Supplementary Material

This supplementary material provides a comprehensive introduction and detailed derivations
related to the paper. Since our algorithm is built upon matrix Lie group theory and Lie group-
based invariant filter, the associated derivations are not as straightforward as those in vector spaces.
Therefore, the primary goal of this material is to provide a clear demonstration of the key theo-
retical foundations and derivation steps, making it easier for readers to follow and understand the
underlying mathematical principles.

1 Preliminaries and Notations

In this section, we provide a brief overview of the notations and the fundamentals of matrix Lie
group theory that form the basis for deriving our algorithm.

1.1 Notations
Let I,.(0,) denote the r x r identity (zero) matrix; O,,x, denote the m x n zeros matrix; Tr(-)
denote the trace of a matrix. When applied to a set, |- | denotes the cardinality. We use q € R” to

-
represent a vector of dimension r with all real entries. Given a 3 x 1 vector q = [Ch Q2 q3} , its

skew-symmetric matrix is defined as

0 —g3 @
lax]=1g¢3 0 —q (1)
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1.2 Matrix Lie Group and Lie Algebra

A matrix Lie group G € RV*¥ is a subset of square invertible matrices with the following three
properties holding:

In Eg;
VX eg X teg;
VXl,Xg EQ,Xngeg (2)

The corresponding Lie algebra of a matrix Lie group G denoted as g, is a vector space with the
same dimension as G. For any element £ in g denoted as & € R%™9) it can be transformed to its



Lie group using the exponential map expg(-) : R¥™m8 5 G as

exp(€) = exp(e) = 3 & 3)
k=1

where the "hat” operator (-)" denotes the linear mapping R¥m8 _ g that transform the element
in the Lie algebra g to the corresponding matrix form. exp(-) denotes the matrix exponential. The
inverse function of the exponential map, that is, the logarithm map logg : G — R4™(8)  can be
defined as

logg(expg(§)) = § (4)

We also encourage readers to refer to [1] for a more comprehensive introduction to matrix Lie
groups and Lie algebras, including topics such as group-affine dynamics and the log-linear property
of the invariant error.

2 System Propagation

Recall the definition of the state Xy,

and its kinematics model

G T .
CR=GR[Mwx), v, = GR(%a) + g

prk = leka pr = 07 bwk = Wy, Bak = Wg (6)

2.1 State transition and covariance propagation

Given the state X7, and its corresponding estimate X 1., we first formulate the estimation error as

X1, = (nk, By) (7)



where m;, represents the corresponding right invariant error as

. SR, Iy T

03 | I3
Gn G (G -1

IkR = IkR(IkR)

Ty =%, — $ Ry,

I‘Q - GIA)Ik - [GICRGpIk

and

ﬁk = (bak - bak)T> (bwk - bwk)T] ! (9)

The combined error term X 1, is commonly referred to as the augmented right-invariant error, as it
includes both a right-invariant error term and an appended error vector. By applying the log-linear
property of the invariant error [2], errors 1 can be approximated using a first-order approximation

as follows:

ni, = expg(€r,) ~ Is + &7, € R%C (10)

where (-)" : REM8 — g he the linear map that transforms the error vector &7, and €., defined in

the Lie algebra to its corresponding matrix representation [2] as

&, 2607 €07 €0 ()T] er?

o, = §k = log(if{) e R?

o, = vr, — (I3 + |61x])Cvr, € R®

&, = P, — (Is + |6, x))°py, € R®

Eu, = 9Py — (I3 + [01,x)) 9Py € R, (11)

Give the error definitions in (9), (11), we define the error state vector of the state X;, as
~ A =17
), 2 [ngk Bg] cR'S (12)

To compute the linearized error dynamics, denoted as

d . .
X = Fixp, + Gyny, (13)



we first make the first-order approximation (cf. (10)) to each individual term of the invariant error

My, which yields
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and

~ L ( bwk + Ny, XJ(I3+ L&Bk J)( pU)
~ [9pux )R (b, +1,,)
{f@)wt Bux)ER(~b, + 1) a7)

Then, a linearized error state system can be constructed from the above equations as

d

X0, = FiXp, + Gy, (18)

X1

where the jacobian Fj can be computed as

0; 03 03 O3 -IR 03
P, — Fa Fp, P, |Cgx| 03 03 O3 - —[%p xR —fR (19)
O6x12  Og 03 I3 03 O3]’ =19 x]fR 03
03 03 03 03 *LGf)uXJIGICR 03
and the jacobian Gj can be computed as
R 03 03 O
- Aka 01246 . LGV[kXJiR iR 05 05
G = , Adxk = |iaa O GG (20)
Osx12  Og “pr, x| R 03 7R 03

“puxJ§R 03 03 §R

By considering the time interval §t between the time t; and t;_; is a small constant value, the
corresponding discrete-time state transition matrix ®5,_; from time Z;_; to {x can be computed

using the matrix exponential as

F F 3] 3]
(I)k|k—1 = exp 4 Br ot = 4 Br (21)
O6><12 06 06><12 I6
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(I)Bk :FBk(st—FiFAFBk(StQ-F-“—FHFZ lFBk(Stn (22)



Since Fi = 0, the above equation yields
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Then, we can compute the state transition matrix ®yy as
Pro=Prp-1Pr1k—2- P1o
[ 1, 05 03 03 ®y5 O0; |
|9gx]6t I3 03 03 Po5 Py
_ %LGgXJ5t2 135t I3 03 (13'35 (I)SG (25)
03 03 03 I3 P45 O3
03 03 03 03 I3 O3
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k
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k 1
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T 2 T
=0
b 1 1
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=0



and

k
B4 =— Y |“pux]f Rt
7=0
k
Bys = — Y _ Rt
7=0
3 AN & Rot?
36 = 75 ;)IT

(27)

In addition to the matrix exponential approach described above, the state transition matrix can

also be derived analytically. We refer interested readers to [1] for further details.

3 Measurement Update
3.1 Visual Measurements
The visual measurement model is given by
Ze, = H(C’“pf) +ng,

where

A T
C’“pf:[:n y c] :iR

H(Ikpf)—n<[;p y Z}T)—[m/z y/z]T

T

To proceed with the measurement update, we first linearize the above equation as
~ o ~ G’~
Zey, = H&?kxfk + ka Py + Ny,

where the measurement jacobians H;, and Hy, can be computed using the chain rule

H - 62% 8Ck5f H. — 85% 3C’“f)f
T 90ps 0%y, T 9Cps 5Py
In particular, the jacobian aacicgf can be computed as

0Z¢, A 1/z 0 —x/2?
:Hpc: B 5
0 1/z —y/z

(31)

(32)



A C ~
Recall that n, = expg(&r,) ~ Is +£}\k = Ty ~ (Is +£}\k)Tk. We can compute the jacobians aa;;pf,
k

%Cckpf as
Cipy = (RER (“py — )
~{RER R (I — €0, %)) (T3 + (€0, x )Py + “Pr — Tz + (€0, x ) P1, — &py)
~ CRsz (T3 + (€0, x))°Ps + Py — (I3 + €0, x ) Pr,, — €py) — iRT &0, %] (°ps — “P1,)
_ CRG R (pr + Gﬁf _ Gpl_k _ Spk)
B~ {RER' (OB &)

3 k
= ~pf
6x1k

9% By

55, = R¢ R (33)

T
= ?R?;R {03 03 —1I3 03 03><6] )
Hence the jacobians H, , Hy, can be calculated as

ka:HpCIRI’“R[ s 05 —I3 Osx0
H; = H,.'RIR. (34)

Note that the measurement Jacobian above is computed using the true state X, as the linearization
point. To perform the update, we must shift the linearization point to the corresponding state
estimate X 1,,» which yields results identical to those presented in the paper.

3.2 UWB Ranging Measurement

The UWB ranging measurement model is given by

up — HdkH + Ny, +buk

d, = p;, + R Tpr — Op, (35)
Similarly to the visual measurement update, we also linearize the UWB ranging measurement as
Zy,, = Hy, X1, + 1y (36)

Following the chain rule, the measurement jacobian H,, can be computed as

0%y, 0d
H,, = —ow Ok (37)
where the jacobian 8;};’“ is calculated as
k
07, ~ (prk —“pu+ iRIpT>T
k= Hy, = (38)

ody, 19p1, — “pu+ ¢ RIpr|



ady,
%1,

and given that n; = expg(€r,) ~ I + &7, the jacobian

is given by

d, = “pr, + CRIpr — “pu ~ (Is + &, %)) 1, + &1,
— (I3 + [€0, < ))“Pu — &up + (T3 + €0, %)) R pr
= dk ~ glk - Euk + {Gpu - prk - [G,CRIPTXJgek

ady,
G UGPu —Spr, —FRIprx| 03 I3 —I3 Osx6 (39)
XTI
Thus, the measurement jacobian H,, is given as

H,, =H,, [Ak 03 Is I3 OSXG}

.
. (prk —“pu+ iRIpT)
" %pr, — “pu+ ¢ RIp7||
Ap = Pu—“ps, — R prx]. (40)

4 Observability Analysis

According to [3], the observability of the MSCKF system can be analyzed through the EKF-SLAM
framework, as the two are theoretically equivalent. Thus, without loss of generality, we study the
observability of the EKF-SLAM system with a single feature point “p ¢ and one UWB anchor “pu.
The state of the EKF-SLAM system has a form very similar to X7, , with the only difference being
that the original state T} is now augmented with a feature state, given by

GR| %y “pr “pu “py

=170, | I,

€ SE4(3), (41)

Following the proof of [4], the local observability matrix for the time-varying error state of the
whole system is defined as

o H,
O H,®

o= =1, (42)
Oy Hk;i)k|0

-
where Hy = [Hch HTTJ is the joint measurement jacobian; H,, represents the jacobian of the
visual measurement, and H,, represents the jacobian of the UWB ranging measurement

H., =Hy, [03 03 —I3 03 I3 Osxa}

Hy, =Hyu[Ax 05 Ty ~T; 05 05, (43)



i%o is the state transition matrix of the EKF-SLAM system. Note that the computation of the
state transition matrix ®; ¢ for the above EKF-SLAM system is very similar to that of the state

transition matrix ®j o presented in the previous section, which is given by

where

and
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Is |

(44)

(46)



Then, we can compute each block raw Oy of the observability matrix as

@
(@)

Hck (in’k,O
Hrk <I>k,0

Ck

O =

Tk

Ock:ka [MCJ —I36t —I3 03 I3 Mc,Q MC,3i|

0,, =H,, [Mm Lot I; —I; 03 M, Mr,g} , (47)
where
1 a 2 = =
M1 = —§L gx|6t*, Mo = Psg — P36

~ 1
M3 =—®37, M;1=A;+ §LGg><j5t2,

M, 5= A@ig + Bag — Bag, M, 3 = By (48)

Theorem 1 (Observability properties of CVIRO): The right nullspace of the observability matriz
Oy, denoted as N, spans the following unobservable subspace

G, T T
N_|78 0 0 0 0 0 0 (49)
03 03 13 Ig 13 03 03

which denotes the global orientation and yaw translation.

Proof 1 To verify that N is a non-space of O, we have to ensure that OxIN = 0. In particular,

we have
0., N
O)N=0=| % (50)
0, N
where
OuN =Hy, Moy —Tgot Ty 03 Ty Mey Meg|N
=Hy, [—%LGgXJétZ “g (I3 - 13)} = 0254 (51)
Oy N=Hy, [My1 Tyot Ty —Ty 05 Mo M| N
— [H, (A + 1[Cgx|612) Og  Hpy(Ts — 13)]
= HpuAng OIXS}
B T
. Spu—Cp1,—¢ Ripr
L (Gpu—GpI;k—I? RIpT)II [“Pu—“P1, — LR 'Prx|% 01X3]
L k
=01x4 (52)

11



As a result, N is a non-space of Ok. Moreover, Oy doesn’t have any other non-space. Thus,
we complete the proof. We can see that unlike the standard EKF-based SLAM system, where
the unobservable subspace depends on the state and leads to inconsistency issues, the nullspace N

remains a constant matriz, inherently preserving observability consistency.

References

1]

R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided in-
variant extended kalman filtering for robot state estimation,” The International
Journal of Robotics Research, vol. 39, no. 4, pp. 402-430, 2020. [Online]. Available:
https://doi.org/10.1177/0278364919894385

A. Barrau and S. Bonnabel, “The invariant extended kalman filter as a stable observer,” IEEE
Transactions on Automatic Control, vol. 62, no. 4, pp. 1797-1812, 2017.

M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,” The
International Journal of Robotics Research, vol. 32, no. 6, pp. 690-711, 2013.

G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “A first-estimates jacobian ekf for improving
slam consistency,” in Ezxperimental Robotics, O. Khatib, V. Kumar, and G. J. Pappas, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 373-382.

12



