
Analysis of Concurrent Moving Target Defenses
Warren Connell

George Mason University
Fairfax, Virginia

wconnel2@gmu.edu

Luan Huy Pham
George Mason University

Fairfax, Virginia
lpham6@gmu.edu

Samuel Philip
George Mason University

Fairfax, Virginia
sphilip4@gmu.edu

ABSTRACT
While Moving Target Defenses (MTDs) have been increasingly rec-
ognized as a promising direction for cyber security, quantifying
the effects of MTDs remains mostly an open problem. One of the
challenges facing MTD quantification efforts is predicting the cu-
mulative effect of implementing multiple MTDs. No single MTD
provides an effective defense against the entire range of possible
threats. Each MTD has its own set of advantages and disadvan-
tages. We present a scenario where two MTDs are deployed in an
experimental testbed created to model a realistic use case. This
is followed by a probabilistic analysis of the effectiveness of both
MTDs against a multi-step attack, along with the MTD’s impact on
availability to legitimate users. Our work is essential to providing
decision makers with the knowledge to make informed choices
regarding cyber defense.

CCS CONCEPTS
• Security and privacy→Network security;Web application
security; •Computingmethodologies→Model verification and
validation;
ACM Reference Format:
Warren Connell, Luan Huy Pham, and Samuel Philip. 2018. Analysis of
Concurrent Moving Target Defenses. In 5th ACM Workshop on Moving
Target Defense (MTD ’18), October 15, 2018, Toronto, ON, Canada. ACM, New
York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3268966.3268972

——————————————————————————

1 INTRODUCTION
The conventional dynamic in cybersecurity favors attackers over
the defender. Defenders must protect systems which are relatively
static and can be probed for information and weaknesses over a
long period of time. Over time, attackers almost inevitably gather
enough information and discover enough flaws in system which
allow the attacker to conduct a successful attack. Moving Target
Defense (MTD) has emerged in recent years to address this conun-
drum. In contrast to conventional static systems, systems which
employ the concepts of MTD are dynamic and reconfigure charac-
teristics over time [17]. Thus, any reconnaissance that an attacker
gathers on a system implementing a defense with MTD features

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MTD ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6003-6/18/10. . . $15.00
https://doi.org/10.1145/3268966.3268972

will be eventually rendered obsolete. Furthermore, MTDs also in-
clude techniques which involve refresh of system components. In
the event that an attacker has compromised a system, a MTD using
effective refresh techniques would return the system to a previously
safe, uncompromised state, forcing the attacker to re-launch attacks
to achieve the prior system foothold. The more rapidly the MTD
system reconfigures its characteristics or refreshes state, the more
rapidly the attacker’s gathered intelligence becomes obsolete.

Several efforts have been made to quantify the effectiveness of
MTDs [13, 26, 28, 30]. Without common, shared metrics for evalua-
tion, there lacks a means to make informed decisions. In particu-
lar, [10] provides a framework that quantifies MTD effectiveness
and allows for the possibility of multiple MTDs to be used to pro-
vide a broader defense against classes of threats. Indeed, the ability
to have multiple MTDs available to protect against certain attacks is
crucial. Most MTDs were originally developed to address a specific
attack vector or set of attack vectors, such as DoS attacks [18, 19],
data exfiltration [29], or SQL injection [7]. This means that a de-
fender must incorporate a variety of MTD techniques in order to
provide an effective solution against the broad spectrum of potential
attacks.

However, the research and experimental analysis involving the
deployment of multiple MTDs is severely lacking. To produce their
intended effect, MTDs manipulate system or environment char-
acteristics. Different MTD techniques may have some overlap in
characteristics manipulated, resulting in unpredictable behavior.
This may negate or compromise the security benefits of the MTDs
or cause operational failure. Thus, it is preferred that the MTDs
operate independently; that is, the MTDs do not manipulate the
same system/environmental characteristics. This can occur when
the MTDs operate at different levels of the software stack. Even
with this stipulation, the effectiveness of combinations of MTDs
is relatively unknown. The major contribution of this paper is a
method to quantify the effectiveness of concurrent, independent
MTDs deployed in the same system/environment.

MTD defenses also have disadvantages. Nearly all MTDs incur a
performance cost [22]. During reconfiguration, the full capabilities
of the system are rarely available. Increasing the rate of reconfigura-
tion further increases this overhead cost and reduces the availability
of resources, negatively impacting system performance. This effect
can be compounded by the implementation of multiple MTDs. Deci-
sions regarding the deployment of MTDs must balance the security
benefits with corresponding MTD overhead and implementation
costs. This paper does not neglect this aspect of security and offers
a method to predict availability with multiple MTDs in operation
as well.

Finally, because we are dealing with real-world problems and
limitations that exist outside the theoretical realm, we must imple-
ment our own MTDs and test them against a realistic attack model.

https://doi.org/10.1145/3268966.3268972
https://doi.org/10.1145/3268966.3268972

Doing so will validate our model and identify important imple-
mentation details that might otherwise be overlooked. Our paper
presents an experimental framework which models multiple MTDs
and an automated attacker to validate our analysis. We then apply
the results to a utility function to determine the reconfiguration
parameters that offer the best tradeoff of security and availability
for the system based on the user’s objectives.

In summary, the primary contributions of this paper are: (i) A
quantitative analysis of the security benefit of two or more MTDs
when used concurrently; (ii) the corresponding availability tradeoff;
(iii) an implementation of an experimental testbed incorporating
multiple MTDs; (iv) experimental observations of attack scenar-
ios with multiple MTDs; and (v) determining the reconfiguration
parameters which offer optimal utility.

The rest of the paper is organized as follows: Section 2 discusses
recent, related work in the field. Section 3 describes an overview of
the attacker and defender models used, with Section 4 presenting a
quantitative analysis in accordance with those models. Section 5
describes the experimental testbed created to implement multiple
MTDs, with the results in Section 6. Finally, Section 7 includes
concluding remarks and discusses direction for future research.

2 RELATEDWORK
MTD techniques continuously change or shift the system attack
surfaces, increasing attacker complexity and cost [11]. An attack
surface is defined as a “subset of the system’s resources (methods,
channels, and data) that can be potentially used by an attacker to
launch an attack” [21]. Considering these benefits, MTD research is
a burgeoning field with a significant body of work already accom-
plished. Efforts have been made to survey this body of research,
define taxonomies of MTDs, and classify existing MTDs using tax-
onomies based on the MTD technical details of implementation and
other characteristics [8, 25].

The general structure of a cyber attack is well-studied; divided
into stages collectively known as the Cyber Kill Chain [15]. The
initial stage of an attack is especially critical, involving reconnais-
sance and probing of defenses. This initial stage is critical to allow
attacks to gather information regarding network topology, services
employed, and weaknesses. The attacker then employs gathered
intelligence to tailor the attack against the target to achieve both
success and stealth.

MTD techniques, depending on their design, mechanism of op-
eration, and implementation, are designed to interfere with one
or more stages of the Cyber Kill Chain. These techniques can be
grouped into one of several different classes [25]. Different classes
of MTDs are generally observed to focus more on different areas of
the Cyber Kill Chain or have other strengths or weaknesses. For
example, Dynamic Networks might stop reconnaissance while Dy-
namic Platforms might be more effective against disrupting attacks
or maintaining persistence [24].

Dynamic Network MTDs encompass techniques which dynam-
ically alter network properties, such as network protocols or IP
addresses. Random Host Mutation [3], as introduced by Al-Shaer,
is a prototypical example in which network communication is per-
formed using ephemeral virtual IP addresses. These ephemeral IP
addresses are assigned to individual network hosts and are changed

at intervals. Attackers scanning the network or passively observing
will observe the ephemeral IP addresses as opposed to actual IP ad-
dresses, disrupting reconnaissance efforts. This is a broad category
of MTDs with specific implementations, including in Software-
Defined Networks [16] and Mobile Ad-hoc Networks [4].

Dynamic Platforms encompass techniques which dynamically
alter platform properties, which can include operating systems
(type and version), software frameworks and other similar char-
acteristics. In an example, Huang [14], introduces the concept of
rotating web services. Users of a web-based application are directed
to a load balancer which will randomly direct the user to a VM
among a pool of available VMs. Each VMwould implement the web
application with separate underlying technologies and would peri-
odically rotate VMs. However, this means of operation interferes
with applications requiring the maintenance of a persistent state,
thus the authors recommended that the technique be employed
along with stateless frameworks and protocols. Huang employed a
diverse web services layer including Apache, Nginx and Lighttpd
web services. Meaningful diversity is critical to ensure that com-
mon vulnerabilities do not constitute a significant overlap across
platforms.

However, implementing MTDs comes at a cost, either in in terms
of additional overheard, lowered availability, or increased response
time. These costs may be qualitative, as seen in expert responses
in [12], or quantitative. One MTD technique commonly cited in
literature is known as IP Hopping. Carroll, et al. studied the effects
of this technique and captured the tradeoff in reconfiguration rate
and connection loss for this technique [9]. In this work, we attempt
to mitigate the losses from IP Hopping by introducing an additional
MTD running concurrently and examine the combined effects of
multiple MTDs.

In a previous work [10], we established an initial framework to
quantify MTD performance and cost, allowing them to be compar-
atively evaluated. Prior to this framework, most MTD techniques
addressed a very narrow set of attack vectors and employed custom
metrics, making comparison difficult. This framework allows for
combinations of multiple MTDs to be compared with each other.
However, that framework assumes that MTDs are independent
and does not capture any interactions between multiple MTDs.
This work solves that problem by proposing a method for estimat-
ing the combined effects of MTDs, on attacker’s success rate and
availability of the system being protected.

3 ATTACKER AND DEFENDER MODELS
The attack model employed in this paper adheres closely to the ex-
pected behavior described in literature through the aforementioned
Cyber Kill Chain [15]. The attack consists of multiple steps includ-
ing several successive reconnaissance steps to identify a vulnerable
target, followed by an attack against that target. MTDs can disrupt
this attack at several points in the kill chain and are chosen accord-
ingly. The attack model and the corresponding defender model are
described in more detail in the following sections.

3.1 Attack Model
The attacker searches the environment for vulnerable operating
systems, then searches those targets for vulnerable services, and

then finally launches a corresponding exploit to establish control
when such a service is discovered. The simulated attacker, operated
by an automation script, performs the following actions, in order:

(1) Target Scan: The attacker employs the Nmap Network Map-
per tool to scan the environment. During this initial recon-
naissance step, we simulate an attacker which has configured
Nmap to perform a relatively non-intrusive scan. This more
accurately models the behavior of an attacker which wishes
to maintain a degree of stealth while probing the network
for weaknesses.
This initial scan process first attempts to detect whether an
endpoint is active on a given IP address and the operating
system it is running by analyzing the pattern of open ports.
Based on the response, the attacker identifies targets for
further reconnaissance efforts. Unresponsive targets or those
not considered to be vulnerable are not scanned further.
Likewise, the attacker does not attempt to perform more
invasive scans such as service detection because the attacker
seeks to minimize interaction to avoid detection during this
step.
For the purposes of this paper, the simulated attacker has
identified the characteristics of the Metasploitable virtual
machines as promising targets and further actions would
only be performed against those targets.

(2) Service Detection: In this step, our simulated attacker has
identified promising targets with active services and seeks
to probe these targets further, performing a service scan to
determine the name and version of the services operating
on the node.
For the purposes of our paper, we have focused on web ser-
vices, as they are a common avenue of attack and many
exploits are available. However, it is plausible that a real-
world attacker would wish to compromise other active ser-
vices. Continuing our example, the Metasploitable target pro-
file has port 80 open, corresponding to HTTP web services,
and contains a version of Apache with a PHP vulnerability
present by default.
If the service running is not considered to be vulnerable, the
attacker proceeds to the next target previously identified
during the target scan. If the attacker finds that the service
running is vulnerable, it proceeds to the next step.

(3) Launch Exploit: If a vulnerable service is discovered, the
attacker will launch an exploit against the service. In our
example, this results in a reverse connection back to the
attacker. If it is not successful, the attacker proceeds to the
next target identified by the target scan.

(4) Attacker Success: The phase represents the end state where
the now-compromised host has established a reverse con-
nection back to the attacker. This closely corresponds to an
attacker which has established full command and control
over the target host. In this end state, data can be exfiltrated
and other arbitrary actions undertaken. At this point, the
overall attack is considered to a success.

Figure 1 depicts these steps in a process flow as performed against
a single target IP address. After an attack is complete, if there were
other hosts using the target OS found during the initial scan, these

hosts are subsequently scanned and attacked in a serial fashion.
This models realistic scenarios of attacker/defender behavior. An
attacker would be discouraged from launching attacks indiscrimi-
nately for several reasons. Indiscriminate attacks against the net-
work space would likely result in more rapid detection of attacker
activities. More rapid identification of data breaches has been shown
to result in significantly reduced costs to the defender [2].

Target
Scan

Attacker
Start

Attacker
Success

Service
Detection

Launch
Exploit

Success

Vulnerable
Service

Failure

No
Vulnerable

Service

Not
Target OS

Target OS

Figure 1: Attack Model

During the attack process, reconfigurations may occur (described
in the following section) which interrupt services to the attacker.
In these cases, the attack is considered to be a failure.

3.2 Defender Model
Our attacker model requires the attacker to obtain several pieces of
information before an attack can commence. This allows for several
opportunities for deploy aMTD to disrupt the attacker. The attacker
must find a vulnerable service running and must also have an IP
address to attack. If the attacker does not obtain both of these, it
will move on to the next potential target, if possible. If the attacker
does not detect a vulnerable target, then the attack halts and is
considered a failure.

Therefore, a reconfigurationwhich occurs during reconnaissance
is likely to cause the attack to fail. Reconfigurations from each MTD
occur randomly with interarrival times following an exponential
distribution, which is commonly used when determining defender
actions because of its memoryless property which prevents the
attacker from predicting defender behavior [20, 23]. We also make
use of this property in our analysis. The average interarrival time for

reconfigurations is denoted by µ, which may vary between MTDs.
In this paper, we may also refer to the reconfiguration rate, which
is inversely proportional to the interarrival time and is denoted by
λ = 1

µ .

3.2.1 Service Reconfiguration. For the purposes of Service Recon-
figuration, we developed a simple service randomization scheme,
very similar to existing dynamic platform-based MTDs [25]. The
MTD periodically changes the underlying implementation of the
service in a manner transparent to the user.

A target node employing the MTD has multiple implementations
of a service available. Upon startup, the MTD randomly chooses
one of the available services to run. The service remains active until
the automation script initiates a reconfiguration at the interarrival
time µS . As a part of reconfiguration, the previously-running ser-
vice is stopped and a new random service started. To increase the
randomness and prevent an attacker from predicting patterns in
the service changes, the new service chosen may be the same one
as before.

All web services were run in the Metasploitable environment,
which comes pre-loaded with a version of Apache with a PHP
vulnerability present, with the other two web services installed
afterward and not containing that specific vulnerability. The fol-
lowing web services were employed:

(1) Apache (containing an unpatched PHP vulnerability)
(2) Nginx
(3) Lighttpd
This particular scheme is heavily influenced the MTD originally

proposed by Huang [14], utilizing many of the same web services
Huang selected in his own work. A diagram showing the relation-
ship between the attacker and this MTD is shown in Figure 2.

Attack Failure

Attack Success

Figure 2: Service Randomization

3.2.2 IP Reconfiguration. For the second MTD evaluated, we im-
plemented IP Reconfiguration using a simple IP randomization tech-
nique similar to other known dynamic network-based MTDs [25].
As with the Service Reconfiguration MTD, IP Reconfiguration is
accomplished via an automation script. In this scheme, the VM

changes its IP address with reconfigurations occurring with an
average interarrival time of µI P . The pool of available IP addresses
is equal to that of a Class C network (256), minus a small set of
reserved IP addresses for the hardware environment.

Future
IP Address

(eg. 192.168.1.56)

Current
IP Address

(eg. 192.168.1.28)

Previous
IP Address

(eg. 192.168.1.201)

Attack Failure

Attack Success

IP Change

Figure 3: IP Randomization

3.2.3 Concurrent MTDs. The two MTDs must be capable of op-
erating without interference. If the IP were to change while the
service is being reconfigured, the service may not restart properly,
resulting in an additional loss of service. This scenario becomes
increasingly likely as the reconfiguration rates increase. To ensure
MTD compatibility, the two MTDs are implemented in a multi-
threaded application with mutual exclusion (mutex) locks around
the reconfiguration operations. This prevents the two MTDs from
reconfiguring at the same time. The implementation of the MTDs
working in conjunction with each other is shown in Algorithm 1.

It should be noted that these MTD defenses, as implemented,
may not be practical for all web applications. In particular, web
applications which require a stable, persistent connection would
likely be disrupted. However, there exists a broad use case for ap-
plications employing stateless frameworks, such as the popular
Representational State Transfer (REST). Authors of previously pro-
posed MTDs [14] have developed MTDs with similar operational
restrictions.

4 QUANTITATIVE ANALYSIS
Based on our attacker and defender model, we can determine the
attacker’s success rate. Individually, the MTDs might be analyzed in
a manner similar to [27], where an attacker is assumed to win if they
are in control for a certain period of time before a reconfiguration
occurs. In a similar manner, an attacker in our attack model wins
if can complete the attack sequence to find a vulnerable node and
compromise it before being interrupted by a reconfiguration.

We can also compute the availability of the system with MTD(s)
in operation. This represents the momentary loss of service caused
by changing services or IP addresses and affects the attacker’s
success rate as well as benign users.

Algorithm 1 Concurrent MTD Implementation
s ← Service reconf iдuration rate
i ← IP reconf iдuration rate

function ServiceThread()
while (currentTime − startTime > duration) do

waitTime ← random(s) ▷ Exponentially distributed
sleep(waitTime)
lock(mutex)
reconf iдureService()
unlock(mutex)

end while
end function

function IPThread()
while (currentTime − startTime > duration) do

waitTime ← random(i) ▷ Exponentially distributed
sleep(waitTime)
lock(mutex)
reconf iдureIP()
unlock(mutex)

end while
end function

functionmain()
init(mutex) ▷ Mutex lock for threads
if s > 0 then

threadCreate(serviceThread)
end if
if i > 0 then

threadCreate(IPThread)
end if ▷ Create threads
if s > 0 then

thread Join(serviceThread)
end if
if i > 0 then

thread Join(IPThread)
end if ▷ re-join threads

end function

4.1 Definitions and Assumptions
Because we are working with attacker and defender models based
on real-world constraints, we define the parameters of those models
and summarize them here:

• Ta : The average time required to successfully complete an
attack from start to finish,
• µS : The average interarrival time for service reconfigurations
• µI P : The average interarrival time for IP reconfigurations
• tS : The average time required to complete a service recon-
figuration
• tI P : The average time required to complete an IP reconfigu-
ration
• s: The total number of possible configuration states
• sv : The number of vulnerable configuration states

Ta also includes reconnaissance steps required to perform an attack
if they are also disrupted by the reconfiguration. However, some
MTDs might not disrupt certain reconnaissance actions. µS and
µI P are the parameters for interarrival times for reconfiguration,
which are exponentially distributed. tS includes the time required
to stop the previous service, wait for all processes to shut down,
start processes for the new service, and verify they are running.
Likewise, tI P includes the time required to bring the interface down
and back up again with a new IP address. Because of the additional
steps and requirement to connect externally to obtain the new
IP address, verify it and ensure that the change is propagated to
users, tI P can be an order of magnitude larger then tS . s represents
the total number of possible states the system can be in between
reconfigurations, with sv being the number of those states that are
vulnerable to an exploit.

4.2 Availability
We first determine the availability A, as this also affects attacker
success rate. For MTDs operating individually, we can calculate the
availability as the expected uptime per reconfiguration cycle (µS or
µI P) divided by the total expected uptime plus expected downtime
per reconfiguration cycle (tS or tI P , as appropriate), leading to the
availability due to service reconfigurations:

AS =
µS

tS + µS
(1)

and availability due to IP reconfigurations as:

AI P =
µI P

tI P + µI P
(2)

Because the MTDs utilize mutual exclusion, the downtime from
oneMTDmust occur during the uptime from the other MTD. There-
fore, we can compute overall availability as the product of the two
availability values:

A = AS · AI P (3)

4.3 Attacker Success Rate
Next, we can compute the attacker’s success rate based on the
expected attack time and reconfiguration rates. Our defender model
assumes that in order for an attack to be successful, it must be
uninterrupted by a reconfiguration. Because of the memoryless
property of the exponential distribution, as long as the system
is not currently undergoing a reconfiguration, the expected time
before the next configuration is equal to the respective value of
µ, regardless of when the last reconfiguration occurred. Using the
exponential distribution with λ = 1

µ , we can determine the base
probability that the attack is successful by finding the probability
that the random variable X which represents the time before the
next reconfiguration is greater than the time required to execute
the attack, or P(X > Ta). Solving using the probability distribution
for the exponential function :

psS = P(x > Ta)
= 1 − P(x ≤ Ta)
= 1 − (1 − Fx (Ta))

= e−λSTa

(4)

Now that we have the base probability that no reconfiguration
occurred, we have to adjust the probability based on the probability
sv
s that it was already in a vulnerable state, where sv is the number
of vulnerable states and s is the total number of states. In our case
of service reconfiguration with three different services, svs =

1
3 . In

the case of IP reconfiguration, each state is considered to be equally
vulnerable. If different states share common weaknesses, it would
be reflected in sv .

Using this methodology to determine attacker success rate also
assumes the service is already running at the time the attack begins.
We have already established that there is an impact to availability
by using MTDs, which we adjust for by multiplying the attacker’s
chance of success by the availability. This further reduces the at-
tacker’s success rate and gives us an unintended benefit from an
otherwise undesirable side effect of MTDs. Our probability of at-
tacker success for each MTD are thus:

psS = e−λSTa · sv
s
· AS (5)

psI P = e−λI PTa · AI P (6)
When both MTDs are operating at the same time, we can use

a similar method to determine the attacker’s success rate. If no
reconfigurations are currently taking place at the time the attack
starts, the attacker’s probability of success is equal to the probability
that both random variables Xs and XI P are greater than the attack
time Ta , adjusted as earlier for number of vulnerable states and
overall availability, or:

ps = e−λSTa · e−λI PTa · sv
s
· As · AI P

= e−Ta (λS+λI P) · sv
s
· A

(7)

If necessary, this method could also be further generalized for
three or more MTDs.

5 EXPERIMENTAL FRAMEWORK
In this section, we detail the experimental framework used to
demonstrate the analysis shown in Section 4. This includes a de-
scription of the testbed environment with specific hardware and
software configurations.

5.1 Experimental Environment
Experimental testing was performed using the Center for Secure
Information Systems (CSIS) testbed environment located at George
Mason University (GMU). This testbed environment is managed
using XenServer 7 to quickly deploy virtual machines (VMs) and
associated networking services, such as DHCP, to allow the VMs
to communicate.

For this paper, a target VM was developed with an OS image
adapted from the freely-available Metasploitable and provided by

Rapid7. This image is commonly used in security testing. The base
VM was modified, enabling various web services for the simulated
attacker to compromise.

The attacker is represented by a VM on the network which is
adapted from the Rolling release version of Kali Linux, a Linux
distribution developed specifically for security testing. Our at-
tacker VM was deployed with Nmap 7.50 and version 4.14.28-dev
of Metasploit, a widely available security penetration testing tool.
Attacks are launched using the php_cgi_arg_injection Metasploit
exploit. The exploit targets unpatched versions of the Apache 2.2.8
HTTP Server, which was originally released in 2008 [5]. The exploit
php_cgi_arg_injection specifically targets CVE-2012-1823 [1], an
argument injection vulnerability. The vulnerability was exploited
in the wild in June of 2013.

For each set of configuration parameters, 500 independent trials
were conducted, consisting of a complete attack from theMetasploit
node. Another process emulated a legitimate user, consistently
trying to connect to the web server to perform small stateless
transactions to measure effect on availability.

6 EXPERIMENTAL RESULTS
Results from the experiments performed are presented in this sec-
tion. In addition to measuring attacker’s success rate and availabil-
ity, we also measured the time Ta required from start to finish of
the attack where the target must undergo no reconfigurations; the
average time ts required to reconfigure a service; and the average
time tI P required to reconfigure an IP address. These values are
shown in Table 1 and are used to along with the methods in Sec-
tion 4 to predict the attacker’s success rate and availability and
compare them to our collected results.

Variable Observed Value (seconds)
Ta 28.01
tS 0.635
tI P 9.59

Table 1: Average Attack and Reconfiguration Times

6.1 Service Reconfiguration
As seen in Figure 4, adding service reconfigurations greatly de-
creased the attacker’s chance of success. In the case where service
is static, we assume a worst-case scenario where the only service
is the vulnerable Apache service. Therefore, the largest decrease
in attacker success rate came from the diversity introduced by the
initial introduction of the MTD. However, as we increase the recon-
figuration rate, the service randomization MTD was able to prevent
more than the expected 33.3% of the attacks directed against it, and
these values match with our predictions.

Service reconfiguration also reduced our availability slightly, as
seen in Figure 5. We observe a decrease in availability of up to 3.3%
compared to the static case at the highest reconfiguration rate.

6.2 IP Reconfiguration
As we expected, Figure 6 shows adding IP randomization also de-
creased the attacker’s success rate, although not to the extent that

0.00

0.20

0.40

0.60

0.80

1.00

Static 120 60 30 20

A
tt

a
ck

e
r

S
u

cc
e

ss
 R

a
te

Reconfiguration Interarrival Time

Predicted Actual

Figure 4: Probability of Attacker Success for Varying Service
Reconfiguration Interarrival Rates

0.90

0.92

0.94

0.96

0.98

1.00

Static 120 60 30 20

A
v

a
il

a
b

il
it

y

Reconfiguration Interarrival Time

Predicted Actual

Figure 5: Availability for Varying Service Reconfiguration
Interarrival Rates

the diversity-based service reconfigurations did, and the actual
values follow the downward trend predicted.

Figure 7 shows the impact to availability when using IP reconfig-
urations. We observe a much larger decrease in availability when
using the IP randomization scheme compared to service reconfigu-
ration. This is due to the fact that as implemented, changing the
IP address requires sending an external request for an IP address
to the MTD controller and receiving a reply back. The connection
to the monitor must also be rebuilt, which required a total of 9.59
seconds on average. This reduction in availability of 25% or more
could mean that this method with higher reconfiguration rates may
not be acceptable to users.

0.00

0.20

0.40

0.60

0.80

1.00

Static 120 60 30

A
tt

a
ck

e
r

S
u

cc
e

ss
 R

a
te

Reconfiguration Interarrival Time

Predicted Actual

Figure 6: Probability of Attack Success for Varying IP Recon-
figuration Interarrival Rates

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Static 120 60 30

A
v

a
il

a
b

il
it

y

Reconfiguration Interarrival Time

Predicted Actual

Figure 7: Availability for Varying IP Reconfiguration Inter-
arrival Rates

6.3 Combined Effects
The effects on attacker success rate for each combination of settings
for the two MTDs is shown in Table 2. As service and IP reconfigu-
ration rates increase, the attacker’s success rate tends to decrease
monotonically.

Using the measurements obtained for Ta , tS , and tI P during the
experiments, we compared the results to the values predicted by
our analysis in Section 4, as seen in Table 3. The results are similar
to the ones observed, with some larger errors present with lower
interarrival times, but generally predict the behavior of our pair of
MTDs.

Likewise, we measured service availability for each combina-
tion of settings and obtained similar results. As the interarrival
time for IP reconfigurations decreases, the availability decreases.

IP Reconfiguration
Static 120 60 30

Se
rv
ic
e

Static 1.000 ± 0.000 0.780 ± 0.036 0.644 ± 0.042 0.396 ± 0.043
120 0.206 ± 0.035 0.102 ± 0.027 0.074 ± 0.023 0.054 ± 0.020
60 0.188 ± 0.034 0.086 ± 0.025 0.078 ± 0.024 0.046 ± 0.018
30 0.152 ± 0.031 0.086 ± 0.025 0.056 ± 0.020 0.044 ± 0.018
20 0.118 ± 0.028 0.034 ± 0.016 0.034 ± 0.016 0.022 ± 0.013

Table 2: Attacker’s Success Rate

IP Reconfiguration
Static 120 60 30

Se
rv
ic
e

Static 1.000 0.733 0.541 0.298
120 0.263 0.193 0.142 0.078
60 0.207 0.152 0.112 0.062
30 0.128 0.094 0.069 0.038
20 0.080 0.058 0.043 0.024

Table 3: Attacker’s Success Rate (Predicted Values)

However, as the service reconfiguration interarrival time decreases
and IP reconfiguration is held at a some constant rate, we observe
that the availability actually increases at some point. For example,
when IP reconfiguration interarrival time = 60 sec, as service re-
configuration interarrival time goes from 60 seconds to 30 seconds,
availability increases from 0.782 to 0.832. This may because the
IP reconfigurations take so much longer relative to service recon-
figurations and the two are mutually exclusive. This means that
lengthy IP reconfigurations are delayed somewhat compared to
service reconfigurations, resulting in the system behaving more
similarly to that of service reconfiguration and that the two MTDs
are still not wholly independent from one another.

IP Reconfiguration
Static 120 60 30

Se
rv
ic
e

Static 1.000 ± 0.000 0.916 ± 0.003 0.819 ± 0.005 0.743 ± 0.005
120 0.997 ± 0.000 0.909 ± 0.002 0.838 ± 0.003 0.692 ± 0.003
60 0.986 ± 0.001 0.793 ± 0.003 0.782 ± 0.003 0.647 ± 0.003
30 0.981 ± 0.001 0.692 ± 0.003 0.832 ± 0.003 0.711 ± 0.003
20 0.967 ± 0.001 0.914 ± 0.002 0.794 ± 0.003 0.677 ± 0.003

Table 4: Availability

IP Reconfiguration
Static 120 60 30

Se
rv
ic
e

Static 1.000 0.926 0.862 0.758
120 0.995 0.921 0.858 0.754
60 0.990 0.916 0.853 0.750
30 0.979 0.907 0.844 0.742
20 0.969 0.898 0.836 0.734

Table 5: Availability (Predicted Values)

6.4 MTD Protection Against Multiple Targets
The original set of experiments focused on a protecting a single
target. However, most enterprises have multiple nodes that might
require protection. This also matches more closely with a real-
world example, as attackers probe a network and obtain a list of
possible targets before attempting to probe further. With our virtual
environment, we can create multiple instances of MTD-protected
nodes and analyze those results.

We repeated the experiments using a total of six nodes in our
virtual environment. Each node had identical MTD settings but
ran independently. The attack script did a target scan against the

entire network, followed by a deeper scan to determine service and
an attack on vulnerable target. Scans and attacks were performed
sequentially on each node found during the initial scan to model an
attacker not opening connections to multiple targets at the same
time to maintain a stealthy presence on the network, with a total
of 100 trials performed for each combination of settings due to the
increased number of targets.

We can observe the effect of service reconfiguration in Figure 8
which contains a series of histograms showing the number of times
that a certain number of attacks were successful for multiple service
reconfiguration settings. For these values, all IP addresses remained
static.

For example, with an service reconfiguration interarrival time
of 120 seconds, we observe a large number of trials where two or
more out of six attacks were successful. However, as the interarrival
time between service reconfigurations decreases, the histograms’
distributions shift to the left. When the average interarrival time be-
tween reconfigurations is 20 seconds, the majority of trials resulted
in zero or one out of the six available VMs compromised.

0

5

10

15

20

25

30

35

40

120 60 30 20

N
u

m
b

e
r

o
f

O
cc

u
re

n
ce

s

Service Reconfiguration Interarrival Time (sec)

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 8: Histograms Showing Frequency of Numbers of Suc-
cessful Attacks for Varying Service Reconfiguration Interar-
rival rates

With multiple nodes, we must also re-examine our criteria for
success as the attacker or defender. We assume that an attack is
considered a success if any nodes are able to be compromised. If
attacks against each target are independent, the overall chance
of attacker success p̂s would be 1, minus the probability that the
individual attack with success rate ps on each of n different nodes
all failed, or p̂s = 1 − (1 − ps)n . This constitutes an upper bound on
attacker’s success rate.

However, even more attacks may fail over time because the
attacks are scripted to be performed in a sequential manner. By
the time a likely target is probed further and exploited, the higher
the likelihood of it being reconfigured already. This is illustrated in
Figure 9.

ps for the single target case is the likelihood a reconfiguration
takes place within time period Ta ; However, due to the sequential

Single

Target

Target

Scan

Service

Detection

Perform

Attack

Multiple

Target

Target

Scan

Service

Detection

Perform

Attack

Service

Detection

Perform

Attack
. . .

T
a1

T
a2

T
a

Figure 9: Timing Windows for Attacks on Multiple Targets

nature of the attacker probing and attempting attacks, the individual
attack success probability psi against node i will vary due to the
total time elapsed. Using the example in Figure 9 and Equation 7
we get:

psi = e−Tai (λS+λI P) · sv
s
· A (8)

As Tai increases on each subsequent vulnerable node found, psi
approaches zero, as the node must remain unchanged for a longer
period of time for an attack to be successful. The overall success
rate p̂s is then:

p̂s = 1 −
(n∏
i=1
(1 − psi)

)
(9)

which converges to a lower value than 1 − (1 − ps)n as psi → 0.
The complete observed results showing attacker’s success rate

are shown in Table 6.

IP Reconfiguration
Static 120 60 30

Se
rv
ic
e

Static 1.00 ± 0.000 0.88 ± 0.064 0.61 ± 0.096 0.29 ± 0.093
120 0.86 ± 0.068 0.64 ± 0.094 0.55 ± 0.098 0.22 ± 0.081
60 0.80 ± 0.078 0.55 ± 0.098 0.43 ± 0.097 0.14 ± 0.068
30 0.84 ± 0.072 0.55 ± 0.098 0.49 ± 0.098 0.15 ± 0.070
20 0.63 ± 0.095 0.41 ± 0.096 0.29 ± 0.089 0.22 ± 0.081

Table 6: Attacker’s Success Rate (Multiple Targets)

6.5 Computing Utility
The analytic model presented in Sections 4 allows one to predict
the attacker’s success rate and availability. We can then use these
results to answer questions such as “given the user’s objectives for
security and availability, what combination of MTDs and settings
maximize overall utility?”

We can solve this by assigning utility values to the attacker’s
likelihood of success and availability using the following sigmoid
functions:

UP (ps) =
eσ (−ps+βP)

1 + eσ (−ps+βP)
(10)

UA(A) =
1

1 + eσ (−A+βA)
(11)

where A is the availability, βA is the availability objective, ps is
the attacker’s probability of success, βP is the attacker’s success
probability objective, and σ is a steepness parameter for the sigmoid.

Two different forms of the sigmoid function are used because a
solutionwith optimal utility seeks tominimize the attacker’s chance
of success and maximize availability.

Based on the utility values derived security and availability, we
can now compute a global utility functionUG as:

UG = wP ·UP (ps) +wA ·UA(A) (12)

wherewP andwA are weight factors chosen such thatwP +wA = 1.
Different values of wP and wA influence the optimal choice of
MTDs and reconfiguration rates. Table 7 shows utility values of all
settings for values of βP = 0.2 , βA = 0.99, σ = 10,wP = 0.25, and
wA = 0.75. These values correspond to both the defender security
risk appetite and tolerance for service disruption. For example, a
defender which favors availability would also favor more time be-
tween reconfigurations to limit service disruption (and promote
higher availability) as opposed to preventing attacks. These weight
factors are assumed to be known to - or other otherwise can be
determined by - defenders via means outside the scope of this work.
The values chosen represent this high availability use case, reflect-
ing many service providers, which are contractually-obligated to
maintain service uptime at levels exceeding 99%.

IP Reconfiguration
Static 120 60 30

Se
rv
ic
e

Static 0.394 0.241 0.118 0.089
120 0.509 0.413 0.329 0.239
60 0.500 0.290 0.293 0.236
30 0.513 0.344 0.330 0.250
20 0.505 0.344 0.303 0.245
Table 7: Utility Values

Out of the settings evaluated, the optimal utility occurs with a
service reconfiguration interarrival time is an average of 30 sec-
onds and IP address reconfigurations is not employed at all. In our
implementation, IP reconfiguration offered relatively little secu-
rity benefit and relatively large loss of availability compared to
the service reconfiguration technique. However, our results align
with the conclusions of other researchers regarding network ran-
domization [12], which also demonstrate relatively minor security
benefits. Other pairings of MTDs might offer a more balanced result
if their performance profiles were more comparable. In summary, a
decision-maker presented with similar results may initiate efforts
to implement service reconfiguration and also conclude that IP
reconfiguration is not worth pursuing altogether; avoiding costly,
but ineffective investments.

7 CONCLUSIONS AND FUTUREWORK
Individually, MTDs have demonstrated effectiveness against a vari-
ety of threats and attack vectors. Collectively, they offer potential
of a more secure future. As one step in achieving that potential,
this paper continues prior work in evaluation and performance
modeling of MTDs and provides further contributions to the field.
However, more research must be performed to fully realize the
potential of MTDs.

The analytic work and implementation might be improved with
a higher level of fidelity. More work could be done to understand

specific interactions between the attacker and defender within the
implementation to improve its accuracy. For example, edge cases
and race conditions may exist between the attacker and defender
that cause a reconfiguration to be unsuccessful in preventing an
attack.

Likewise, while the MTDs utilized would ideally be fully inde-
pendent, our implementation does contain interactions between
them. It is expected that other practical implementations would not
be fully independent. Further work could involve development of a
metric to measure the level of dependence between two or more
implemented MTDs. Such a metric would allow decision makers to
avoid combinations of MTDs that are highly dependent upon each
other and may have undesirable interactions.

Conversely, the analysis and defender model can also be further
generalized to apply to more MTDs. As different MTD techniques
affect attackers in different phases of the Cyber Kill Chain, a MTD
that prevents an attack earlier in the process might bemore effective
overall in preventing attacks. A MTD that takes effect later in the
kill chain might instead provide defense by delaying the attack,
ensuring the service remains protected long enough to accomplish
its mission, or simply reducing the number of attempts an attacker
is able to make against the system.

For example, while our attack model features an attacker which
simulates nearly the entire Cyber Kill Chain, we may take an addi-
tional step. Our attacker established command and control on its
target, but progressed no further. Realistic attackers leverage their
control over compromised hosts over time to accomplish a range of
objectives. These actions on objectives, such as data exfiltration, is
already the focus of research [29]. Furthermore, there are known re-
fresh MTD techniques [6] which may may be relatively ineffective
at preventing initial compromise, but return compromised hosts to
a safe state, theoretically mitigating the long-term impact of these
attacks. Such an extension would likely require the development
of additional attacker success metrics. As the goal of this research
is determining the concurrent effectiveness of MTDs, evaluating
the effectiveness of these varied MTD techniques, in combination,
against the entire Cyber Kill Chain is a promising direction for
future research.

8 ACKNOWLEDGEMENTS
The work presented in this paper was partially supported by Army
Research Office grant W911NF-13-1-0421.

The authors would also like to express their gratitude to Sridhar
Venkatesan for his contributions and insight.

REFERENCES
[1] 2012. CVE-2014-0160. Available from MITRE, CVE-ID CVE-2012-1823.. http:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1823
[2] 2017. 2017 Cost of Data Breach Study. Technical Report. Ponemon Institute.
[3] Ehab Al-Shaer, Qi Duan, and Jafar Haadi Jafarian. 2012. Random host mutation

for moving target defense. In International Conference on Security and Privacy in
Communication Systems. Springer, 310–327.

[4] Massimiliano Albanese, Alessandra De Benedictis, Sushil Jajodia, and Kun Sun.
2013. A moving target defense mechanism for manets based on identity virtual-
ization. In Communications and Network Security (CNS), 2013 IEEE Conference on.
IEEE, 278–286.

[5] Apache Software Foundation. [n. d.]. Apache. https://archive.apache.org/dist/
httpd/

[6] Anantha K Bangalore and Arun K Sood. 2009. Securing web servers using self
cleansing intrusion tolerance (SCIT). In Dependability, 2009. DEPEND’09. Second

International Conference on. IEEE, 60–65.
[7] Stephen W. Boyd and Angelos D. Keromytis. [n. d.]. SQLrand: Preventing SQL

Injection Attacks. In Proceedings of the 2nd Conference on Applied Cryptography
and Network Security (ACNS) (Lecture Notes in Computer Science), Vol. 3089.
Springer, Yellow Mountain, China, 292–302.

[8] Gui-lin Cai, Bao-sheng Wang, Wei Hu, and Tian-zuo Wang. 2016. Moving target
defense: state of the art and characteristics. Frontiers of Information Technology &
Electronic Engineering 17, 11 (01 Nov 2016), 1122–1153. https://doi.org/10.1631/
FITEE.1601321

[9] Thomas E Carroll, Michael Crouse, Errin W Fulp, and Kenneth S Berenhaut.
2014. Analysis of network address shuffling as a moving target defense. In
Communications (ICC), 2014 IEEE International Conference on. IEEE, 701–706.

[10] Warren Connell, Massimiliano Albanese, and Sridhar Venkatesan. 2017. A Frame-
work for Moving Target Defense Quantification. In ICT Systems Security and
Privacy Protection, Sabrina De Capitani di Vimercati and Fabio Martinelli (Eds.).
Springer International Publishing, Cham, 124–138.

[11] Executive Office of the President, National Science and Technology Council. 2011.
Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research
and Development Program. http://www.whitehouse.gov/.

[12] Katheryn A Farris and George Cybenko. 2015. Quantification of moving target
cyber defenses. In SPIE Defense+ Security. International Society for Optics and
Photonics, 94560L–94560L.

[13] Jin Bum Hong and Dong Seong Kim. 2016. Assessing the effectiveness of moving
target defenses using security models. IEEE Transactions on Dependable and
Secure Computing 1 (2016), 1–1.

[14] Yih Huang and Anup K Ghosh. 2011. Introducing diversity and uncertainty to
create moving attack surfaces for web services. InMoving target defense. Springer,
131–151.

[15] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. 2010. Intelligence-
Driven Computer Network Defense Informed by Analysis of Adversary Cam-
paigns and Intrusion Kill Chains. Lockheed Martin Corporation.

[16] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. 2012. OpenFlow Random
Host Mutation: Transparent Moving Target Defense using Software Defined
Networking. In Proceedings of the 1st Workshop on Hot Topics in Software Defined
Networks (HotSDN 2012). ACM, Helsinki, Finland, 127–132.

[17] Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and Xiaoyang Sean
Wang (Eds.). 2011. Moving Target Defense: Creating Asymmetric Uncertainty for
Cyber Threats (1st ed.). Advances in Information Security, Vol. 54. Springer.

[18] Quan Jia, Kun Sun, and Angelos Stavrou. 2013. MOTAG: Moving Target Defense
Against Internet Denial of Service Attacks. In Proceedings of the 22nd International
Conference on Computer Communications and Networks (ICCCN 2013).

[19] Quan Jia, Huangxin Wang, Dan Fleck, Fei Li, Angelos Stavrou, and Walter Powell.
2014. Catch me if you can: a cloud-enabled DDoS defense. In Proceedings of
the 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2014). 264–275.

[20] Hoda Maleki, Saeed Valizadeh, William Koch, Azer Bestavros, and Marten van
Dijk. 2016. Markov modeling of moving target defense games. In Proceedings of
the 2016 ACM Workshop on Moving Target Defense. ACM, 81–92.

[21] Pratyusa K. Manadhata and Jeannette M. Wing. 2011. An Attack Surface Metric.
IEEE Transactions on Software Engineering 37, 3 (May 2011), 371–386.

[22] Daniel A. Menascé. 2003. Security Performance. IEEE Internet Computing 7, 3
(May/June 2003), 84–87.

[23] Neda Nasiriani, Yuquan Shan, George Kesidis, Daniel Fleck, and Angelos Stavrou.
2017. Changing proxy-server identities as a proactive moving-target defense
against reconnaissance for DDoS attacks. arXiv preprint arXiv:1712.01102 (2017).

[24] Hamed Okhravi, Thomas Hobson, David Bigelow, and William Streilein. 2014.
Finding focus in the blur of moving-target techniques. Security & Privacy, IEEE
12, 2 (2014), 16–26.

[25] Hamed Okhravi, MA Rabe, TJ Mayberry, WG Leonard, TR Hobson, D Bigelow,
and WW Streilein. 2013. Survey of cyber moving target techniques. Technical
Report. DTIC Document.

[26] Hamed Okhravi, James Riordan, and Kevin Carter. 2014. Quantitative evaluation
of dynamic platform techniques as a defensive mechanism. In International
Workshop on Recent Advances in Intrusion Detection. Springer, 405–425.

[27] Hamed Okhravi, James Riordan, and Kevin Carter. 2014. Quantitative Evaluation
of Dynamic Platform Techniques as a Defensive Mechanism. In Research in
Attacks, Intrusions and Defenses, Angelos Stavrou, Herbert Bos, and Georgios
Portokalidis (Eds.). Springer International Publishing, Cham, 405–425.

[28] Joshua Taylor, Kara Zaffarano, Ben Koller, Charlie Bancroft, and Jason Syversen.
2016. Automated effectiveness evaluation of moving target defenses: Metrics for
missions and attacks. In Proceedings of the 2016 ACM Workshop on Moving Target
Defense. ACM, 129–134.

[29] Sridhar Venkatesan, Massimiliano Albanese, George Cybenko, and Sushil Jajodia.
2016. A moving target defense approach to disrupting stealthy botnets. In
Proceedings of the 2016 ACM Workshop on Moving Target Defense. ACM, 37–46.

[30] Jun Xu, Pinyao Guo, Mingyi Zhao, Robert F Erbacher, Minghui Zhu, and Peng
Liu. 2014. Comparing different moving target defense techniques. In Proceedings
of the First ACM Workshop on Moving Target Defense. ACM, 97–107.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1823
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1823
https://archive.apache.org/dist/httpd/
https://archive.apache.org/dist/httpd/
https://doi.org/10.1631/FITEE.1601321
https://doi.org/10.1631/FITEE.1601321

	Abstract
	1 Introduction
	2 Related Work
	3 Attacker and Defender Models
	3.1 Attack Model
	3.2 Defender Model

	4 Quantitative Analysis
	4.1 Definitions and Assumptions
	4.2 Availability
	4.3 Attacker Success Rate

	5 Experimental Framework
	5.1 Experimental Environment

	6 Experimental Results
	6.1 Service Reconfiguration
	6.2 IP Reconfiguration
	6.3 Combined Effects
	6.4 MTD Protection Against Multiple Targets
	6.5 Computing Utility

	7 Conclusions and Future Work
	8 Acknowledgements
	References

