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Motivation. The control and coordination of large-scale multi-
robot systems have long been challenging, as traditional
optimization approaches [1] are not directly applicable due to
large joint states and real-world communication constraints.
To address this issue, game theoretic formulations allow
agents to achieve distributed coordination, where decision
making is based solely on agents’ local observations. Building
on this, determining what coordination strategy agents should
employ can be accomplished through differentiable program-
ming for inverse learning [2]. However, existing approaches
for inverse games [3] heavily rely on centralized training,
which is computationally inefficient. Motivated by this, we
develop a Distributed Differentiable Dynamic Game (D3G)
framework equipped with new distributed Nash-seeking
algorithms and inverse game gradient solvers. This framework
enables robots to efficiently learn scalable coordination
strategies from desired demonstrations and execute them,
both in fully distributed settings.
Problem Statement. We represent the coordination of a
multi-robot system as a parameterized dynamic game P(Θ).
This game consists of local optimal control problems Pi(θi),
each possessed by a robot. Here, Pi(θi) describes the robot’s
unknown dynamics and its tunable objective function, the
value of which also depends on other robots’ behaviors.
Building on this, we associate robot coordination with the
Nash Equilibrium (N.E.) of P(Θ), which can be adapted
by tuning the objective and dynamics of each robot through
θi. By developing the D3G framework, our objective is to
allow each robot to automatically tune θi in a distributed
manner by minimizing loss function Li(·), which represents
the mismatching between the desired demonstrations and
the robots’ trajectories. In this way, robots will learn and
reconstruct the embedded coordination strategies.
Main Results. As visualized in Fig 1, the learning scheme
of D3G features a new design. It contains a forward-pass
of computing the N.E. of a dynamic game for which we
develop a distributed shooting-based method for numerical
efficiency. In the backward-pass, we first associate the gradient
of N.E. with a Differential Pontryagin’s Maximum Principle
condition and then propose a distributed solver to compute
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Fig. 1: D3G: learning multi-robot coordination from demos.
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Fig. 2: Simulated experiments for two scenarios.

the gradient. All inter-robot communication happens locally
among connected neighbors, eliminating the need for global
information exchange or centralized coordination.

We validate the effectiveness of D3G through experiments:
Scenario (a). Eight heterogeneous robots including four
differential-drive and four planners aim to maintain a desired
(circle-like) formation through navigation. Based on D3G,
each robot learns a local objective function that accounts for
both collision avoidance and formation maintenance. In the
provided demonstrations, the robots navigate through narrow
spaces among the obstacles while, to the maximum extent
possible, maintaining the desired formation.
Scenario (b). Three robots cooperatively transport a slung
payload to a final destination. Throughout this process,
the robots need to learn objective functions that allow for
maintaining clearance of the goods from the ground, reducing
sling tension, and handling obstacle avoidance. The robots
successfully accomplished the task based on D3G framework.
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