

Supplementary Material

This supplementary material provides a comprehensive introduction and detailed derivations related to the paper. Since our algorithm is built upon matrix Lie group theory and Lie group-based invariant filter, the associated derivations are not as straightforward as those in vector spaces. Therefore, the primary goal of this material is to provide a clear demonstration of the key theoretical foundations and derivation steps, making it easier for readers to follow and understand the underlying mathematical principles.

1 Preliminaries and Notations

In this section, we provide a brief overview of the notations and the fundamentals of matrix Lie group theory that form the basis for deriving our algorithm.

1.1 Notations

Let $\mathbf{I}_r(\mathbf{0}_r)$ denote the $r \times r$ identity (zero) matrix; $\mathbf{0}_{m \times n}$ denote the $m \times n$ zeros matrix; $\mathbf{Tr}(\cdot)$ denote the trace of a matrix. When applied to a set, $|\cdot|$ denotes the cardinality. We use $\mathbf{q} \in \mathbb{R}^r$ to represent a vector of dimension r with all real entries. Given a 3×1 vector $\mathbf{q} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}^\top$, its skew-symmetric matrix is defined as

$$[\mathbf{q} \times] = \begin{bmatrix} 0 & -q_3 & q_2 \\ q_3 & 0 & -q_1 \\ -q_2 & q_1 & 0 \end{bmatrix} \quad (1)$$

1.2 Matrix Lie Group and Lie Algebra

A matrix Lie group $\mathcal{G} \in \mathbb{R}^{N \times N}$ is a subset of square invertible matrices with the following three properties holding:

$$\begin{aligned} \mathbf{I}_N &\in \mathcal{G}; \\ \forall X \in \mathcal{G}, X^{-1} &\in \mathcal{G}; \\ \forall X_1, X_2 \in \mathcal{G}, X_1 X_2 &\in \mathcal{G} \end{aligned} \quad (2)$$

The corresponding Lie algebra of a matrix Lie group \mathcal{G} denoted as \mathfrak{g} , is a vector space with the same dimension as \mathcal{G} . For any element ξ in \mathfrak{g} denoted as $\xi \in \mathbb{R}^{\dim(\mathfrak{g})}$, it can be transformed to its

Lie group using the exponential map $\exp_{\mathcal{G}}(\cdot) : \mathbb{R}^{\dim \mathfrak{g}} \rightarrow \mathcal{G}$ as

$$\exp_{\mathcal{G}}(\boldsymbol{\xi}) = \exp(\boldsymbol{\xi}^{\wedge}) = \sum_{k=1}^{\infty} \frac{\boldsymbol{\xi}^{\wedge}}{k!} \quad (3)$$

where the "hat" operator $(\cdot)^{\wedge}$ denotes the linear mapping $\mathbb{R}^{\dim \mathfrak{g}} \rightarrow \mathfrak{g}$, that transform the element in the Lie algebra \mathfrak{g} to the corresponding matrix form. $\exp(\cdot)$ denotes the matrix exponential. The inverse function of the exponential map, that is, the logarithm map $\log_{\mathcal{G}} : \mathcal{G} \rightarrow \mathbb{R}^{\dim(\mathfrak{g})}$, can be defined as

$$\log_{\mathcal{G}}(\exp_{\mathcal{G}}(\boldsymbol{\xi})) = \boldsymbol{\xi} \quad (4)$$

We also encourage readers to refer to [1] for a more comprehensive introduction to matrix Lie groups and Lie algebras, including topics such as group-affine dynamics and the log-linear property of the invariant error.

2 System Propagation

Recall the definition of the state \mathbf{X}_{I_k}

$$\begin{aligned} \mathbf{X}_{I_k} &= (\mathbf{T}_k, \mathbf{B}_k), \quad \mathbf{B}_k = \begin{bmatrix} \mathbf{b}_{a_k}^{\top} & \mathbf{b}_{\omega_k}^{\top} \end{bmatrix}^{\top} \\ \mathbf{T}_k &= \left[\begin{array}{c|cc} \frac{^G \mathbf{R}}{I_k} & ^G \mathbf{v}_{I_k} & ^G \mathbf{p}_{I_k} \\ \hline \mathbf{0}_3 & \mathbf{I}_3 & ^G \mathbf{p}_u \end{array} \right] \end{aligned} \quad (5)$$

and its kinematics model

$$\begin{aligned} {}^G \dot{\mathbf{R}}_{I_k} &= {}^G \mathbf{R}_{I_k} [{}^I_k \boldsymbol{\omega} \times], \quad {}^G \dot{\mathbf{v}}_{I_k} = {}^G \mathbf{R} ({}^I_k \mathbf{a}) + {}^G \mathbf{g} \\ {}^G \dot{\mathbf{p}}_{I_k} &= {}^G \mathbf{v}_{I_k}, \quad {}^G \dot{\mathbf{p}}_f = \mathbf{0}, \quad \dot{\mathbf{b}}_{\omega_k} = \mathbf{w}_{\omega}, \quad \dot{\mathbf{b}}_{a_k} = \mathbf{w}_a \end{aligned} \quad (6)$$

2.1 State transition and covariance propagation

Given the state \mathbf{X}_{I_k} and its corresponding estimate $\hat{\mathbf{X}}_{I_k}$, we first formulate the estimation error as

$$\tilde{\mathbf{X}}_{I_k} = (\boldsymbol{\eta}_k, \tilde{\mathbf{B}}_k) \quad (7)$$

where $\boldsymbol{\eta}_k$ represents the corresponding right invariant error as

$$\begin{aligned}
\boldsymbol{\eta}_k &= \hat{\mathbf{T}}_k \mathbf{T}_k^{-1} = \left[\begin{array}{c|ccc} \frac{G}{I_k} \tilde{\mathbf{R}} & \boldsymbol{\Gamma}_1 & \boldsymbol{\Gamma}_2 & \boldsymbol{\Gamma}_3 \\ \hline \mathbf{0}_3 & & \mathbf{I}_3 \end{array} \right] \\
\frac{G}{I_k} \tilde{\mathbf{R}} &= \frac{G}{I_k} \hat{\mathbf{R}} (\frac{G}{I_k} \mathbf{R})^{-1} \\
\boldsymbol{\Gamma}_1 &= {}^G \hat{\mathbf{v}}_{I_k} - \frac{G}{I_k} \tilde{\mathbf{R}} {}^G \mathbf{v}_{I_k} \\
\boldsymbol{\Gamma}_2 &= {}^G \hat{\mathbf{p}}_{I_k} - \frac{G}{I_k} \tilde{\mathbf{R}} {}^G \mathbf{p}_{I_k} \\
\boldsymbol{\Gamma}_3 &= {}^G \hat{\mathbf{p}}_u - \frac{G}{I_k} \tilde{\mathbf{R}} {}^G \mathbf{p}_u
\end{aligned} \tag{8}$$

and

$$\tilde{\mathbf{B}}_k = \left[(\hat{\mathbf{b}}_{a_k} - \mathbf{b}_{a_k})^\top, (\hat{\mathbf{b}}_{\omega_k} - \mathbf{b}_{\omega_k})^\top \right]^\top \tag{9}$$

The combined error term $\tilde{\mathbf{X}}_{I_k}$ is commonly referred to as the augmented right-invariant error, as it includes both a right-invariant error term and an appended error vector. By applying the log-linear property of the invariant error [2], errors $\boldsymbol{\eta}_k$ can be approximated using a first-order approximation as follows:

$$\boldsymbol{\eta}_k = \exp_G(\boldsymbol{\xi}_{I_k}) \approx \mathbf{I}_6 + \boldsymbol{\xi}_{I_k}^\wedge \in \mathbb{R}^{6 \times 6} \tag{10}$$

where $(\cdot)^\wedge : \mathbb{R}^{\dim \mathfrak{g}} \rightarrow \mathfrak{g}$ be the linear map that transforms the error vector $\boldsymbol{\xi}_{I_k}$ and $\boldsymbol{\xi}_{c_k}$ defined in the Lie algebra to its corresponding matrix representation [2] as

$$\begin{aligned}
\boldsymbol{\xi}_{I_k} &\triangleq \left[(\boldsymbol{\xi}_{\theta_k})^\top \quad (\boldsymbol{\xi}_{v_k})^\top \quad (\boldsymbol{\xi}_{p_k})^\top \quad (\boldsymbol{\xi}_{u_k})^\top \right]^\top \in \mathbb{R}^{12} \\
\boldsymbol{\xi}_{\theta_k} &= \tilde{\boldsymbol{\theta}}_k = \log(\frac{G}{I_k} \tilde{\mathbf{R}}) \in \mathbb{R}^3 \\
\boldsymbol{\xi}_{v_k} &= {}^G \hat{\mathbf{v}}_{I_k} - (\mathbf{I}_3 + [\tilde{\boldsymbol{\theta}}_k \times]) {}^G \mathbf{v}_{I_k} \in \mathbb{R}^3 \\
\boldsymbol{\xi}_{p_k} &= {}^G \hat{\mathbf{p}}_{I_k} - (\mathbf{I}_3 + [\tilde{\boldsymbol{\theta}}_k \times]) {}^G \mathbf{p}_{I_k} \in \mathbb{R}^3 \\
\boldsymbol{\xi}_{u_k} &= {}^G \hat{\mathbf{p}}_u - (\mathbf{I}_3 + [\tilde{\boldsymbol{\theta}}_k \times]) {}^G \mathbf{p}_u \in \mathbb{R}^3,
\end{aligned} \tag{11}$$

Given the error definitions in (9), (11), we define the error state vector of the state \mathbf{X}_{I_k} as

$$\tilde{\mathbf{x}}_{I_k} \triangleq \left[\boldsymbol{\xi}_{I_k}^\top \quad \tilde{\mathbf{B}}_k^\top \right]^\top \in \mathbb{R}^{18} \tag{12}$$

To compute the linearized error dynamics, denoted as

$$\frac{d}{dt} \tilde{\mathbf{x}}_{I_k} = \mathbf{F}_k \tilde{\mathbf{x}}_{I_k} + \mathbf{G}_k \mathbf{n}_k, \tag{13}$$

we first make the first-order approximation (cf. (10)) to each individual term of the invariant error $\boldsymbol{\eta}_k$, which yields

$$\begin{aligned}
\frac{d}{dt} \left({}_{I_k}^G \tilde{\mathbf{R}} \right) &= \frac{d}{dt} \left({}_{I_k}^G \hat{\mathbf{R}} \right) ({}_{I_k}^G \mathbf{R})^\top + ({}_{I_k}^G \hat{\mathbf{R}}) \frac{d}{dt} ({}_{I_k}^G \mathbf{R})^\top \\
&= {}_{I_k}^G \hat{\mathbf{R}} \left[{}_{I_k}^I \boldsymbol{\omega}_m - \hat{\mathbf{b}}_{\omega_k} \times \lfloor ({}_{I_k}^G \mathbf{R})^\top + ({}_{I_k}^G \hat{\mathbf{R}}) ({}_{I_k}^G \mathbf{R})^\top {}_{I_k}^I \boldsymbol{\omega}_m - \mathbf{b}_{\omega_k} - \mathbf{n}_{\omega_k} \times \rfloor \right]^\top \\
&= {}_{I_k}^G \hat{\mathbf{R}} \left[{}_{I_k}^I \boldsymbol{\omega}_m - \hat{\mathbf{b}}_{\omega_k} \times \lfloor ({}_{I_k}^G \hat{\mathbf{R}})^\top {}_{I_k}^G \tilde{\mathbf{R}} - ({}_{I_k}^G \hat{\mathbf{R}}) \lfloor {}_{I_k}^I \boldsymbol{\omega}_m - \mathbf{b}_{\omega_k} - \mathbf{n}_{\omega_k} \times \rfloor ({}_{I_k}^G \hat{\mathbf{R}})^\top {}_{I_k}^G \tilde{\mathbf{R}} \right. \\
&\approx ({}_{I_k}^G \hat{\mathbf{R}}) \lfloor -\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k} \times \rfloor ({}_{I_k}^G \hat{\mathbf{R}})^\top (\mathbf{I}_3 + \lfloor \boldsymbol{\xi}_{\theta_k} \times \rfloor) \\
&\approx \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k} \times) \rfloor (\mathbf{I}_3 + \lfloor \boldsymbol{\xi}_{\theta_k} \times \rfloor) \\
&\approx \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k} \times) \rfloor \\
\Rightarrow \frac{d}{dt} (\lfloor \boldsymbol{\xi}_{\theta_k} \times \rfloor) &\approx \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k} \times) \times \rfloor \\
\Rightarrow \frac{d}{dt} (\boldsymbol{\xi}_{\theta_k}) &\approx {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \tag{14}
\end{aligned}$$

$$\begin{aligned}
\frac{d}{dt} (\boldsymbol{\Gamma}_1) &= \frac{d}{dt} \left({}^G \hat{\mathbf{v}}_{I_k} - {}_{I_k}^G \tilde{\mathbf{R}} {}^G \mathbf{v}_{I_k} \right) \\
&= {}_{I_k}^G \hat{\mathbf{R}} ({}^I_k \mathbf{a}_m - \hat{\mathbf{b}}_{a_k}) + {}^G \mathbf{g} - \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \times \rfloor {}_{I_k}^G \tilde{\mathbf{R}} {}^G \mathbf{v}_{I_k} \\
&\quad - {}_{I_k}^G \hat{\mathbf{R}} ({}^I_k \mathbf{a}_m - \mathbf{b}_{a_k} - \mathbf{n}_{a_k}) - {}_{I_k}^G \tilde{\mathbf{R}} {}^G \mathbf{g} \\
&\approx {}_{I_k}^G \hat{\mathbf{R}} (\tilde{\mathbf{b}}_{a_k} + \mathbf{n}_{a_k}) - \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \times \rfloor {}^G \mathbf{v}_{I_k} + (\mathbf{I}_3 - {}_{I_k}^G \tilde{\mathbf{R}}) {}^G \mathbf{g} \\
&\approx {}_{I_k}^G \hat{\mathbf{R}} (\tilde{\mathbf{b}}_{a_k} + \mathbf{n}_{a_k}) + \lfloor {}^G \mathbf{v}_{I_k} \times \rfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) + (\mathbf{I}_3 - {}_{I_k}^G \tilde{\mathbf{R}}) {}^G \mathbf{g} \\
\Rightarrow \frac{d}{dt} (\boldsymbol{\Gamma}_1) &\approx -\lfloor \boldsymbol{\xi}_{\theta_k} \times \rfloor {}^G \mathbf{g} + {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{a_k} + \mathbf{n}_{a_k}) + \lfloor {}^G \mathbf{v}_{I_k} \times \rfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \\
&\approx \lfloor {}^G \mathbf{g} \times \rfloor \boldsymbol{\xi}_{\theta_k} + {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{a_k} + \mathbf{n}_{a_k}) + \lfloor {}^G \hat{\mathbf{v}}_{I_k} \times \rfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \\
\Rightarrow \frac{d}{dt} (\boldsymbol{\xi}_{v_k}) &\approx \lfloor {}^G \mathbf{g} \times \rfloor \boldsymbol{\xi}_{\theta_k} + {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{a_k} + \mathbf{n}_{a_k}) + \lfloor {}^G \hat{\mathbf{v}}_{I_k} \times \rfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}), \tag{15}
\end{aligned}$$

$$\begin{aligned}
\frac{d}{dt} (\boldsymbol{\Gamma}_2) &= \frac{d}{dt} \left({}^G \hat{\mathbf{p}}_{I_k} - {}_{I_k}^G \tilde{\mathbf{R}} {}^G \mathbf{p}_{I_k} \right) \\
&= {}^G \hat{\mathbf{v}}_{I_k} - \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \times \rfloor {}_{I_k}^G \tilde{\mathbf{R}} {}^G \mathbf{p}_{I_k} - {}_{I_k}^G \tilde{\mathbf{R}} {}^G \mathbf{v}_{I_k} \\
&\approx {}^G \hat{\mathbf{v}}_{I_k} - \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \times \rfloor (\mathbf{I}_3 + \lfloor \boldsymbol{\xi}_{\theta_k} \times \rfloor) {}^G \mathbf{p}_{I_k} - (\mathbf{I}_3 + \lfloor \boldsymbol{\xi}_{\theta_k} \times \rfloor) {}^G \mathbf{v}_{I_k} \\
&\approx {}^G \hat{\mathbf{v}}_{I_k} - \lfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \times \rfloor {}^G \mathbf{p}_{I_k} - (\mathbf{I}_3 + \lfloor \boldsymbol{\xi}_{\theta_k} \times \rfloor) {}^G \mathbf{v}_{I_k} \\
&\approx {}^G \hat{\mathbf{v}}_{I_k} - {}^G \mathbf{v}_{I_k} + \lfloor {}^G \mathbf{p}_{I_k} \times \rfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) + \lfloor {}^G \mathbf{v}_{I_k} \times \rfloor \boldsymbol{\xi}_{\theta_k} \\
&\approx \boldsymbol{\xi}_{v_k} + \lfloor {}^G \hat{\mathbf{p}}_{I_k} \times \rfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \\
\Rightarrow \frac{d}{dt} (\boldsymbol{\xi}_{p_k}) &\approx \boldsymbol{\xi}_{v_k} + \lfloor {}^G \hat{\mathbf{p}}_{I_k} \times \rfloor {}_{I_k}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}), \tag{16}
\end{aligned}$$

and

$$\begin{aligned}
\frac{d}{dt}(\mathbf{\Gamma}_3) &= \frac{d}{dt} \left({}^G \hat{\mathbf{p}}_u - {}^G \tilde{\mathbf{R}} {}^G \mathbf{p}_u \right) \\
&\approx -[{}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \times] {}^G \tilde{\mathbf{R}} {}^G \mathbf{p}_u \\
&\approx -[{}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \times] (\mathbf{I}_3 + [{}^G \hat{\mathbf{p}}_u \times]) ({}^G \hat{\mathbf{p}}_u) \\
&\approx [{}^G \hat{\mathbf{p}}_u \times] {}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k}) \\
\Rightarrow \frac{d}{dt}(\boldsymbol{\xi}_u) &\approx [{}^G \hat{\mathbf{p}}_u \times] {}^G \hat{\mathbf{R}} (-\tilde{\mathbf{b}}_{\omega_k} + \mathbf{n}_{\omega_k})
\end{aligned} \tag{17}$$

Then, a linearized error state system can be constructed from the above equations as

$$\frac{d}{dt} \tilde{\mathbf{x}}_{I_k} = \mathbf{F}_k \tilde{\mathbf{x}}_{I_k} + \mathbf{G}_k \mathbf{n}_k, \tag{18}$$

where the jacobian \mathbf{F}_k can be computed as

$$\mathbf{F}_k = \begin{bmatrix} \mathbf{F}_A & \mathbf{F}_{B_k} \\ \mathbf{0}_{6 \times 12} & \mathbf{0}_6 \end{bmatrix}, \quad \mathbf{F}_A = \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\ [{}^G \mathbf{g} \times] & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 \end{bmatrix}, \quad \mathbf{F}_{B_k} = \begin{bmatrix} -{}^G \hat{\mathbf{R}} & \mathbf{0}_3 \\ -[{}^G \hat{\mathbf{v}}_{I_k} \times] {}^G \hat{\mathbf{R}} & -{}^G \hat{\mathbf{R}} \\ -[{}^G \hat{\mathbf{p}}_{I_k} \times] {}^G \hat{\mathbf{R}} & \mathbf{0}_3 \\ -[{}^G \hat{\mathbf{p}}_u \times] {}^G \hat{\mathbf{R}} & \mathbf{0}_3 \end{bmatrix} \tag{19}$$

and the jacobian \mathbf{G}_k can be computed as

$$\mathbf{G}_k = \begin{bmatrix} \mathbf{Ad}_{\hat{\mathbf{x}}_k} & \mathbf{0}_{12 \times 6} \\ \mathbf{0}_{6 \times 12} & \mathbf{0}_6 \end{bmatrix}, \quad \mathbf{Ad}_{\hat{\mathbf{x}}_k} = \begin{bmatrix} {}^G \hat{\mathbf{R}} & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\ [{}^G \hat{\mathbf{v}}_{I_k} \times] {}^G \hat{\mathbf{R}} & {}^G \hat{\mathbf{R}} & \mathbf{0}_3 & \mathbf{0}_3 \\ [{}^G \hat{\mathbf{p}}_{I_k} \times] {}^G \hat{\mathbf{R}} & \mathbf{0}_3 & {}^G \hat{\mathbf{R}} & \mathbf{0}_3 \\ [{}^G \hat{\mathbf{p}}_u \times] {}^G \hat{\mathbf{R}} & \mathbf{0}_3 & \mathbf{0}_3 & {}^G \hat{\mathbf{R}} \end{bmatrix} \tag{20}$$

By considering the time interval δt between the time t_k and t_{k-1} is a small constant value, the corresponding discrete-time state transition matrix $\Phi_{k|k-1}$ from time t_{k-1} to t_k can be computed using the matrix exponential as

$$\Phi_{k|k-1} = \exp \left(\begin{bmatrix} \mathbf{F}_A & \mathbf{F}_{B_k} \\ \mathbf{0}_{6 \times 12} & \mathbf{0}_6 \end{bmatrix} \delta t \right) = \begin{bmatrix} \Phi_A & \Phi_{B_k} \\ \mathbf{0}_{6 \times 12} & \mathbf{I}_6 \end{bmatrix} \tag{21}$$

where

$$\begin{aligned}
\Phi_A &= \mathbf{I}_{12} + \mathbf{F}_A \delta t + \frac{1}{2!} \mathbf{F}_A^2 \delta t^2 + \cdots + \frac{1}{n!} \mathbf{F}_A^n \delta t^n \\
\Phi_{B_k} &= \mathbf{F}_{B_k} \delta t + \frac{1}{2!} \mathbf{F}_A \mathbf{F}_{B_k} \delta t^2 + \cdots + \frac{1}{n!} \mathbf{F}_A^{n-1} \mathbf{F}_{B_k} \delta t^n
\end{aligned} \tag{22}$$

Since $\mathbf{F}_A^3 = \mathbf{0}$, the above equation yields

$$\begin{aligned}
\Phi_A &= \mathbf{I}_{12} + \mathbf{F}_A \delta t + \frac{1}{2!} \mathbf{F}_A^2 \delta t^2 = \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\ \lfloor^G \mathbf{g} \times \rfloor \delta t & \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 \\ \frac{1}{2} \lfloor^G \mathbf{g} \times \rfloor \delta t^2 & \mathbf{I}_3 \delta t & \mathbf{I}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 \end{bmatrix} \\
\Phi_{B_k} &= \mathbf{F}_{B_k} \delta t + \frac{1}{2!} \mathbf{F}_A \mathbf{F}_{B_k} \delta t^2 + \frac{1}{3!} \mathbf{F}_A^2 \mathbf{F}_{B_k} \delta t^3 \\
&= \begin{bmatrix} -\frac{G}{I_{i,k}} \hat{\mathbf{R}} & \mathbf{0}_3 \\ -\lfloor^G \hat{\mathbf{v}}_{I_k} \times \rfloor^G \hat{\mathbf{R}} & -\frac{G}{I_k} \hat{\mathbf{R}} \\ -\lfloor^G \hat{\mathbf{p}}_{I_k} \times \rfloor^G \hat{\mathbf{R}} & \mathbf{0}_3 \\ -\lfloor^G \hat{\mathbf{p}}_u \times \rfloor^G \hat{\mathbf{R}} & \mathbf{0}_3 \end{bmatrix} \delta t + \frac{1}{2} \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 \\ -\lfloor^G \mathbf{g} \times \rfloor^G \hat{\mathbf{R}} & \mathbf{0}_3 \\ -\lfloor^G \hat{\mathbf{v}}_{I_k} \times \rfloor^G \hat{\mathbf{R}} & -\frac{G}{I_k} \hat{\mathbf{R}} \\ \mathbf{0}_3 & \mathbf{0}_3 \end{bmatrix} \delta t^2 \\
&+ \frac{1}{6} \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 \\ -\lfloor^G \mathbf{g} \times \rfloor^G \hat{\mathbf{R}} & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 \end{bmatrix} \delta t^3 = \begin{bmatrix} -\frac{G}{I_k} \hat{\mathbf{R}} \delta t & \mathbf{0}_3 \\ \Psi_A & -\frac{G}{I_k} \hat{\mathbf{R}} \delta t \\ \Psi_{B_k} & -\frac{1}{2} \frac{G}{I_k} \hat{\mathbf{R}} \delta t^2 \\ -\lfloor^G \hat{\mathbf{p}}_u \times \rfloor^G \hat{\mathbf{R}} \delta t & \mathbf{0}_3 \end{bmatrix} \quad (23)
\end{aligned}$$

where

$$\begin{aligned}
\Psi_A &= -\lfloor^G \hat{\mathbf{v}}_{I_k} \times \rfloor^G \hat{\mathbf{R}} \delta t - \frac{1}{2} \lfloor^G \mathbf{g} \times \rfloor^G \hat{\mathbf{R}} \delta t^2 \\
\Psi_{B_k} &= -\lfloor^G \hat{\mathbf{p}}_{I_k} \times \rfloor^G \hat{\mathbf{R}} \delta t - \frac{1}{2} \lfloor^G \hat{\mathbf{v}}_{I_k} \times \rfloor^G \hat{\mathbf{R}} \delta t^2 - \frac{1}{6} \lfloor^G \mathbf{g} \times \rfloor^G \hat{\mathbf{R}} \delta t^3
\end{aligned} \quad (24)$$

Then, we can compute the state transition matrix $\Phi_{k|0}$ as

$$\begin{aligned}
\Phi_{k|0} &= \Phi_{k|k-1} \Phi_{k-1|k-2} \cdots \Phi_{1|0} \\
&= \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \Phi_{15} & \mathbf{0}_3 \\ \lfloor^G \mathbf{g} \times \rfloor \delta t & \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \Phi_{25} & \Phi_{26} \\ \frac{1}{2} \lfloor^G \mathbf{g} \times \rfloor \delta t^2 & \mathbf{I}_3 \delta t & \mathbf{I}_3 & \mathbf{0}_3 & \Phi_{35} & \Phi_{36} \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \Phi_{45} & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 \end{bmatrix} \quad (25)
\end{aligned}$$

where

$$\begin{aligned}
\Phi_{15} &= - \sum_{\tau=0}^k \lfloor^G \hat{\mathbf{R}} \delta t \\
\Phi_{25} &= - \sum_{\tau=0}^k \left(\lfloor^G \hat{\mathbf{v}}_{I_\tau} \times \rfloor^G \hat{\mathbf{R}} \delta t + \frac{1}{2} \lfloor^G \mathbf{g} \times \rfloor^G \hat{\mathbf{R}} \delta t^2 \right) \\
\Phi_{35} &= - \sum_{\tau=0}^k \left(\lfloor^G \hat{\mathbf{p}}_{I_\tau} \times \rfloor^G \hat{\mathbf{R}} \delta t + \frac{1}{2} \lfloor^G \hat{\mathbf{v}}_{I_\tau} \times \rfloor^G \hat{\mathbf{R}} \delta t^2 + \frac{1}{6} \lfloor^G \mathbf{g} \times \rfloor^G \hat{\mathbf{R}} \delta t^3 \right)
\end{aligned} \quad (26)$$

and

$$\begin{aligned}
\Phi_{45} &= - \sum_{\tau=0}^k \lfloor {}^G \hat{\mathbf{p}}_u \times \rfloor_{I_{i,\tau}}^G \hat{\mathbf{R}} \delta t \\
\Phi_{26} &= - \sum_{\tau=0}^k {}^G_{I_\tau} \hat{\mathbf{R}} \delta t \\
\Phi_{36} &= - \frac{1}{2} \sum_{\tau=0}^k {}^G_{I_\tau} \hat{\mathbf{R}} \delta t^2
\end{aligned} \tag{27}$$

In addition to the matrix exponential approach described above, the state transition matrix can also be derived analytically. We refer interested readers to [1] for further details.

3 Measurement Update

3.1 Visual Measurements

The visual measurement model is given by

$$\mathbf{z}_{c_k} = \mathbf{\Pi}({}^{C_k} \mathbf{p}_f) + \mathbf{n}_{c_k} \tag{28}$$

where

$$\begin{aligned}
{}^{C_k} \mathbf{p}_f &\triangleq \begin{bmatrix} x & y & c \end{bmatrix}^\top = {}^G_{I_k} \mathbf{R}^\top ({}^G \mathbf{p}_f - {}^G \mathbf{p}_{I_k}) \\
\mathbf{\Pi}({}^{I_k} \mathbf{p}_f) &= \mathbf{\Pi} \left(\begin{bmatrix} x & y & z \end{bmatrix}^\top \right) = \begin{bmatrix} x/z & y/z \end{bmatrix}^\top
\end{aligned} \tag{29}$$

To proceed with the measurement update, we first linearize the above equation as

$$\tilde{\mathbf{z}}_{c_k} = \mathbf{H}_{x_k} \tilde{\mathbf{x}}_{I_k} + \mathbf{H}_{f_k} {}^G \tilde{\mathbf{p}}_f + \mathbf{n}_{c_k} \tag{30}$$

where the measurement jacobians \mathbf{H}_{x_k} and \mathbf{H}_{f_k} can be computed using the chain rule

$$\mathbf{H}_{x_k} = \frac{\partial \tilde{\mathbf{z}}_{c_k}}{\partial {}^{C_k} \tilde{\mathbf{p}}_f} \frac{\partial {}^{C_k} \tilde{\mathbf{p}}_f}{\partial \tilde{\mathbf{x}}_{I_k}} \quad , \quad \mathbf{H}_{f_k} = \frac{\partial \tilde{\mathbf{z}}_{c_k}}{\partial {}^{C_k} \tilde{\mathbf{p}}_f} \frac{\partial {}^{C_k} \tilde{\mathbf{p}}_f}{\partial {}^G \tilde{\mathbf{p}}_f} \tag{31}$$

In particular, the jacobian $\frac{\partial \tilde{\mathbf{z}}_{c_k}}{\partial {}^{C_k} \tilde{\mathbf{p}}_f}$ can be computed as

$$\frac{\partial \tilde{\mathbf{z}}_{c_k}}{\partial {}^{C_k} \tilde{\mathbf{p}}_f} \triangleq \mathbf{H}_{pc} = \begin{bmatrix} 1/z & 0 & -x/z^2 \\ 0 & 1/z & -y/z^2 \end{bmatrix} \tag{32}$$

Recall that $\boldsymbol{\eta}_k = \exp_{\mathcal{G}}(\boldsymbol{\xi}_{I_k}) \approx \mathbf{I}_6 + \boldsymbol{\xi}_{I_k}^\wedge \Rightarrow \hat{\mathbf{T}}_k \approx (I_6 + \boldsymbol{\xi}_{I_k}^\wedge) \mathbf{T}_k$. We can compute the jacobians $\frac{\partial^{C_k} \tilde{\mathbf{p}}_f}{\partial \tilde{\mathbf{x}}_{I_k}}$, $\frac{\partial^{C_k} \tilde{\mathbf{p}}_f}{\partial^G \tilde{\mathbf{p}}_f}$ as

$$\begin{aligned}
{}^{C_k} \hat{\mathbf{p}}_f &= {}^C \mathbf{R}_{I_k}^G \hat{\mathbf{R}}^\top ({}^G \hat{\mathbf{p}}_f - {}^G \hat{\mathbf{p}}_{I_k}) \\
&\approx {}^C_I \mathbf{R}_{I_k}^G \mathbf{R}^\top (\mathbf{I}_3 - [\boldsymbol{\xi}_{\theta_k} \times]) ((\mathbf{I}_3 + [\boldsymbol{\xi}_{\theta_k} \times]) {}^G \mathbf{p}_f + {}^G \tilde{\mathbf{p}}_f - (\mathbf{I}_3 + [\boldsymbol{\xi}_{\theta_k} \times]) {}^G \mathbf{p}_{I_k} - \boldsymbol{\xi}_{p_k}) \\
&\approx {}^C_I \mathbf{R}_{I_k}^G \mathbf{R}^\top ((\mathbf{I}_3 + [\boldsymbol{\xi}_{\theta_k} \times]) {}^G \mathbf{p}_f + {}^G \tilde{\mathbf{p}}_f - (\mathbf{I}_3 + [\boldsymbol{\xi}_{\theta_k} \times]) {}^G \mathbf{p}_{I_k} - \boldsymbol{\xi}_{p_k}) - {}^G_{I_k} \mathbf{R}^\top [\boldsymbol{\xi}_{\theta_k} \times] ({}^G \mathbf{p}_f - {}^G \mathbf{p}_{I_k}) \\
&= {}^C_I \mathbf{R}_{I_k}^G \mathbf{R}^\top ({}^G \mathbf{p}_f + {}^G \tilde{\mathbf{p}}_f - {}^G \mathbf{p}_{I_k} - \boldsymbol{\xi}_{p_k}) \\
&\Rightarrow {}^{C_k} \tilde{\mathbf{p}}_f \approx {}^C_I \mathbf{R}_{I_k}^G \mathbf{R}^\top ({}^G \tilde{\mathbf{p}}_f - \boldsymbol{\xi}_{p_k}) \\
&\Rightarrow \frac{\partial^{C_k} \tilde{\mathbf{p}}_f}{\partial \tilde{\mathbf{x}}_{I_k}} = {}^C_I \mathbf{R}_{I_k}^G \mathbf{R}^\top \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 & -\mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_{3 \times 6} \end{bmatrix}, \quad \frac{\partial^{C_k} \tilde{\mathbf{p}}_f}{\partial^G \tilde{\mathbf{p}}_f} = {}^C_I \mathbf{R}_{I_k}^G \mathbf{R}^\top
\end{aligned} \tag{33}$$

Hence the jacobians \mathbf{H}_{x_k} , \mathbf{H}_{f_k} can be calculated as

$$\begin{aligned}
\mathbf{H}_{x_k} &= \mathbf{H}_{pcI} {}^C \mathbf{R}_{I_k}^G \mathbf{R} \begin{bmatrix} \mathbf{0}_3 & \mathbf{0}_3 & -\mathbf{I}_3 & \mathbf{0}_{3 \times 9} \end{bmatrix} \\
\mathbf{H}_{f_k} &= \mathbf{H}_{pcI} {}^C \mathbf{R}_{I_k}^G \mathbf{R}.
\end{aligned} \tag{34}$$

Note that the measurement Jacobian above is computed using the true state \mathbf{X}_{I_k} as the linearization point. To perform the update, we must shift the linearization point to the corresponding state estimate $\hat{\mathbf{X}}_{I_k}$, which yields results identical to those presented in the paper.

3.2 UWB Ranging Measurement

The UWB ranging measurement model is given by

$$\begin{aligned}
\mathbf{z}_{u_k} &= \|\mathbf{d}_k\| + \mathbf{n}_{u_k} + \mathbf{b}_{u_k} \\
\mathbf{d}_k &= {}^G \mathbf{p}_{I_k} + {}^{I_k}_G \mathbf{R}^\top {}^I \mathbf{p}_T - {}^G \mathbf{p}_u
\end{aligned} \tag{35}$$

Similarly to the visual measurement update, we also linearize the UWB ranging measurement as

$$\tilde{\mathbf{z}}_{u_k} = \mathbf{H}_{u_k} \tilde{\mathbf{x}}_{I_k} + \mathbf{n}_u \tag{36}$$

Following the chain rule, the measurement jacobian \mathbf{H}_{u_k} can be computed as

$$\mathbf{H}_{u_k} = \frac{\partial \tilde{\mathbf{z}}_{u_k}}{\partial \tilde{\mathbf{d}}_k} \frac{\partial \tilde{\mathbf{d}}_k}{\partial \tilde{\mathbf{x}}_{I_k}} \tag{37}$$

where the jacobian $\frac{\partial \tilde{\mathbf{z}}_{u_k}}{\partial \tilde{\mathbf{d}}_k}$ is calculated as

$$\frac{\partial \tilde{\mathbf{z}}_{u_k}}{\partial \tilde{\mathbf{d}}_k} \triangleq \mathbf{H}_{pu} = \frac{\left({}^G \mathbf{p}_{I_k} - {}^G \mathbf{p}_u + {}^{I_k}_G \mathbf{R}^\top {}^I \mathbf{p}_T \right)^\top}{\| {}^G \mathbf{p}_{I_k} - {}^G \mathbf{p}_u + {}^{I_k}_G \mathbf{R}^\top {}^I \mathbf{p}_T \|} \tag{38}$$

and given that $\boldsymbol{\eta}_k = \exp_G(\boldsymbol{\xi}_{I_k}) \approx \mathbf{I}_6 + \boldsymbol{\xi}_{I_k}^\wedge$, the jacobian $\frac{\partial \tilde{\mathbf{d}}_k}{\partial \tilde{\mathbf{x}}_{I_k}}$ is given by

$$\begin{aligned} \mathbf{d}_k &= {}^G \hat{\mathbf{p}}_{I_k} + {}^G \hat{\mathbf{R}}^I \mathbf{p}_T - {}^G \hat{\mathbf{p}}_u \approx (\mathbf{I}_3 + [\boldsymbol{\xi}_{\theta_k} \times]) {}^G \mathbf{p}_{I_k} + \boldsymbol{\xi}_{I_k} \\ &\quad - (\mathbf{I}_3 + [\boldsymbol{\xi}_{\theta_k} \times]) {}^G \mathbf{p}_u - \boldsymbol{\xi}_{u_k} + (\mathbf{I}_3 + [\boldsymbol{\xi}_{\theta_k} \times]) {}^G \mathbf{R}^I \mathbf{p}_T \\ &\Rightarrow \tilde{\mathbf{d}}_k \approx \boldsymbol{\xi}_{I_k} - \boldsymbol{\xi}_{u_k} + [{}^G \mathbf{p}_u - {}^G \mathbf{p}_{I_k} - {}^G \mathbf{R}^I \mathbf{p}_T \times] \boldsymbol{\xi}_{\theta_k} \\ &\Rightarrow \frac{\partial \tilde{\mathbf{d}}_k}{\partial \tilde{\mathbf{x}}_{I_k}} = \left[[{}^G \mathbf{p}_u - {}^G \mathbf{p}_{I_k} - {}^G \mathbf{R}^I \mathbf{p}_T \times] \quad \mathbf{0}_3 \quad \mathbf{I}_3 \quad -\mathbf{I}_3 \quad \mathbf{0}_{3 \times 6} \right] \end{aligned} \quad (39)$$

Thus, the measurement jacobian \mathbf{H}_{u_k} is given as

$$\begin{aligned} \mathbf{H}_{u_k} &= \mathbf{H}_{pu} \left[\Lambda_k \quad \mathbf{0}_3 \quad \mathbf{I}_3 \quad -\mathbf{I}_3 \quad \mathbf{0}_{3 \times 6} \right] \\ \mathbf{H}_{pu} &= \frac{\left({}^G \mathbf{p}_{I_k} - {}^G \mathbf{p}_u + {}^G \mathbf{R}^I \mathbf{p}_T \right)^\top}{\| {}^G \mathbf{p}_{I_k} - {}^G \mathbf{p}_u + {}^G \mathbf{R}^I \mathbf{p}_T \|} \\ \Lambda_k &= [{}^G \mathbf{p}_u - {}^G \mathbf{p}_{I_k} - {}^G \mathbf{R}^I \mathbf{p}_T \times]. \end{aligned} \quad (40)$$

4 Observability Analysis

According to [3], the observability of the MSCKF system can be analyzed through the EKF-SLAM framework, as the two are theoretically equivalent. Thus, without loss of generality, we study the observability of the EKF-SLAM system with a single feature point ${}^G \mathbf{p}_f$ and one UWB anchor ${}^G \mathbf{p}_u$. The state of the EKF-SLAM system has a form very similar to \mathbf{X}_{I_k} , with the only difference being that the original state \mathbf{T}_k is now augmented with a feature state, given by

$$\mathbf{T}_k = \left[\begin{array}{c|ccc} {}^G \mathbf{R} & {}^G \mathbf{v}_{I_k} & {}^G \mathbf{p}_{I_k} & {}^G \mathbf{p}_u & {}^G \mathbf{p}_f \\ \hline \mathbf{0}_4 & & & \mathbf{I}_4 & \end{array} \right] \in SE_4(3), \quad (41)$$

Following the proof of [4], the local observability matrix for the time-varying error state of the whole system is defined as

$$\mathcal{O} = \begin{bmatrix} \mathcal{O}_0 \\ \mathcal{O}_1 \\ \vdots \\ \mathcal{O}_k \end{bmatrix} = \begin{bmatrix} \mathbf{H}_0 \\ \mathbf{H}_1 \tilde{\boldsymbol{\Phi}}_{1|0} \\ \vdots \\ \mathbf{H}_k \tilde{\boldsymbol{\Phi}}_{k|0} \end{bmatrix}, \quad (42)$$

where $\mathbf{H}_k = [\mathbf{H}_{c_k}^\top \quad \mathbf{H}_{r_k}^\top]^\top$ is the joint measurement jacobian; \mathbf{H}_{c_k} represents the jacobian of the visual measurement, and \mathbf{H}_{r_k} represents the jacobian of the UWB ranging measurement

$$\begin{aligned} \mathbf{H}_{c_k} &= \mathbf{H}_{f_k} \left[\mathbf{0}_3 \quad \mathbf{0}_3 \quad -\mathbf{I}_3 \quad \mathbf{0}_3 \quad \mathbf{I}_3 \quad \mathbf{0}_{3 \times 6} \right] \\ \mathbf{H}_{r_k} &= \mathbf{H}_{pu} \left[\Lambda_k \quad \mathbf{0}_3 \quad \mathbf{I}_3 \quad -\mathbf{I}_3 \quad \mathbf{0}_3 \quad \mathbf{0}_{3 \times 6} \right], \end{aligned} \quad (43)$$

$\tilde{\Phi}_{k,0}$ is the state transition matrix of the EKF-SLAM system. Note that the computation of the state transition matrix $\tilde{\Phi}_{k,0}$ for the above EKF-SLAM system is very similar to that of the state transition matrix $\Phi_{k,0}$ presented in the previous section, which is given by

$$\begin{aligned}\tilde{\Phi}_{k,0} &= \begin{bmatrix} \tilde{\Phi}_A & \tilde{\Phi}_{B_k} \\ \mathbf{0}_{6 \times 15} & \mathbf{I}_6 \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \tilde{\Phi}_{16} & \mathbf{0}_3 \\ \lfloor {}^G \mathbf{g} \times \rfloor \delta t & \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \tilde{\Phi}_{26} & \tilde{\Phi}_{27} \\ \frac{1}{2} \lfloor {}^G \mathbf{g} \times \rfloor \delta t^2 & \mathbf{I}_3 \delta t & \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \tilde{\Phi}_{36} & \tilde{\Phi}_{37} \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{0}_3 & \tilde{\Phi}_{46} & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \tilde{\Phi}_{56} & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{0}_3 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 \end{bmatrix} \quad (44)\end{aligned}$$

where

$$\begin{aligned}\tilde{\Phi}_{16} &= - \sum_{\tau=0}^k {}^G \hat{\mathbf{R}} \delta t \\ \tilde{\Phi}_{26} &= - \sum_{\tau=0}^k \left(\lfloor {}^G \hat{\mathbf{v}}_{I_\tau} \times \rfloor {}^G \hat{\mathbf{R}} \delta t + \frac{1}{2} \lfloor {}^G \mathbf{g} \times \rfloor {}^G \hat{\mathbf{R}} \delta t^2 \right) \\ \tilde{\Phi}_{36} &= - \sum_{\tau=0}^k \left(\lfloor {}^G \hat{\mathbf{p}}_{I_\tau} \times \rfloor {}^G \hat{\mathbf{R}} \delta t + \frac{1}{2} \lfloor {}^G \hat{\mathbf{v}}_{I_\tau} \times \rfloor {}^G \hat{\mathbf{R}} \delta t^2 + \frac{1}{6} \lfloor {}^G \mathbf{g} \times \rfloor {}^G \hat{\mathbf{R}} \delta t^3 \right) \\ \tilde{\Phi}_{46} &= - \sum_{\tau=0}^k \lfloor {}^G \hat{\mathbf{p}}_f \times \rfloor {}^G \hat{\mathbf{R}} \delta t \quad (45)\end{aligned}$$

and

$$\begin{aligned}\tilde{\Phi}_{56} &= - \sum_{\tau=0}^k \lfloor {}^G \hat{\mathbf{p}}_u \times \rfloor {}^G \hat{\mathbf{R}} \delta t \\ \tilde{\Phi}_{27} &= - \sum_{\tau=0}^k {}^G \hat{\mathbf{R}} \delta t \\ \tilde{\Phi}_{37} &= - \frac{1}{2} \sum_{\tau=0}^k {}^G \hat{\mathbf{R}} \delta t^2 \quad (46)\end{aligned}$$

Then, we can compute each block raw \mathcal{O}_k of the observability matrix as

$$\begin{aligned}\mathcal{O}_k &\triangleq \begin{bmatrix} \mathcal{O}_{c_k} \\ \mathcal{O}_{r_k} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{c_k} \tilde{\Phi}_{k,0} \\ \mathbf{H}_{r_k} \tilde{\Phi}_{k,0} \end{bmatrix} \\ \mathcal{O}_{c_k} &= \mathbf{H}_{f_k} \begin{bmatrix} \mathbf{M}_{c,1} & -\mathbf{I}_3 \delta t & -\mathbf{I}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{M}_{c,2} & \mathbf{M}_{c,3} \end{bmatrix} \\ \mathcal{O}_{r_k} &= \mathbf{H}_{pu} \begin{bmatrix} \mathbf{M}_{r,1} & \mathbf{I}_3 \delta t & \mathbf{I}_3 & -\mathbf{I}_3 & \mathbf{0}_3 & \mathbf{M}_{r,2} & \mathbf{M}_{r,3} \end{bmatrix},\end{aligned}\quad (47)$$

where

$$\begin{aligned}\mathbf{M}_{c,1} &= -\frac{1}{2} \lfloor {}^G \mathbf{g} \times \rfloor \delta t^2, \quad \mathbf{M}_{c,2} = \tilde{\Phi}_{56} - \tilde{\Phi}_{36} \\ \mathbf{M}_{c,3} &= -\tilde{\Phi}_{37}, \quad \mathbf{M}_{r,1} = \Lambda_k + \frac{1}{2} \lfloor {}^G \mathbf{g} \times \rfloor \delta t^2, \\ \mathbf{M}_{r,2} &= \Lambda_k \tilde{\Phi}_{16} + \tilde{\Phi}_{36} - \tilde{\Phi}_{46}, \quad \mathbf{M}_{r,3} = \tilde{\Phi}_{37}\end{aligned}\quad (48)$$

Theorem 1 (Observability properties of CVIRO): *The right nullspace of the observability matrix \mathcal{O}_k , denoted as \mathbf{N} , spans the following unobservable subspace*

$$\mathbf{N} = \begin{bmatrix} {}^G \mathbf{g}^\top & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{0}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{I}_3 & \mathbf{I}_3 & \mathbf{0}_3 & \mathbf{0}_3 \end{bmatrix}^\top \quad (49)$$

which denotes the global orientation and yaw translation.

Proof 1 To verify that \mathbf{N} is a non-space of \mathcal{O}_k , we have to ensure that $\mathcal{O}_k \mathbf{N} = \mathbf{0}$. In particular, we have

$$\mathcal{O}_k \mathbf{N} = \mathbf{0} = \begin{bmatrix} \mathcal{O}_{c_k} \mathbf{N} \\ \mathcal{O}_{r_k} \mathbf{N} \end{bmatrix} \quad (50)$$

where

$$\begin{aligned}\mathcal{O}_{c_k} \mathbf{N} &= \mathbf{H}_{f_k} \begin{bmatrix} \mathbf{M}_{c,1} & -\mathbf{I}_3 \delta t & -\mathbf{I}_3 & \mathbf{0}_3 & \mathbf{I}_3 & \mathbf{M}_{c,2} & \mathbf{M}_{c,3} \end{bmatrix} \mathbf{N} \\ &= \mathbf{H}_{f_k} \left[-\frac{1}{2} \lfloor {}^G \mathbf{g} \times \rfloor \delta t^2 {}^G \mathbf{g} \quad (\mathbf{I}_3 - \mathbf{I}_3) \right] = \mathbf{0}_{2 \times 4}\end{aligned}\quad (51)$$

$$\begin{aligned}\mathcal{O}_{r_k} \mathbf{N} &= \mathbf{H}_{pu} \begin{bmatrix} \mathbf{M}_{r,1} & \mathbf{I}_3 \delta t & \mathbf{I}_3 & -\mathbf{I}_3 & \mathbf{0}_3 & \mathbf{M}_{r,2} & \mathbf{M}_{r,3} \end{bmatrix} \mathbf{N} \\ &= \left[\mathbf{H}_{pu} (\Lambda_k + \frac{1}{2} \lfloor {}^G \mathbf{g} \times \rfloor \delta t^2) {}^G \mathbf{g} \quad \mathbf{H}_{pu} (\mathbf{I}_3 - \mathbf{I}_3) \right] \\ &= \left[\mathbf{H}_{pu} \Lambda_k {}^G \mathbf{g} \quad \mathbf{0}_{1 \times 3} \right] \\ &= \left[-\frac{\left({}^G \mathbf{p}_u - {}^G \mathbf{p}_{I_k} - {}^G \mathbf{R}^I \mathbf{p}_T \right)^\top}{\| {}^G \mathbf{p}_u - {}^G \mathbf{p}_{I_k} - {}^G \mathbf{R}^I \mathbf{p}_T \|} \lfloor {}^G \mathbf{p}_u - {}^G \mathbf{p}_{I_k} - {}^G \mathbf{R}^I \mathbf{p}_T \times \rfloor {}^G \mathbf{g} \quad \mathbf{0}_{1 \times 3} \right] \\ &= \mathbf{0}_{1 \times 4}\end{aligned}\quad (52)$$

As a result, \mathbf{N} is a non-space of \mathcal{O}_k . Moreover, \mathcal{O}_k doesn't have any other non-space. Thus, we complete the proof. We can see that unlike the standard EKF-based SLAM system, where the unobservable subspace depends on the state and leads to inconsistency issues, the nullspace \mathbf{N} remains a constant matrix, inherently preserving observability consistency.

References

- [1] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided invariant extended kalman filtering for robot state estimation,” *The International Journal of Robotics Research*, vol. 39, no. 4, pp. 402–430, 2020. [Online]. Available: <https://doi.org/10.1177/0278364919894385>
- [2] A. Barrau and S. Bonnabel, “The invariant extended kalman filter as a stable observer,” *IEEE Transactions on Automatic Control*, vol. 62, no. 4, pp. 1797–1812, 2017.
- [3] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,” *The International Journal of Robotics Research*, vol. 32, no. 6, pp. 690–711, 2013.
- [4] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “A first-estimates jacobian ekf for improving slam consistency,” in *Experimental Robotics*, O. Khatib, V. Kumar, and G. J. Pappas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 373–382.