkR̂ 03

−⌊Gp̂u×⌋GIkR̂ 03

 δt+
1

2


03 03

−⌊Gg×⌋GIkR̂ 03

−⌊Gv̂Ik×⌋GIkR̂ −G
Ik
R̂

03 03

 δt2

+
1

6


03 03

03 03

−⌊Gg×⌋GIkR̂ 03

03 03

 δt3 =


−G

Ik
R̂δt 03

ΨA −G
Ik
R̂δt

ΨBk
−1

2
G
Ik
R̂δt2

−⌊Gp̂u×⌋GIkR̂δt 03

 (23)

where

ΨA = −⌊Gv̂Ik×⌋GIkR̂δt− 1

2
⌊Gg×⌋GIkR̂δt2

ΨBk
= −⌊Gp̂Ik×⌋GIkR̂δt− 1

2
⌊Gv̂Ik×⌋GIkR̂δt2 − 1

6
⌊Gg×⌋GIkR̂δt3 (24)

Then, we can compute the state transition matrix Φk|0 as

Φk|0 = Φk|k−1Φk−1|k−2 · · ·Φ1|0

=



I3 03 03 03 Φ15 03

⌊Gg×⌋δt I3 03 03 Φ25 Φ26
1
2⌊

Gg×⌋δt2 I3δt I3 03 Φ35 Φ36

03 03 03 I3 Φ45 03

03 03 03 03 I3 03

03 03 03 03 03 I3


(25)

where

Φ15 = −
k∑

τ=0

G
Iτ R̂δt

Φ25 = −
k∑

τ=0

(
⌊Gv̂Iτ×⌋GIτ R̂δt+

1

2
⌊Gg×⌋GIτ R̂δt2

)

Φ35 = −
k∑

τ=0

(
⌊Gp̂Iτ×⌋GIτ R̂δt+

1

2
⌊Gv̂Iτ×⌋GIτ R̂δt2 +

1

6
⌊Gg×⌋GIτ R̂δt3

)
(26)
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and

Φ45 = −
k∑

τ=0

⌊Gp̂u×⌋GIi,τ R̂δt

Φ26 = −
k∑

τ=0

G
Iτ R̂δt

Φ36 = −1

2

k∑
τ=0

G
Iτ R̂δt2 (27)

In addition to the matrix exponential approach described above, the state transition matrix can

also be derived analytically. We refer interested readers to [1] for further details.

3 Measurement Update

3.1 Visual Measurements

The visual measurement model is given by

zck = Π(Ckpf ) + nck (28)

where

Ckpf
△
=
[
x y c

]⊤
= G

Ik
R

⊤
(Gpf − GpIk)

Π
(
Ikpf

)
= Π

([
x y z

]⊤)
=
[
x/z y/z

]⊤
(29)

To proceed with the measurement update, we first linearize the above equation as

z̃ck = Hxk
x̃Ik +Hfk

Gp̃f + nck (30)

where the measurement jacobians Hxk
and Hfk can be computed using the chain rule

Hxk
=

∂z̃ck
∂Ck p̃f

∂Ck p̃f

∂x̃Ik

,Hfk =
∂z̃ck
∂Ck p̃f

∂Ck p̃f

∂Gp̃f
(31)

In particular, the jacobian
∂z̃ck
∂Ck p̃f

can be computed as

∂z̃ck
∂Ck p̃f

△
= Hpc =

[
1/z 0 −x/z2

0 1/z −y/z2

]
(32)

7



Recall that ηk = expG(ξIk) ≈ I6+ ξ∧Ik ⇒ T̂k ≈ (I6+ ξ∧Ik)Tk. We can compute the jacobians
∂Ck p̃f

∂x̃Ik
,

∂Ck p̃f

∂Gp̃f
as

Ck p̂f = C
I R

G
Ik
R̂

⊤
(Gp̂f − Gp̂Ik)

≈ C
I R

G
Ik
R

⊤
(I3 − ⌊ξθk×⌋)

(
(I3 + ⌊ξθk×⌋)Gpf + Gp̃f − (I3 + ⌊ξθk×⌋)GpIk − ξpk

)
≈ C

I R
G
Ik
R

⊤ (
(I3 + ⌊ξθk×⌋)Gpf + Gp̃f − (I3 + ⌊ξθk×⌋)GpIk − ξpk

)
− G

Ik
R

⊤⌊ξθk×⌋
(
Gpf − GpIk

)
= C

I R
G
Ik
R

⊤ (Gpf + Gp̃f − GpIk − ξpk
)

⇒Ck p̃f ≈ C
I R

G
Ik
R

⊤
(Gp̃f − ξpk)

⇒
∂Ck p̃f

∂x̃Ik

= C
I R

G
Ik
R

⊤ [
03 03 −I3 03 03×6

]
,

∂Ck p̃f

∂Gp̃f
= C

I R
G
Ik
R

⊤
(33)

Hence the jacobians Hxk
, Hfk can be calculated as

Hxk
= Hpc

C
I R

Ik
GR

[
03 03 −I3 03×9

]
Hfk = Hpc

C
I R

Ik
GR. (34)

Note that the measurement Jacobian above is computed using the true stateXIk as the linearization

point. To perform the update, we must shift the linearization point to the corresponding state

estimate X̂Ik , which yields results identical to those presented in the paper.

3.2 UWB Ranging Measurement

The UWB ranging measurement model is given by

zuk
= ∥dk∥+ nuk

+ buk

dk = GpIk
+ Ik

GR
⊤IpT − Gpu (35)

Similarly to the visual measurement update, we also linearize the UWB ranging measurement as

z̃uk
= Huk

x̃Ik + nu (36)

Following the chain rule, the measurement jacobian Huk
can be computed as

Huk
=

∂z̃uk

∂d̃k

∂d̃k

∂x̃Ik

(37)

where the jacobian
∂z̃uk
∂d̃k

is calculated as

∂z̃uk

∂d̃k

△
= Hpu =

(
GpIk − Gpu + G

Ik
R IpT

)⊤
∥GpIk − Gpu + G

Ik
R IpT ∥

(38)
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and given that ηk = expG(ξIk) ≈ I6 + ξ∧Ik , the jacobian ∂d̃k
∂x̃Ik

is given by

dk = Gp̂Ik +
G
Ik
R̂ IpT − Gp̂u ≈ (I3 + ⌊ξθk×⌋)GpIk + ξIk

− (I3 + ⌊ξθk×⌋)Gpu − ξuk
+ (I3 + ⌊ξθk×⌋)GIkR

IpT

⇒ d̃k ≈ ξIk − ξuk
+ ⌊Gpu − GpIk −

G
Ik
R IpT×⌋ξθk

⇒ ∂d̃k

∂x̃Ik

=
[
⌊Gpu − GpIk − G

Ik
R IpT×⌋ 03 I3 −I3 03×6

]
(39)

Thus, the measurement jacobian Huk
is given as

Huk
= Hpu

[
Λk 03 I3 −I3 03×6

]
Hpu =

(
GpIk − Gpu + G

Ik
R IpT

)⊤
∥GpIk − Gpu + G

Ik
R IpT ∥

Λk = ⌊Gpu − GpIk −
G
Ik
R IpT×⌋. (40)

4 Observability Analysis

According to [3], the observability of the MSCKF system can be analyzed through the EKF-SLAM

framework, as the two are theoretically equivalent. Thus, without loss of generality, we study the

observability of the EKF-SLAM system with a single feature point Gpf and one UWB anchor Gpu.

The state of the EKF-SLAM system has a form very similar to XIk , with the only difference being

that the original state Tk is now augmented with a feature state, given by

Tk =

[
G
Ik
R GvIk

GpIk
Gpu

Gpf

04 I4

]
∈ SE4(3), (41)

Following the proof of [4], the local observability matrix for the time-varying error state of the

whole system is defined as

O =


O0

O1

...

Ok

 =


H0

H1Φ̃1|0
...

HkΦ̃k|0

 , (42)

where Hk =
[
H⊤

ck
H⊤

rk

]⊤
is the joint measurement jacobian; Hck represents the jacobian of the

visual measurement, and Hrk represents the jacobian of the UWB ranging measurement

Hck = Hfk

[
03 03 −I3 03 I3 03×6

]
Hrk = Hpu

[
Λk 03 I3 −I3 03 03×6

]
, (43)
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Φ̃k,0 is the state transition matrix of the EKF-SLAM system. Note that the computation of the

state transition matrix Φ̃k,0 for the above EKF-SLAM system is very similar to that of the state

transition matrix Φk,0 presented in the previous section, which is given by

Φ̃k,0 =

[
Φ̃A Φ̃Bk

06×15 I6

]

=



I3 03 03 03 03 Φ̃16 03

⌊Gg×⌋δt I3 03 03 03 Φ̃26 Φ̃27
1
2⌊

Gg×⌋δt2 I3δt I3 03 03 Φ̃36 Φ̃37

03 03 03 I3 03 Φ̃46 03

03 03 03 03 I3 Φ̃56 03

03 03 03 03 03 I3 03

03 03 03 03 03 03 I3


(44)

where

Φ̃16 = −
k∑

τ=0

G
Iτ R̂δt

Φ̃26 = −
k∑

τ=0

(
⌊Gv̂Iτ×⌋GIτ R̂δt+

1

2
⌊Gg×⌋GIτ R̂δt2

)

Φ̃36 = −
k∑

τ=0

(
⌊Gp̂Iτ×⌋GIτ R̂δt+

1

2
⌊Gv̂Iτ×⌋GIτ R̂δt2 +

1

6
⌊Gg×⌋GIτ R̂δt3

)

Φ̃46 = −
k∑

τ=0

⌊Gp̂f×⌋GIi,τ R̂δt

(45)

and

Φ̃56 = −
k∑

τ=0

⌊Gp̂u×⌋GIi,τ R̂δt

Φ̃27 = −
k∑

τ=0

G
Iτ R̂δt

Φ̃37 = −1

2

k∑
τ=0

G
Iτ R̂δt2 (46)
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Then, we can compute each block raw Ok of the observability matrix as

Ok
△
=

[
Ock

Ork

]
=

[
HckΦ̃k,0

HrkΦ̃k,0

]
Ock = Hfk

[
Mc,1 −I3δt −I3 03 I3 Mc,2 Mc,3

]
Ork = Hpu

[
Mr,1 I3δt I3 −I3 03 Mr,2 Mr,3

]
, (47)

where

Mc,1 = −1

2
⌊Gg×⌋δt2, Mc,2 = Φ̃56 − Φ̃36

Mc,3 = −Φ̃37, Mr,1 = Λk +
1

2
⌊Gg×⌋δt2,

Mr,2 = ΛkΦ̃16 + Φ̃36 − Φ̃46, Mr,3 = Φ̃37 (48)

Theorem 1 (Observability properties of CVIRO): The right nullspace of the observability matrix

Ok, denoted as N, spans the following unobservable subspace

N =

[
Gg

⊤
0 0 0 0 0 0

03 03 I3 I3 I3 03 03

]⊤
(49)

which denotes the global orientation and yaw translation.

Proof 1 To verify that N is a non-space of Ok, we have to ensure that OkN = 0. In particular,

we have

OkN = 0 =

[
OckN

OrkN

]
(50)

where

OckN = Hfk

[
Mc,1 −I3δt −I3 03 I3 Mc,2 Mc,3

]
N

= Hfk

[
−1

2⌊
Gg×⌋δt2 Gg (I3 − I3)

]
= 02×4 (51)

OrkN = Hpu

[
Mr,1 I3δt I3 −I3 03 Mr,2 Mr,3

]
N

=
[
Hpu

(
Λk +

1
2⌊

Gg×⌋δt2
)
Gg Hpu(I3 − I3)

]
=
[
HpuΛk

Gg 01×3

]
=

[
−

(
Gpu−GpIk

−G
Ik

R IpT

)⊤

∥Gpu−GpIk
−G

Ik
R IpT ∥ ⌊Gpu − GpIk − G

Ik
R IpT×⌋Gg 01×3

]
= 01×4 (52)

11



As a result, N is a non-space of Ok. Moreover, Ok doesn’t have any other non-space. Thus,

we complete the proof. We can see that unlike the standard EKF-based SLAM system, where

the unobservable subspace depends on the state and leads to inconsistency issues, the nullspace N

remains a constant matrix, inherently preserving observability consistency.
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