
Performance Modeling of Moving Target Defenses∗

Warren Connell
Center for Secure Information

Systems
George Mason University

Fairfax, VA, USA
wconnel@gmu.edu

Daniel A. Menascé
Department of Computer Science

George Mason University
Fairfax, VA, USA

menasce@gmu.edu

Massimiliano Albanese
Center for Secure Information

Systems
George Mason University

Fairfax, VA, USA
malbanes@gmu.edu

ABSTRACT
In recent years, Moving Target Defense (MTD) has emerged as a
potential game changer in the security landscape, due to its po-
tential to create asymmetric uncertainty that favors the defender.
Many different MTD techniques have then been proposed, each
addressing an often very specific set of attack vectors. Despite the
huge progress made in this area, there are still some critical gaps
with respect to the analysis and quantification of the cost and ben-
efits of deploying MTD techniques. In fact, common metrics to
assess the performance of these techniques are still lacking and
most of them tend to assess their performance in different and often
incompatible ways. This paper addresses these gaps by proposing
a quantitative analytic model for assessing the resource availability
and performance of MTDs, and a method for the determination of
the highest possible reconfiguration rate, and thus smallest prob-
ability of attacker’s success, that meets performance and stability
constraints. Finally, we present an experimental validation of the
proposed approach.

CCS CONCEPTS
• General and reference → Performance; Metrics; • Security
and privacy → Systems security; Domain-specific security and
privacy architectures; •Computingmethodologies→Modeling
methodologies; Model verification and validation;

KEYWORDS
Moving Target Defense, performance, Markov chains

1 INTRODUCTION
Moving Target Defense (MTD) has the potential of turning the
typical asymmetry of the security landscape in favor of the de-
fender [13, 18]. Most of the current MTD technologies are designed
to protect systems against a very specific set of attack vectors, such
∗The work of W. Connell and M. Albanese was partially supported by Army Research
Office grants W911NF-13-1-0421 and W911NF-13-1-0317, and by the Office of Naval
Research grant N00014-13-1-0703. The work of D. Menascé was partially supported by
the AFOSR grant FA9550-16-1-0030.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MTD’17, October 30, 2017, Dallas, TX, USA.
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5176-8/17/10. . . $15.00
https://doi.org/10.1145/3140549.3140550

as DoS attacks [19, 20], data exfiltration [28], or SQL injection [8].
Consequently, there is a lack of shared metrics to assess their effec-
tiveness, and, despite the substantial amount of work done in this
area, gaps still exist with respect to the analysis and quantification
of MTD techniques. A recent attempt at quantification is the work
of Maleki et al. [23], which uses a discrete-time Markov chain to
model the interactions between attacker and defender. Their work,
unlike ours, cannot predict the performance of an individual MTD.

When deploying an MTD mechanism, as for any other security
mechanism, there exists a trade-off between performance and secu-
rity [25]. MTDs operate by periodically reconfiguring one or more
system parameters. As the reconfiguration frequency increases,
MTDs can provide better security, but they increase the overhead
on the system and reduce the availability of resources, therefore
affecting the overall performance. In particular, the problem of eval-
uating the impact of MTDs on the availability of resources has not
been formally studied. This is an important problem, as resources
being reconfigured are temporarily unavailable to legitimate users.

This paper addresses these critical gaps and provides the fol-
lowing major contribution: (i) a quantitative analytic model for
assessing the availability and performance of resources that are
reconfigured by MTDs; (ii) a method for determining the highest
possible reconfiguration rate (corresponding to the smallest proba-
bility of attacker’s success) that meets performance and stability
constraints; and (iii) an experimental validation of the proposed
approach.

The rest of the paper is organized as follows. Section 2 provides
some background information on MTDs. Section 3 presents a model
for quantitative analysis of MTDs, whereas Section 4 describes the
experimental testbed used to evaluate our model and to analyze
transient behaviors of MTDs. Section 5 presents numerical results
obtained with the analytic model and through experimentation. Fi-
nally, Section 6 discusses related work, and Section 7 provides some
concluding remarks and discusses ongoing and future research.

2 BACKGROUND ON MTDS
Cyber attacks are typically preceded by a reconnaissance phase
in which adversaries collect valuable information about the target
system, including network topology, service dependencies, and un-
patched vulnerabilities. Because most system configurations are
static – hosts, networks, software, and services do not reconfigure,
adapt, or regenerate except in deterministic ways to support main-
tenance and uptime requirements – it is only a matter of time for
attackers to acquire accurate knowledge about the target system,
engineer reliable exploits, and plan their attacks.

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

53

https://doi.org/10.1145/3140549.3140550

To address this important problem, significant work has been
done in the area of Adaptive Cyber Defense (ACD), which includes
concepts such as Moving Target Defense (MTD), as well as artifi-
cial diversity and bio-inspired defenses, to the extent they involve
system adaptation for security and resiliency purposes. MTD tech-
niques are mechanisms for continuously changing or shifting a
system’s attack surface, thus increasing complexity and cost for
the attackers [13]. A system’s attack surface has been defined as
the “subset of the system’s resources (methods, channels, and data)
that can be potentially used by an attacker to launch an attack” [24].
Therefore, the majority of MTD techniques operate by periodi-
cally reconfiguring one or more system parameters in order to
disrupt the knowledge an attacker may have acquired about those
parameters and, consequently, render the attack’s preconditions
impossible or unstable. Intuitively, dynamically reconfiguring a
system is expected to introduce uncertainty for the attacker and
make the reconnaissance effort more costly.

MTDs may be designed to address different stages of the Cyber
Kill Chain [15], a framework developed by Lockheed Martin as part
of the Intelligence Driven Defense model for identification and pre-
vention of cyber intrusion activity. The model identifies what steps
the adversaries must complete in order to achieve their objective:
reconnaissance, weaponization, delivery, exploitation, installation,
command & control, actions on objectives. Most techniques cur-
rently available are designed to address the reconnaissance phase of
the cyber kill chain, as they attempt to interfere with the attacker’s
effort to gather information about the target system.

One of the major drawbacks of many MTD techniques is that
they may introduce a costly overhead for legitimate users, as well
as the potential for loss of availability. Additionally, most existing
techniques are purely proactive in nature or do not adequately con-
sider the attacker’s behavior. To address this limitation, alternative
approaches aim at inducing a “virtual” or “perceived” attack sur-
face by intelligently crafting responses to an attacker’s attempt to
gather data: the goal is to induce the attacker to formulate incorrect
inferences about the system’s configuration [2]. Compared to other
approaches, this approach presents the advantage of limiting the
overhead by introducing uncertainty for the attackers without actu-
ally changing the system’s configuration. Honeypots have also been
used to divert attackers away from critical resources [1], but they
have proven to be less effective than MTDs because they provide a
static solution: once a honeypot or honeynet has been discovered,
the attacker will avoid it.

3 QUANTITATIVE ANALYSIS OF MTDS
The computing environment we consider in this paper consists of
c similar resources (e.g., VMs) available to serve incoming service
requests that arrive at an average rate λ, join a single queue, and are
served by any of the available resources, with an average service
time S . A genericMTD technique consists in each resource occasion-
ally, at random intervals, reconfiguring itself independently of the
other resources. Thus, each resource handles service requests as well
as reconfiguration requests. While a resource is being reconfigured,
it is not available to handle service requests. Without reconfigura-
tions, the system behaves exactly like an M/M/c queue [21].

Now, assume that each resource is reconfigured at an average
rate of α . As an example, a reconfiguration could entail swapping
out a VM with a clean instance, similar to how SCIT [6] operates.
When the VM comes back online, it may have a new IP address –
thus implementing a form of IP hopping – or even a new Operating
System – thus implementing OS rotation. These reconfigurations
make it more difficult for an attacker to learn about the VMs, and
disrupt the attacker’s persistence in the system. The attacker’s suc-
cess probability depends on the average reconfiguration rate. The
reconfiguration rate α also affects the average number of resources
available to serve requests (see Figure 1). Reconfigurations reduce
resource availability and ultimately increase queuing and response
time.

While these qualitative tradeoffs are intuitive and not surprising,
there is a need for quantitative models for determining the impact
of the reconfiguration rate on resource availability, response time
of service requests, and attacker’s success probability. We use Con-
tinuous Time Markov Chains (CTMC) to compute the probability
distribution of the number of resources being reconfigured as a
function of α and other parameters and then use that distribution
to determine resource availability and response time, among other
metrics. Markov chains have been used for many decades to study
various aspects of computer and communication systems. The nov-
elty in each case is in how the state of a CTMC is defined in order
to represent the system to be analyzed.

Figure 2, the framework for our analytic models, shows the
reconfiguration model at the top and, at the bottom, the performance
model. The reconfigurationmodel takes as inputs the rateα at which
resources are reconfigured, the average reconfiguration time S , and
the number of resources c , and produces as outputs the availability
of resources, the average number of resources available, and the
probability distribution {pk } of the number of available resources.
This distribution, along with the number of resources, the average
arrival rate of service requests, and the average service time of
requests are inputs to the performance model, which produces the
probability distribution {Pk } of the number of service requests in
the system and the average response time of requests.

We analyze this generic MTD in three steps: (i) analysis of the
effect of the reconfiguration rate α on the probability distribution of
available resources; (ii) analysis of the effect of that availability on

being	reconfigured	

in	use	by	a	service	request	

available	for	use	

λ	

Figure 1: Queuing representation of the reference scenario

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

54

Reconfigura+on		
Model	

Performance		
Model	

Reconfigura+on	rate	

Reconfigura+on	+me	

Number	of	resources	

probability		
distribu+on	of	
number	of	
available	resources	

Availability	

Avg.	no.	available	resources	

Request	arrival	rate	

Request	avg.	service	+me	

Avg.	response	+me	

Figure 2: Analytic model framework.

response time; and (iii) calculation of the effective reconfiguration
rate and determination of the attacker’s probability of success.

3.1 Reconfiguration Model
Figure 3 helps explain the basic equations that govern an MTD
process. Table 1 summarizes the names and descriptions of all
variables defined here.

Consider that there are c resources (e.g., VMs) that are recon-
figured at regular time intervals. Each resource cycles through a
period in which it is available for use and a period in which it is
being reconfigured (see Figure 3). Resources are reconfigured inde-
pendently of one another at a rate of α reconfigurations per time
unit. Thus, the average time a resource is available for use between
the end of a reconfiguration operation and the start of the next one
is 1/α . We refer to this as the average age of a resource, which is
the primary security metric used in determining the likelihood of
attacker’s success, described later in Section 3.3.

Let c̄ be the average number of resources available for use (i.e.,
not being reconfigured) and N̄ be the number of resources being
reconfigured. Thus,

c = c̄ + N̄ (1)
Applying Little’s Law [21] to the set of resources we obtain:

c̄ = X × (1/α) (2)

where X is the system’s reconfiguration throughput (or throughput
for short), i.e., the aggregate rate at which resources complete their
reconfiguration, which is the collective rate at which resources are
reconfigured.

Let S be the average time it takes for a resource to complete the
reconfiguration process. For example, a reconfiguration process
could include the time to complete all running transactions in
progress at a server, changing its configuration file, shutting down
the server, and re-booting it. Applying Little’s Law [21] to the set
of resources being reconfigured, we obtain:

N̄ = X × S (3)

Adding Eqs. 2 and 3 and combining the result with Eq. 1, we
obtain:

c = c̄ + N̄ = X (S + 1/α) (4)
We can rewrite Eq. 4 in order to express the reconfiguration rate

α as a function of the number of resources c , the time to reconfigure

c	

1	
.	
.	
.	

resources	

reconfigura,on	process	

α	

α	

X	

N	

c	
S	

Figure 3: Reconfiguration cycle

S , and the throughput X :

α = X/(c − S × X) (5)

We use the CTMC of Figure 4 to compute X . The state k (k =
0, . . . , c) in this CTMC represents the number of resources in the
reconfiguration box of Figure 3. Thus, the number of available
resources is c − k . The arrival and departure rates are assumed to
be stationary (i.e., not changing over time), as they respectively
depend on the values of α –which is set by the system administrator
– and S – which depends on the nature of service requests. These
two parameters may need to be recomputed if the characteristics
of incoming service requests change, but they cannot be altered by
an attacker capable of adapting in response to the deployment of
MTDs.

0	 1	 2	 k	 c-1	c-2	 c	

α	c	 α	(c-1)	 α	(c-k+1)	 α	(c-k)	 2 α		 α		

1/S	 2/S	 k/S	 (k+1)/S	 (c-1)/S	 c/S	

Figure 4: CTMC for the reconfiguration model

An expression for pk (k = 0, . . . , c) is obtained by using the
general birth-death equation for Markov Chains [21]:

pk = p0

k−1∏
i=0

γi
µi+1

k = 1, . . . , c (6)

p0 =

[
1 +

c∑
k=1

Πk−1
i=0

γi
µi+1

]−1

(7)

where γk = α · (c − k) for k = 0, . . . , c − 1 is the aggregate rate at
which resources are reconfigured when there are k resources being
reconfigured and µk = k/S for k = 1, . . . , c is the aggregate rate at
which resources complete their reconfiguration when there are k
resources being reconfigured. Using the expressions for γk and µk

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

55

Table 1: Summary of variable names and descriptions

Variable Description
Ps (t) Probability that t time units are needed for a successful attack
Ts Time needed for an attacker to succeed: Ps (Ts) = 1
c Number of resources
c̄ Average number of resources not being reconfigured
N̄ Average number of resources being reconfigured
α Reconfiguration rate (in reconfigurations per time unit)
S Average time to reconfigure a resource
X Reconfiguration throughput, i.e., aggregate rate at which resources start a reconfiguration
λ Average arrival rate of service requests
T Average time a request spends using a resource
R Average response time of requests

in Eqs. 6 and 7, we obtain:

pk = p0

k−1∏
i=0

α · (c − i)

(i + 1)/S
= p0 · (α · S)

k
(
c
k

)
k = 1, . . . , c (8)

An expression for p0 is obtained by noting that the sum of all
probabilities is equal to 1. Thus,

p0 =

[
1 +

c∑
k=1
(α · S)k

(
c
k

)]−1

(9)

The values of pk can be easily computed because the summa-
tion needed to compute p0 is finite. Given pk and p0 one can then
compute the average throughput X as

X =
c∑

k=1
(k/S) · pk =

1
S

c∑
k=1

k · pk (10)

The average number of available resources can now be computed
by combining Eqs. 2 and 10:

c̄ =
X

α
=

1
α · S

c∑
k=1

k · pk (11)

The availability A of the set of resources is then given by the
fraction of resources available for use, i.e.,

A =
c̄

c
=

X

α · c
(12)

It turns out that the availability does not depend on the number
of resources, but only on the product of the reconfiguration rate
and the reconfiguration time. This can be seen by combining Eqs. 2,
4, and 12.

A =
c̄

c
=

X

α
·

1
c
=

1
1 + α · S

(13)

When there is no reconfiguration (i.e., α = 0), the availability
is 1 as expected. Eq. 13 can be used to determine the value of the
product α · S necessary to guarantee an availability greater than or
equal to some value Amin.

α · S ≤
1

Amin
− 1 (14)

3.2 Response time model
The c resources are used for some computational purpose and re-
quests to use any of them arrive at a rate of λ requests per unit
of time and are served by any of the available resources. If no re-
sources are available, a request has to wait in a queue. The number
of resources available for service varies from 0 to c due to reconfig-
uration (see Figure 1). The probability that k resources are available
for service is given by the probability pc−k that c − k resources are
being reconfigured (see Eq. 8).

We use the CTMC of Figure 5 with an infinite number of states,
where a state k = 0, 1, 2, . . . represents the number of service re-
quests in the system, either using one of the available resources or
waiting for one. Note that the system of Figure 1 is similar to an
M/M/c queuing system with an important difference. In an M/M/c
model, the rate at which transactions complete is kµ for k = 1, . . . , c
and cµ for k > c where µ is the average rate at which a request
completes from a resource. In our case, as explained above, the
transaction completion rate has to consider that resources may be
in the process of being reconfigured. Thus, we follow an approach
similar to the development of the results for the M/M/c queue [21],
with a modification in the average transaction completion rate.
Consider the following additional notation:

• Pk : probability that there are k requests in the system (either
being serviced or in the waiting line).
• πj : probability that j resources are available for use (i.e., not
being reconfigured), thus πj = pc−j .
• µδk : average request departure rate at state k . The value of
δk is

δk =
k∑
j=1

j πj k = 1, . . . , c (15)

because the departure rate is µ if only one resource is avail-
able (which happens with probability π1), 2µ if only two
resources are available (which happens with probability π2),
. . ., and kµ if k resources are available (which happens with
probability πk). Note that δc =

∑c
j=1 j πj = c̄ .

• µ = 1/T : average service rate of each resource.
• ρ = λ/(µ c̄): average utilization of the resources.

As Figure 5 shows, the transition rate from state k to k + 1 is λ,
the average request arrival rate, and the transition rate βk from a

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

56

0	 1	 2	 c	 k+1	k	

λ	 λ	 λ	 λ	 λ		

µδ1	

.	.	.	

µδ2	 µδc	 µδc	 µδc	

Figure 5: CTMC for the response time model

state k to state k − 1 is given by

βk =

{
µ δk k < c
µ δc k ≥ c

(16)

We can now use the generalized birth-death equations (see Eqs. 6
and 7) to solve for Pk and P0. We have to break down the expression
for Pk into two parts (for k = 1, . . . , c and k > c) because βk has
two expressions. Hence,

Pk = P0 Πk−1
i=0

λ

µ δi+1
= P0

(
λ
µ

)k
Πk−1
i=0 δi+1

k = 0, . . . , c (17)

and

Pk = P0 Πc−1
i=0

λ

µ δi+1
Πk−1
i=c

λ

µ δc
= P0

ρk c̄c

Πc−1
i=0δi+1

k = c + 1, . . .

(18)
P0 can now be computed as:

P0 =

1 +
c∑

k=1

(
λ
µ

)k
Πk−1
i=0 δi+1

+

∞∑
k=c+1

ρk c̄c

Πc−1
i=0δi+1

−1

(19)

If we move c̄c/Πc−1
i=0δi+1 out of the infinite summation in the

above expression, we are left with the following geometric series,
which converges for ρ < 1:

∞∑
k=c+1

ρk =
ρc+1

1 − ρ
(20)

Note that ρ < 1 is a necessary but not sufficient condition for
the system to be stable as discussed is Section 5.2. P0 can now be
written as the following easily computable expression:

P0 =

1 +
c∑

k=1

(
λ
µ

)k
Πk−1
i=0 δi+1

+
c̄c

Πc−1
i=0δi+1

ρc+1

1 − ρ

−1

(21)

The average number of requests in the system can be computed
as

Ns =

∞∑
k=1

k · Pk =
c∑

k=1
k · Pk +

∞∑
k=c+1

k · Pk (22)

The infinite summation in Eq. 22 can be written as

P0
c̄c

Πc−1
i=0δi+1

[
∞∑

k=c+1
k ρk

]
= P0

c̄c

Πc−1
i=0δi+1

[
ρ
∂

∂ρ

∞∑
k=c+1

ρk

]
and is equal to

P0
c̄c

Πc−1
i=0δi+1

ρc+1

1 − ρ

[
ρ

1 − ρ
+ 1 + c

]
(23)

Thus, Eqs. 22 and 23 allow to compute Ns . Finally, using Little’s
Law we compute the average response time R as R = Ns/λ.

3.3 Analysis of Attack Success Probability
Estimating the time required for an attacker to gather sufficient
knowledge during the reconnaissance phase is critical to assess
the attacker’s ability to successfully compromise a system. As our
focus is on disrupting an attacker’s reconnaissance effort, we can –
without loss of generality – define the probability that an attacker
succeeds as the probability to gather sufficient information to plan
and execute an attack, which in turn is a function of the time avail-
able to complete the reconnaissance phase. In other words, we are
implicitly assuming that, once accurate information is available to
the attacker, the attack will always be successful. The probability
Ps (t) that an attacker succeeds in t time units is important in de-
termining the required reconfiguration rate, i.e., the rate at which
resources needs to be reconfigured.

Figure 6 shows two examples of Ps (t), namely, linear and ex-
ponential functions. The linear function, Ps (t) = t/Ts , indicates
that the probability of attack success increases linearly with time
and reaches 1 (i.e., success) at time Ts . The exponential function
(see for instance Eq. 24) indicates a situation in which the attacker
initially accumulates knowledge at a low rate and then becomes
exponentially more knowledgeable over time and succeeds at time
Ts .

Ps (t) = 1 −
1 − e(t−Ts)

1 − e−Ts
. (24)

As an example, consider an IP sweep combined with a port scan,
where the attacker’s goal is to discover the IP address of themachine
running a specific service within target network. The attack consists
in sequentially scanning all IP addresses in a given range. Assuming
an IP space of n addresses and that t∗ time units are required to
scan a single IP, we obtain Ts = n · t∗ and Ps (t) =

t
Ts =

t
n ·t ∗ . As

another example, consider the following DoS attack. The attacker
initially compromises n hosts, which takes t∗ time units. Then, each
of the newly compromised hosts compromises additional n hosts,
which takes additional t∗ time units. At any given time t , the total
number of compromised hosts, including the attacker’s machine,
is N (t) = 1 + n + n2 + . . . + nk = 1−nk+1

1−n , where k = ⌊t/t∗⌋. We

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

P
s

Time (sec)

Linear Exponential

Figure 6: Probability of success Ps vs. time for Ts = 10

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

57

can assume that the attacker’s success probability is proportional
to the aggregate amount of flood traffic that compromised hosts
can send to the victim, compared to the victim’s capacity to handle
incoming traffic. Let V denote the volume of traffic the victim can
handle per time unit and let v denote the amount of traffic each
compromised node can send per time unit. Then,

Ps (t) = min
{
1,

N (t) · v

V

}
= min

{
1,

v

V
·

1 − n ⌊t/t
∗ ⌋+1

1 − n

}
4 SIMULATION AND EXPERIMENTAL

TESTBED
Our analytical results were validated by simulation and by exper-
iments that implemented a generic MTD. We implemented the
simulation using SimPy1, a process-based discrete-event simulation
framework based on standard Python. SimPy supports multiple
processes that contend for access to a resource and automatically
handles queuing of events if a resource is busy, making it ideal for
our purposes. Additionally, we used SimPy as a real-time event
generator to control VM reconfigurations and implement a fully
operational MTD. For our VM environment, we used Citrix’s open-
source XenServer platform2, which offers pooling of resources, the
ability to quickly clone VMs for reconfiguration, and a command-
line interface that is compatible with our simulation framework.

Our MTD controller runs on a separate server and starts an
independent process for each VM – either a simulated VM or an
actual VM in the XenServer pool – that generates reconfiguration
requests. Our experiments show that S is normally distributed,
so we used a normal distribution for S with the same mean and
standard deviation that were observed in the experiments.

Reconfigurations may consist of a number of possible actions,
including for instance changing the IP address or software. In our
experiments, we remove a VM instance from the virtual network
and replace it with a fresh copy, similar to how SCIT operates [6].
The fresh copy also has a new IP address obtained from DHCP,
enabling a basic IP-hopping scheme. The reconfiguration process
also collects statistics such as percentage of requests dropped and
possible delays.

The MTD controller also serves as a traffic generator that creates
service requests. Each service request is an independent process
with exponentially distributed interarrival times with an average
arrival rate equal to λ and average service timeT in the simulations.
For the experiments, an HTTP request is sent to an idle VM, which
has a scripted delay on the HTTP response with average time T to
simulate the time to process a generic service request. Each process
records the time at which it was generated, began service, and
completed, according to the environment’s internal clock. These
records are used to compute queue time, service time, and response
time, and are maintained for each request.

We also collect statistics from a separate monitor process that
operates at set intervals to gather information about the number of
resources idle, in use, and being reconfigured, as well as the current
queue length. An overview of the system and processes is shown
in Figure 7.

1Available at https://simpy.readthedocs.io/en/3.0/.
2Available at https://xenserver.org/

. . .

VM1

VMc

VM2
MTD Controller /

Traffic Generator

a)

b)

c)

Figure 7: Experimental setup: a) c independent processes to
generate reconfiguration requests (arrival rate α), b) 1 pro-
cess to generate independent service requests (arrival rate
λ), c) Monitor process (every 0.01 sec)

The pool of VMs is tracked using three separate states for the
VMs: idle, in use (i.e., serving a request), or being reconfigured. All
requests for a VM must first acquire a shared resource that gives
them access to the pool of idle VMs. A priority queue is used, giv-
ing priority to reconfiguration requests so that reconfiguration is
not unnecessarily delayed; however, reconfiguration requests for a
specific VM will not preempt a request currently being served. In-
stead, the reconfiguration request flags that VM for reconfiguration
and then releases its lock on the idle pool before waiting for that
resource to appear in the pool of VMs to reconfigure. When service
requests receive access to the idle pool, they remove a random VM
from the pool and place it in the pool of VMs in use. Once completed
the request, if that VM is flagged for reconfiguration, it is placed
in the reconfiguration pool where the reconfiguration request will
pick it up for reconfiguration, otherwise it is placed back in the idle
pool. In the event that a service request finds no VMs in the idle
pool, it waits for one to appear. This additional wait is included in
the overall queue time. The overall flow of control and VM state
transitions is shown in Figure 8.

Each iteration of the simulation lasted 6,000 seconds, with no
statistics recorded in the first 1,000 seconds to allow the system to

d)

e)

b)

a)
VM Pools

c)

VM Movement

Requests

f)

Figure 8: Control Flow and VM Movement: a) incoming re-
quests, b) priority queue, c) resource lock on idle pool, d) idle
VM pool, e) VMs in use, f) reconfiguration VMs

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

58

achieve steady state. Thirty runs were performed for values of α
from 0.001 to 0.050 to obtain the mean, standard deviation, and 95%
confidence intervals for the mean for each statistic. For the experi-
ments, each run is limited to 600 seconds with statistics recorded
after the first 60 seconds for select values of α . The values of the
other input parameters used in the simulations and experiments
are given in Table 2.

Table 2: Values of variables used in the numerical results

Variable Description
Ts 300 sec
c 20
α from 0.001 to 0.050 rec/sec
S 120 sec
λ 10 requests/sec
T 0.5 sec

5 NUMERICAL RESULTS AND VALIDATION
This section presents several numerical results starting with those
obtained from the reconfiguration model along with validation of
the model. We then cover the performance model, including some
interesting findings from our implementation of the model. Finally,
we show how the 2 models can be used to find an optimal value of
the reconfiguration rate that considers tradeoffs between response
time and security.

5.1 Reconfiguration Model
Figure 9 shows the distribution of the number k of resources being
reconfigured for four values of the reconfiguration rate α , out of
a total of 20 resources. The graphs show that as α increases from
0.005 to 0.04 rec/sec, the probability distribution moves to the right.
The average number of resources being reconfigured is 7.50 for
α = 0.005 rec/sec, going up to 16.55 for α = 0.04 rec/sec.

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
a

b
il

ii
ty

of Resources Reconfiguring

α = 0.005 α = 0.01 α = 0.02 α = 0.04

Figure 9: Distribution of the number of resources being re-
configured for c = 20.

The reconfiguration probabilities pk are used to compute the
availability. Figure 10 shows three availability curves as a function
of the reconfiguration rate α for values of the reconfiguration time S
equal to 60, 90, and 120 seconds, respectively. As the reconfiguration
rate increases, the availability decreases in a non-linear fashion and,
as the reconfiguration time increases, the availability decreases for
the same value of α . As the reconfiguration rate tends to zero, the
availability tends to 1 because all resources are available for use.
Note that, as we indicated in Section 3, the availability does not
depend on the number of resources c , as it is a relative measure.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
.0

0
1

0
.0

0
3

0
.0

0
5

0
.0

0
7

0
.0

0
9

0
.0

1
1

0
.0

1
3

0
.0

1
5

0
.0

1
7

0
.0

1
9

0
.0

2
1

0
.0

2
3

0
.0

2
5

0
.0

2
7

0
.0

2
9

0
.0

3
1

0
.0

3
3

0
.0

3
5

0
.0

3
7

0
.0

3
9

0
.0

4
1

0
.0

4
3

0
.0

4
5

0
.0

4
7

0
.0

4
9

A
v

a
il

a
b

il
it

y

α (rec/sec)

S = 60 S = 90 S = 120

Figure 10: Availability vs. reconfiguration rate α

We validated the analytic model using the simulation and experi-
ments, using themean and standard deviation of the reconfiguration
times measured in the experiments. We found that the probability
distribution generated by the simulation closely matches that of
the analytical model, as seen in Figure 11.

The theoretical availability results match very well the results
obtained through the simulations and experiments as shown in
Table 3, which indicates that, for the same range of values of α
used in Figure 10, the percentage absolute relative error between
the model and the simulation does not exceed 2.29% and the error
between the model and the experimental does not exceed 9.62%.

Table 3: Comparison of availability results.

α Model Simulation Results Absolute Experimental Results Absolute
Results ± 1/2 of 95% CI % Error ± 1/2 of 95% CI % Error

0.005 0.696 0.694 ± 0.004 0.29 0.686 ± 0.015 1.46
0.010 0.467 0.466 ± 0.004 0.21 0.465 ± 0.017 0.43
0.015 0.329 0.330 ± 0.003 0.30 0.318 ± 0.017 3.46
0.020 0.253 0.255 ± 0.003 0.78 0.247 ± 0.011 2.43
0.030 0.171 0.175 ± 0.002 2.29 0.156 ± 0.007 9.62
0.040 0.132 0.133 ± 0.002 0.75 0.121 ± 0.007 9.09

5.2 Response Time Model
We now summarize our results about the response time and then
explain them in detail. The key conclusions are that: (i) the response

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

59

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
a

b
il

it
y

of Resources Reconfiguring

Analytical Simulation

Figure 11: Comparison of the distributions of the number of
resources being reconfigured (α = 0.02 rec/sec).

time model closely matches the simulation results for a range of
values of α for which the system is stable most of the time (we
formally define stability later); and (ii) for larger values of α there
is a high variation of the utilization around its average ρ = λ T /c̄ ,
which causes the system to become unstable (i.e., ρ > 1) for non-
negligible fractions of time: as a consequence, the queue and the
response time grow infinitely.

As indicated in Section 3, ρ must be less than 1. As ρ tends to 1,
the response time tends to infinity because of the term (1 − ρ) that
appears in the denominator of the expression of the average number
of requests in the system. Because λ and T are assumed constant
(λ = 10 requests/sec and T = 0.5 sec), the variation of ρ depends
on c̄ , which decreases with the availability, which in turn decreases
as α increases (see Table 3). Thus, ρ < 1⇒ c̄ > λT ⇒ c̄ > 5.

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

#
 o

f
A

v
a

il
a

b
le

 R
e

so
u

rc
e

s

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Time (sec)

Response Time # Available Avg # Available

Figure 12: Number of available resources and response time
(α = 0.005)

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

#
 o

f
A

v
a

il
a

b
le

 R
e

so
u

rc
e

s

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Time (sec)

Response Time # Available Avg # Available

Figure 13: Number of available resources and response time
(α = 0.015)

Before we present the variation of the response time as a function
of α , it is instructive to compare graphs of run-time data captured
for α = 0.005 and α = 0.015 in Figures 12 and 13 respectively. From
this data, we observe a higher coefficient of variance (COV) for the
number of available resources and for the response time. For α =
0.005, the COV for available resources is 0.123 and for response
time is 1.007; but for α = 0.015, these values go up to 0.287 and
1.676, respectively. More importantly, we also notice that in both
cases, c̄ > 5 as denoted by the dashed line in the graphs, thus ρ < 1.
However, for α = 0.015, there are periods of time where there are
5 or fewer resources available, causing a spike in response time.
During these periods, ρ ≥ 1 and the queue of service requests grows
infinitely. Furthermore, even as the number of available resources
returns above the minimum required, there is a lagging effect on
response times returning to normal as there are built-up service
requests in the queue. Thus, a metric such as ρ alone does not
capture well the effect of episodic instability. To better quantify this
effect, we introduce a metric ω, which we call stability, defined as
the fraction of time the system is in a stable state (i.e., ρ < 1):

ω =
∑
k ∈N

pk (25)

whereN = {k ∈ {0, 1, . . . , c}∧λT /(c−k) < 1}. Becauseω depends
on the probabilities pk , it is a function of α , and we use ω(α) to
denote that relationship. Then, a system is stable for a given set
of parameters if ω(α) ≈ 1 because it is almost never in a situation
where ρ > 1. Algorithm 1 is used to compute ω(α).

Figure 14 shows ω superimposed over response time results ob-
tained through simulation and from the analytic model. As we can
see, for low values of α , ω is very close to 1 and the simulation
matches the analytic results. As α increases, we observe that the
response time is very sensitive to small decreases in stability. When
α = 0.015 rec/sec, ω = 0.775, which means that the system is un-
stable 22.5% of the time with requests rapidly building up in the
queue, causing a higher than expected value and variance in the re-
sponse time. A possible solution is to limit the number of resources

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

60

Algorithm 1 Computation of ω(α)

Input: α , S,T , λ, c, {pk }
ω ← 0
for k = 0→ c do
if λT /(c − k) < 1 then
ω ← ω + pk

end if
end for
return ω;

reconfiguring at any one time to ensure that there are sufficient
resources available to handle the expected workload, which is an
area we plan to investigate as part of our future work.

5.3 Optimal Reconfiguration Rate
The model presented in Section 3 allows one to answer a variety of
“what-if” questions such as “How does the resource availability vary
with the time needed to reconfigure a resource?” or “How does the
average response time of service requests vary with the average recon-
figuration rate?” Additionally, one can solve optimization problems
such as maximizing the reconfiguration rate subject to the follow-
ing constraints: (i) the stability must be greater than or equal to
a threshold ωmin, and (ii) the average response time must be less
than or equal to a threshold Rmax. More formally,

Maximize α
s.t. ω ≥ ωmin and R ≤ Rmax

Because the stability decreases monotonically with α and the
response time R increases monotonically with α (see Figure 14), the
maximum feasible value αmax of α is

αmax = min(αω ,αR) (26)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

0
.0

0
9

0
.0

1

0
.0

1
1

0
.0

1
2

0
.0

1
3

0
.0

1
4

0
.0

1
5

0
.0

1
6

0
.0

1
7

0
.0

1
8

0
.0

1
9

0
.0

2

0
.0

2
1

0
.0

2
2

0
.0

2
3

0
.0

2
4

R
e

sp
o

n
se

 T
im

e
 (

se
c)

S
ta

b
il

it
y

α (rec/sec)

Stability Simulation Analytic

Figure 14: Response time: Simulation vs. Analytical Model
with Stability

where

αω = argmaxα {ω ≥ ωmin}

αR = argmaxα {R ≤ Rmax} (27)

Consider Figure 15 and S = 60 sec, c = 20, ωmin = 0.9, and
Rmax = 0.75 sec. Then, αω ≤ 0.023 must hold to satisfy the sta-
bility constraint. However, in order to satisfy the response time
constraint, αR ≤ 0.036 as illustrated in Figure 15. Therefore, α ≤
min (0.023, 0.036) = 0.023 rec/sec. This means that each resource
will be available, on average, for 1/α = 1/0.023 = 43.5 seconds
before it is reconfigured.

We now consider the interplay of the maximum reconfiguration
rate α = 0.023 rec/sec obtained in the optimization example above
and the probability of a successful attack. Consider a linear function
for the probability Ps (t) with Ts = 100 sec. In that case, the proba-
bility that an attacker succeeds after 43.5 sec is 43.5/100 = 0.435.
However, if the knowledge accumulation rate has the exponential
form of Eq. 24, the probability of a successful attack at t = 43.5 is

Ps (43.5) = 1 −
1 − e(43.5−100)

1 − e−100 ≈ 0 (28)

In other words, the optimal reconfiguration rate yields a relative
large probability that the attacker is successful if knowledge can
be accumulated linearly but a close-to-zero probability of success
when knowledge is accumulated at very slow pace initially.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
e

sp
o

n
se

 T
im

e
 (

se
c)

S
ta

b
il

it
y

α (rec/sec)

Stability Response Time

Rmax

αR

ωmin

αω

Figure 15: Optimization analysis to find themaximum feasi-
ble reconfiguration rate α for c = 20 and S = 60 sec.

6 RELATEDWORK
Several MTD techniques have been proposed in recent years, with
the majority of such techniques designed to protect systems against
a very specific set of attack vectors such as SQL injection [8], data
exfiltration [28], or distributed DoS attacks [19, 20]. A rich line of re-
search has focused on MTD techniques to mitigate distributed DoS
attacks [19, 20] by deploying proxies between clients and servers,
and periodically reshuffling – either proactively or in response to

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

61

detected threats – the associations between clients and proxies in
order to disrupt knowledge accumulated by adversaries.

Dunlop et al. [12] proposed a mechanism to dynamically hide
addresses of IPv6 packets in order to achieve anonymity. In [11],
Duan et al. presented a proactive RandomRouteMutation technique
to randomly change the route of network flows to defend against
eavesdropping and DoS attacks. They use OpenFlow Switches and
a centralized controller to define the route of each flow. Jafarian
et al. [16] used an IP virtualization scheme based on virtual DNS
entries and Software Defined Networks to hide network assets from
scanners. Using OpenFlow, each host is associated with a range of
virtual IP addresses and mutates its IP address within its pool. A
similar identity virtualization approach was presented in [3]. An
approach based on diverse virtual servers was proposed in [18]
to create a dynamic and uncertain attack surface. Each server is
configured with a set of software stacks, and a rotational scheme is
employed for substituting different software stacks for any given
request.

Deception-based approaches aim at misleading reconnaissance
tools, such as nmap or Xprobe2. Such tools are able to identify a
service or an operating system by analyzing packets that can re-
veal implementation specific details about the host [22]. Watson
et al. [29] adopted protocol scrubbers in order to avoid revealing
implementation-specific information and restrict an attacker’s abil-
ity to determine the operating system of a protected host. Moreover,
some proof-of-concept software and kernel patches have been pro-
posed to alter a system fingerprint [7], such as IP Personality and
Stealth Patch.

Different metrics have been proposed to quantify the effective-
ness of MTDs. Some authors assess performance in terms of the
attacker’s success rate [10], while others also consider metrics for
deterrence and detectability [17], or multiple metrics (productivity,
success, confidentiality, and integrity) for the attacker and defender
[30]. Previously described metrics do not evaluate more than a
few select MTDs chosen for a specific study. One expert survey
provides a thorough assessment of the effectiveness and cost of
many techniques across the spectrum of existing MTDs [14]. How-
ever, the survey is qualitative in nature and potentially subject to
reviewer bias. In [9], Cai et al. develop a performance evaluation
and comparison model for existing MTDs based on stochastic Petri
Nets. Although more general than most existing approaches, this
model still has some limitations, as the authors focus on MTD tech-
niques that can be deployed on a web server, whereas the model
we propose in this paper is agnostic of the specific nature of the
hosts being defended and the MTDs being deployed.

The model presented in [23] is the closest to our work and in-
troduces a Markov-model-based framework for MTD analysis. The
framework allows modeling of a broad range of MTD strategies,
and presents results on how the probability of an adversary de-
feating an MTD strategy is related to the time/cost spent by the
adversary. They also show how their approach can be used to ana-
lyze a composition of MTDs. However, differently from our model,
the proposed approach does not evaluate the performance of de-
ployed MTD techniques, which the authors list as future work.
Another relevant body of work in the area of quantification is rep-
resented by efforts addressing the availability, performance and
security of intrusion-tolerant systems [26, 27]. However, the scope

of quantification of MTD techniques is significantly different from
quantification in intrusion-tolerant systems, since MTD techniques
aim at preventing, rather than tolerating, intrusions.

7 CONCLUSIONS
Moving Target Defense has been recognized as a potential game-
changer in cyber security, prompting the development of a wide
array of MTD techniques. Unfortunately, most such techniques ad-
dress a very specific set of attack vectors, and critical gaps still exist
with respect to the problem of quantifying their performance and
cost. This paper represents a first important step toward addressing
these gaps. In summary, we have proposed a quantitative analytic
model for assessing the resource availability and performance of
MTDs, and a method for the determination of the optimal reconfig-
uration rate that minimizes the attack success probability subject
to availability and performance constraints. The results obtained
so far are encouraging and indicate this is a promising research
direction. As part of our ongoing future work, we are studying re-
configuration strategies that may allow users to control the trade-off
between availability and security. As mentioned earlier, a possible
solution to address the instability issue, is to limit the number of
resources reconfiguring at any one time to ensure that there are
sufficient resources available to handle the expected workload. If
a reconfiguration request arrives at a time when the maximum
numbers of resources that can be reconfiguring at the same time
has already been reached, it has to either be dropped or queued. A
similar mechanism will prevent attacks on availability, where the
attacker’s goal is to trigger an excessive number of reconfigurations
in order to make the systems unstable and unresponsive.

Our work is also inspired by research on autonomous systems [4,
5], which change their settings to adapt to the environment. When
applied to security mechanisms, this concept can be seen as a form
of moving target defense (MTD). To change their settings effec-
tively, self-protecting systems need a way to quantify both their
effectiveness and cost or overhead in order to provide an accurate
measure of their utility. Therefore, our work on MTD quantification
is critical for enabling similar self-protection capabilities.

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

62

REFERENCES
[1] Fahim H. Abbasi, Richard J. Harris, Giovanni Moretti, Aun Haider, and Nafees

Anwar. 2012. Classification of malicious network streams using Honeynets. In
Proceedings of the IEEE Global Communications Conference (GLOBECOM 2012).
IEEE, Anaheim, CA, USA, 891–897.

[2] Massimiliano Albanese, Ermanno Battista, Sushil Jajodia, and Valentina Casola.
2014. Manipulating the Attacker’s View of a System’s Attack Surface. In Proceed-
ings of the IEEE Conference on Communications and Network Security (CNS 2014).
IEEE, San Francisco, CA, USA, 472–480.

[3] Massimiliano Albanese, Alessandra De Benedictis, Sushil Jajodia, and Kun Sun.
2013. A Moving Target Defense Mechanism for MANETs Based on Identity
Virtualization. In Proceedings of the IEEE Conference on Communications and
Network Security (IEEE CNS 2013). IEEE, Washington, DC, USA, 278–286.

[4] Mourad Alia, Marc Lacoste, Ruan He, and Frank Eliassen. 2010. Putting Together
QoS and Security in Autonomic Pervasive Systems. In Proceedings of the 6th ACM
Workshop on QoS and Security for Wireless and Mobile Networks (Q2SWinet 2010).
ACM, Bodrum, Turkey, 19–28.

[5] Firas Alomari and Daniel A. Menascé. 2012. An Autonomic Framework for
Integrating Security and Quality of Service Support in Databases. In Proceedings
of the 6th International Conference on Software Security and Reliability (SERE 2012).
Gaithersburg, MD, USA, 51–60.

[6] Anantha K. Bangalore and Arun K. Sood. 2009. Securing Web Servers Using
Self Cleansing Intrusion Tolerance (SCIT). In Proceedings of the 2nd International
Conference on Dependability (DEPEND 2009). IEEE, Athens/Glyfada, Greece, 60–
65.

[7] David Barroso Berrueta. 2003. A practical approach for defeating Nmap OS-
Fingerprinting. (2003). http://nmap.org/misc/defeat-nmap-osdetect.html

[8] Stephen W. Boyd and Angelos D. Keromytis. 2004. SQLrand: Preventing SQL
Injection Attacks. In Proceedings of the 2nd International Conference on Applied
Cryptography and Network Security (ACNS 2004) (Lecture Notes in Computer
Science), Markus Jakobsson, Moti Yung, and Jianying Zhou (Eds.), Vol. 3089.
Springer, Yellow Mountain, China, 292–302.

[9] Guilin Cai, Baosheng Wang, Yuebin Luo, and Wei Hu. 2016. A Model for Evalu-
ating and Comparing Moving Target Defense Techniques Based on Generalized
Stochastic Petri Net. In Proceedings of the 11th Conference on Advanced Computer
Architecture (ACA 2016). Springer, Weihai, China, 184–197.

[10] Thomas E. Carroll, Michael Crouse, Errin W. Fulp, and Kenneth S. Berenhaut.
2014. Analysis of Network Address Shuffling as a Moving Target Defense. In IEEE
International Conference on Communications (ICC 2014). IEEE, Sydney, Australia,
701–706.

[11] Qi Duan, Ehab Al-Shaer, and Haadi Jafarian. 2013. Efficient Random Route
Mutation Considering Flow and Network Constraints. In Proceedings of the IEEE
Conference on Communications and Network Security (IEEE CNS 2013). IEEE,
Washington, DC, USA, 260–268.

[12] Matthew Dunlop, Stephen Groat, Randy Marchany, and Joseph Tront. 2012.
Implementing an IPv6 Moving Target Defense on a Live Network. In Proceedings
of the National Moving Target Research Symposium. Annapolis, MD, USA.

[13] Executive Office of the President, National Science and Technology Council. 2011.
Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research
and Development Program. http://www.whitehouse.gov/. (December 2011).

[14] Katheryn A. Farris and George Cybenko. 2015. Quantification of Moving Target
Cyber Defenses. In Proceedings of SPIE Defense + Security 2015. Baltimore, MD,
USA.

[15] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. 2010. Intelligence-
Driven Computer Network Defense Informed by Analysis of Adversary Cam-
paigns and Intrusion Kill Chains. Lockheed Martin Corporation. (2010).

[16] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. 2012. OpenFlow Random
Host Mutation: Transparent Moving Target Defense using Software Defined
Networking. In Proceedings of the 1st Workshop on Hot Topics in Software Defined
Networks (HotSDN 2012). ACM, Helsinki, Finland, 127–132.

[17] Jafar Haadi Jafarian and Ehab Al-Shaer amd Qi Duan. 2014. Spatio-temporal
Address Mutation for Proactive Cyber Agility Against Sophisticated Attackers.
In Proceedings of the 1st ACM Workshop on Moving Target Defense (MTD 2014).
ACM, Scottsdale, AZ, USA, 69–78.

[18] Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and Xiaoyang Sean
Wang (Eds.). 2011. Moving Target Defense: Creating Asymmetric Uncertainty for
Cyber Threats (1st ed.). Advances in Information Security, Vol. 54. Springer.

[19] Quan Jia, Kun Sun, and Angelos Stavrou. 2013. MOTAG: Moving Target Defense
Against Internet Denial of Service Attacks. In Proceedings of the 22nd International
Conference on Computer Communications and Networks (ICCCN 2013). Nassau,
Bahamas.

[20] Quan Jia, Huangxin Wang, Dan Fleck, Fei Li, Angelos Stavrou, and Walter Powell.
2014. Catch me if you can: a cloud-enabled DDoS defense. In Proceedings of
the 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2014). Atlanta, GA USA, 264–275.

[21] Leonard Kleinrock. 1975. Queueing Systems. Volume 1: Theory. Wiley-
Interscience.

[22] Gordon Fyodor Lyon. 2009. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Insecure.

[23] Hoda Maleki, Saeed Valizadeh, William Koch, Azer Bestavros, and Marten van
Dijk. 2016. Markov Modeling of Moving Target Defense Games. In Proceedings
of the 3rd ACM Workshop on Moving Target Defense (MTD 2016). ACM, Vienna,
Austria, 81–92.

[24] Pratyusa K. Manadhata and Jeannette M. Wing. 2011. An Attack Surface Metric.
IEEE Transactions on Software Engineering 37, 3 (May 2011), 371–386.

[25] Daniel A. Menascé. 2003. Security Performance. IEEE Internet Computing 7, 3
(May/June 2003), 84–87.

[26] Paulo Sousa, Nuno Ferreira Neves, Paulo Veríssimo, and William H. Sanders.
2006. Proactive Resilience Revisited: The Delicate Balance Between Resisting
Intrusions and Remaining Available. In Proceedings of the 25th IEEE Symposium
on Reliable Distributed Systems (SRDS 2006). IEEE, Leeds, United Kingdom, 71–82.

[27] Luís Teixeira d’Aguiar Norton Brandão and Alysson Neves Bessan. 2012. On the
reliability and availability of replicated and rejuvenating systems under stealth
attacks and intrusions. Journal of the Brazilian Computer Society 18, 1 (March
2012), 61–80.

[28] Sridhar Venkatesan, Massimiliano Albanese, George Cybenko, and Sushil Jajodia.
2016. A Moving Target Defense Approach to Disrupting Stealthy Botnets. In
Proceedings of the 3rd ACMWorkshop on Moving Target Defense (MTD 2016). ACM,
Vienna, Austria, 37–46.

[29] David Watson, Matthew Smart, G. Robert Malan, and Farnam Jahanian. 2004.
Protocol Scrubbing: Network Security Through Transparent Flow Modification.
IEEE/ACM Transactions on Networking 12, 2 (April 2004), 261–273.

[30] Kara Zaffarano, Joshua Taylor, and Samuel Hamilton. 2015. A Quantitative
Framework for Moving Target Defense Effectiveness Evaluation. In Proceedings
of the 2nd ACM Workshop on Moving Target Defense (MTD 2015). ACM, Denver,
CO, USA, 3–10.

Session 2: MTD Models and Evaluation MTD’17, October 30, 2017, Dallas, TX, USA

63

http://nmap.org/misc/defeat-nmap-osdetect.html

	Abstract
	1 Introduction
	2 Background on MTDs
	3 Quantitative Analysis of MTDs
	3.1 Reconfiguration Model
	3.2 Response time model
	3.3 Analysis of Attack Success Probability

	4 Simulation and Experimental Testbed
	5 Numerical Results And Validation
	5.1 Reconfiguration Model
	5.2 Response Time Model
	5.3 Optimal Reconfiguration Rate

	6 Related Work
	7 Conclusions
	References

