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To address the power management challenge in multi-core microprocessors, we present a
lightweight machine learning based dynamic power management (SmartDPM ) scheme in which the
voltage–frequency levels of the cores are dynamically adjusted along with online learning based
workload prediction in an observer-controller loop. To enable scalability, our SmartDPM employs a
per-application autonomous power management policy, in which online machine learning principles
are employed for predicting the workload and capturing sporadic variations under the constraints
of accurate yet lightweight. Further, applications are assigned appropriate voltage–frequency level
towards an efficient power management. The learning helps in dynamically reducing prediction
error. Compared to the non-DVFS implementation, SmartDPM achieves nearly 35% power saving
and nearly 15% higher power savings on average compared to the existing machine learning based
power management schemes for a microprocessor with up to 32-cores.
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1. INTRODUCTION
Multi-core microprocessors evolved as a result of scal-
ing down of transistor nodes and innovations in com-
puter architecture designs. Increase in the number of cores
in multi-core microprocessors made it feasible to enjoy
the benefits of multi-threaded processing such as higher
throughput, and many more performance improvements.
However, this improved performance and benefits comes
at the cost of increased power consumption. Nevertheless,
the microprocessor comprises of multiple units, cores are
one of the major power consuming units, encountering the
difficulty to meet the power budget demands especially
under unpredictable run-time scenarios of varying work-
loads for different concurrently executing applications.1–14

This calls for an efficient and adaptive power management
in multi-core microprocessors.
Dynamic voltage and frequency scaling (DVFS)1,13,15–21

and dynamic power management (DPM)22,23 have proven
to be effective power management techniques for
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Email: saimanoj.p.2013@ieee.org

microprocessors. Dynamic power management refers to
selective shutdown of system components; while DVFS
refers to scaling down of voltage and frequency levels for
under-utilized cores, thereby reducing the dynamic power
consumption. DPM though efficient in terms of power sav-
ings, shutting down and turning-on a core causes addi-
tional energy and latency penalty.3,24–27 However, this is
worthwhile when the idle interval is longer than a cer-
tain threshold.26,28–30 In this work, we consider using the
DVFS methodology for power management in multi-core
microprocessors, because of its lower overhead and wider
applicability, especially for applications which are compu-
tationally expensive. Furthermore, our work is orthogonal
and can be employed in systems that perform both DVFS
and DPM, like current multi-core microprocessors. The
characteristics of the workload running on core(s) have a
direct impact on the power consumption of a micropro-
cessor. As such, considering the facets of the workload
to perform DVFS is effective.13,16,30–35 Power management
(DVFS) can be performed considering different parame-
ters such as worst-case execution time of the task,36 tem-
perature,37 workload behavior.34,35 Predicting or knowing
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the workload characteristics under unpredictable hardware
factors (such as cache misses, on-chip network contention,
and so on) aid in effective DVFS at run-time. The desired
properties of the predictor for predicting the workload
behavior and to perform DVFS could be outlined as fol-
lows: accurate yet lightweight in nature;28 effectively cap-
ture sporadic variations; adapt to the variations; continuous
self-optimization, as self-optimization is important to learn
over time; and low complexity with reduced number of
computations. The rationale to have a lightweight predictor
is to avoid additional computational overheads caused and
alleviate the processing delays in the prediction. Predic-
tion with the aid of machine learning has been proven to
be effective along with capturing the workload behaviors
and underlying variations.38,39 Along the same lines, we
also adapt the machine learning to predict the workload(s)
characteristics in this work. The considered workload char-
acteristic for DVFS in this work is the power trace of the
workload(s).

1.1. Motivational Case Study
The challenge of adapting to workload variations can
be effectively addressed by learning workload behavior.
As large number of relevant machine learning algorithms
and heuristic approaches are available for prediction, it is
critical to choose a suitable technique that facilitates min-
imizing the prediction errors by learning the underlying
factors to predict the sporadic variations. The selection cri-
teria for the predictor is to be fairly accurate, robust and
lightweight in terms of computations and complexity. In
order to select an appropriate learning technique, we per-
form a case study and evaluate the performance of differ-
ent prediction algorithms. This case study is performed in
Matlab. Workload power traces are obtained from Sniper-
Sim,40 with applications running on a single-core micro-
processor of Nehalem architecture (In-depth details of
experimental setup is presented in Section 6.1). Average
RMSE for online learning based linear prediction, neural
networks and support vector machine based prediction is
indicated in Figure 1. The Y -axis represents the RMSE
error and the executed benchmark is marked on X-axis of
Figure 1.

Comparison of root-mean square error (RMSE) for
SPLASH-2 benchmarks’ workload (power trace) predic-
tion with different prediction methods is illustrated in
Figure 1. The employed prediction methods for compari-
son are: modified covariance based prediction (Mod. Cov.),
linear prediction with online learning (Linear Pred.), tra-
ditional neural networks (Neural N/W) and support vec-
tor machine (SVM). For the linear predictor, an order of
4 is used. The order is choosen by experimenting the
predictor with different orders and also the complexity
involved. Similarly, for neural network based prediction, a
single-hidden layer with 10 nodes is employed. Levenberg-
Marquardt backpropagation based training is used for neu-
ral network.
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Fig. 1. RMSE of workload power trace prediction using covariance,
linear prediction, neural network and support vector machine techniques
(average RMSE is marked); X-axis represent benchmark.

From Figure 1, one can observe that the neural network
has lower RMSE for some of the benchmarks and can be
further reduced by modifying the neural network archi-
tecture. However, it is experienced during the simulations
that the accuracy or RMSE of the neural network highly
varies depending on the initial state i.e., initialization of
the weights. Online learning based linear predictor out-
performs modified covariance in terms of average RMSE.
Support vector machine (SVM) based regression outper-
forms both neural network and online learning based lin-
ear predictor implementations and has a minimal average
RMSE. However, the runtime for SVM based prediction
is more than 10× higher than the neural networks and lin-
ear prediction. The complexity of a technique or a method
can as well be observed experimentally from its runtime,
as the involved computations determine the runtime of a
technique. The runtime for Mod. Cov., Linear Pred., Neu-
ral N/W, and SVM is 0.026 s, 0.012 s, 0.021 s, and 0.93 s,
respectively.
As the two main desired characteristics for the pre-

dictor in this work are: (a) ability to learn work-
loads, and capture their behavior—this can be observed
from the RMSE; (b) lightweight (low complexity) and
fast learning predictor—runtime is one of the factors
that represents this. The linear predictor with online
learning fairly performs well and has smaller average
RMSE. Additionally, the linear predictor with online
learning requires less computations and is faster com-
pared to SVM and neural networks. Depending on this
analysis and to satisfy the constraint of accurate yet
lightweight prediction, we have chosen linear predictor
with online learning for the purpose of predicting work-
loads in SmartDPM. It needs to be noted that the RMSE
might be different if the parameters of the predictor
are modified such as prediction order, number of lay-
ers in neural network. However, more number of lay-
ers in a neural network will increase the complexity,
and cost for employing it for individual core will be
significant.
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1.2. Associated Research Challenges
Other than the basic challenges such as voltage–frequency
level changing latency, and accuracy, some of the main
challenges to be addressed for efficient power management
using workload prediction are:
• Learning and adapting to workload variations: Work-
load(s) of an application often varies with time, underlying
factors and computations can result in sporadic variations
in workload. As such, it is of vital importance to capture
these variations and learn the behavior of workload, adapt
to it before performing the prediction of workloads.
• Robustness of the prediction: It is critical to perform
prediction that is robust to the variations such as sporadic
behaviors in the workload, and initial value in the pre-
diction. Additionally, a small computation time is often
desired.

1.3. Contributions
We propose an online learning based adaptive dynamic
power management (SmartDPM) technique for multi-
core microprocessors. SmartDPM performs the prediction
of workload in an observer-controller loop manner dur-
ing run-time with online learning. The utilized observer-
controller loop predictor continuously keeps the weights
updated based on the prediction errors, thus ensuring both
accuracy and robustness to the errors. Once the predic-
tion of the workload is carried out, corresponding volt-
age and frequency levels are assigned towards effective
power management. The assignment is based on the uti-
lized power model. The main contributions of this work
can be outlined as follows:
• A run-time adaptive dynamic power management for
multi-core microprocessor with online learning based
prediction.
• A run-time workload prediction with an accurate yet
lightweight online learning observer-controller loop.
• Based on the learned workload characteristics and
the predicted workload characteristics, voltage–frequency
pairs are assigned to the application.

The proposed SmartDPM achieves a power saving
of nearly 35%, 15%, and 14% compared to non-
DVFS, approaches similar to space-time multiplexing,8

and SVM38 on average for a microprocessor with up to
32-cores running SPLASH-2 and Parsec benchmarks.

1.4. Paper Organization
The rest of this paper is organized as follows. A review of
relevant existing works on power management is presented
in Section 2. The system model and the application model
are presented in Section 3. Section 4 presents the system
architecture for SmartDPM with the problem formulation.
The prediction technique and clustering used for Smart-
DPM are described in Section 5. Simulation results and
comparisons are presented in Section 6 with conclusions
drawn in Section 7.

2. LITERATURE REVIEW
In the past few years, some works started exploring learn-
ing based techniques for prediction under a centralized
predictor. Regression11�13�41�42 is one of the most popu-
lar methods to predict the workloads, which fits a poly-
nomial to the measured/observed values and extrapolate
future values. Regression of different metrics such as LLC
miss or hit rates, power trace of the workloads, memory
accesses are utilized to perform DVFS. A comprehensive
survey on machine learning based power management is
presented in Ref. [1]. We review some of the relevant
works below.
In Ref. [34], the workload for the next frame is

estimated using linear-in-parameters model, in which the
output for the next frame is estimated as a linear combi-
nation of previous workloads (frames) and a number of
system parameter values. Similarly, a linear regression is
adopted in Ref. [43] to estimate the workloads and per-
form DVFS accordingly. A gradient descent method based
updating frequency by learning the workload using lin-
ear regression considering the observations from perfor-
mance counters, power sensors and measured latencies is
proposed in Ref. [44]. A space-time multiplexing (STM)
based power management with auto-regressive moving
average (ARIMA) for predicting the workloads and a
singular value decomposition for clustering and voltage–
frequency level assignment is proposed in Refs. [8, 13].
Different techniques to reliably predict workloads such as
Last-value predictor, history table, and ARIMA are pro-
posed in Ref. [38] along with an qualitative analysis. Some
methods also make use of other workload characteristics
such as deadlines, memory accesses and so on to perform
DVFS.
In Ref. [36], a linear regression is used to predict mem-

ory accesses per cycle and CPU cycles per instruction
(CPI). Based on the ratio of predicted CPI with on-chip
access and overall CPI, frequency scaling is performed for
power management. Similarly, in Ref. [45], a deadline for
each task or application is considered to perform power
management. Based on the slack time generated in the cur-
rent time slot and the worst case execution of the task, the
operating frequency for the application or task is scaled.
In addition to workload timing behavior, memory access
patterns are as well utilized to perform power manage-
ment. A voltage scaling approach based on the obtained
dynamic events such as cache hit or miss rate and memory-
access counts at runtime from performance modeling unit
(PMU) are used to determine the optimal frequency for
performance constraint is proposed in Ref. [46]. Updating
frequency levels at variable intervals for power manage-
ment is proposed in Ref. [19]. This method makes use of
idle time between two consecutive cycles and increases or
decreases frequency levels based on that. Two registers and
counters are employed to keep track of idle times and store
the values for comparing the intervals. Apart from use
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of regression techniques using linear regression, wavelet-
based power management scheme making use of wavelet
transform to predict the signal and further based on the
predicted values, a threshold dynamic power management
is carried out.47 The characteristics of workload used for
power management greatly varies. However, it is clearly
evident that regression in one form or other are considered
to estimate the workloads to perform power management.
It needs to be noted that the complexity and achieved accu-
racy varies with the applied regression technique and with
application.

On the other hand, advancements in machine learning
enabled adapting machine learning techniques for predic-
tion purpose.48 A Bayesian workload predictor with clas-
sification and policy generation is proposed in Ref. [49].
This uses iterative loops with dynamic programming with
cost function objective. A model-free reinforcement learn-
ing for dynamic power management with Bayesian pre-
dictor for workload estimation is proposed in Ref. [6].
Based on the predicted workload and using reinforcement
learning, power management is carried out. In a simi-
lar manner, a Q-learning based approach considering the
clock frequencies, lowest frequency to meet deadline, CPU
utilization rate for the current task as states with tun-
ing as frequency and voltage as the action is proposed
in Ref. [50]. The Q-learning power management is also
presented in Refs. [16, 31, 51–53]. A two level hierarchi-
cal power management scheme is proposed in Ref. [54].
This method is performed at two levels: component-level
local power manager and system-level global power man-
ager. The component-level power management follows
a pre-specified power management policy and is fixed;
whereas the system-level power manager employs tempo-
ral difference learning on semi-Markov decision process
as the model-free reinforcement learning technique, and
it is specifically optimized for a heterogeneous applica-
tion pool. In addition to traditional learning approaches,
deep learning is also employed for power management in
multi-core and many-core microprocessors. A deep learn-
ing approach for workload prediction and adaptive power
scaling is proposed in Ref. [11]. Here, statistical relation-
ships are exploited on the data obtained from hardware
counters to predict the periods of low instruction through-
put and the frequency, voltage are decreased to save power.
A hierarchical sparse coding was adopted to capture com-
plicated signature patterns over time, which has shown pre-
diction performance improvement compared to regression
and heuristic approaches. This sparse coding is succeeded
by support vector machine (SVM) regression. Based on the
true positives and accuracy, DVFS is performed. A support
vector regression based regression followed by classifica-
tion is used for DVFS in Ref. [38]. A comparison of neu-
ral networks and regression methods is presented,39 which
concludes that the neural networks outperform regression
based prediction when the data used for training is smaller,

whereas both of them perform similarly when fair amount
of training data is available. As such, it can be observed
that power management (DVFS) is performed with the aid
of various machine learning techniques ranging from semi-
supervised learning (reinforcement learning) to deep learn-
ing and supervised learning techniques. Learning based
approaches are more robust and efficient, however, the
resources and computation time it requires is high. Fur-
thermore, most of the existing machine learning based
works are supervised with offline learning, whereas the
heuristics based predictors based works lack accuracy and
self-learning.

2.1. Novelty Over State-of-the-Art Techniques
In addition to the trade-off analysis presented in
Section 1.1, we present the similarities and deviations
from the existing power management techniques in the
literature. Similar to most of the existing techniques,
our proposed power management technique SmartDPM
also follows two-step procedure: prediction and voltage–
frequency (VF) assignment. The main differences could
be outlined as follows: unlike most of the power manage-
ment schemes which utilizes offline learning, SmartDPM
performs predication with an observer-controller loop uti-
lizing online learning to capture underlying variations in
the workload(s). The utilized observer-controller loop pre-
diction technique is accurate and lightweight, faster com-
pared to other techniques that makes power management
feasible during runtime with online learning. This is evi-
dently clarified with the aid of RMSE metric and runtime
in Sections 1.1 and 6.3.4.

3. SYSTEM MODEL
3.1. Hardware Architecture Model
We consider a homogeneous multi-core processor com-
prising of N cores, C = �C1�C2� � � � �CN �. Due to varying
workloads, different cores execute at different frequencies
in order to ensure proper execution. There exists a max-
imum operating frequency level fmax for every possible
operating voltage V . The frequencies of a core can be var-
ied between fmin to fmax, and the corresponding voltages
between vmin and vmax. The cores operating at higher VF
levels consume more power when executing the applica-
tion. Furthermore, similar to Ref. [55], we assume that
performance of the processor core is higher when running
at a higher VF level.

3.2. Application Model
We consider a mixture of single-threaded and multi-
threaded applications in this work, and each core executes
one thread. In Figure 2, different shades on cores represent
different applications running on them. The distribution of
applications are not uniform i.e., different applications can
run on different number of cores, depending on the number
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Fig. 2. Overview of proposed SmartDPM in a multi-core microprocessor.

of threads. Each of the application comprises of multiple
tasks, as such a task � requires w clock-cycles for execu-
tion. From the application perspective, we assume that the
applications are multi-threaded and can be executed in par-
allel, similar to Ref. [3]. Each core can execute one thread.
We assume that the total number of threads executing are
smaller or equivalent to number of cores. To avoid the
associated overheads, especially for multi-threaded appli-
cations, we employ per-application power manager rather
than system-level or per-core power manager. To obtain
per-application power or energy trace, we sum the power
traces of the cores on which the application is currently
executing.

3.3. Power Model
The total power consumption of a core comprises of static
and dynamic power. The static power is dominantly due to
the leakage currents and varies exponentially with thresh-
old voltage. The dynamic power consumption is due to
the switching activities inside the core. As such, the total
power consumption56,57 when operating at voltage V and
frequency f is modeled as

P�V � f �= Pstatic+PDynamic = I0e
−Vth/�	VT �V +
CV 2f (1)

Here I0 and 	 are technology parameters; VT is the
thermal voltage; Vth is the threshold voltage; 
 repre-
sents the switching activity factors and C is the average
capacitance.

4. SYSTEM ARCHITECTURE
4.1. System Overview
We present an overview of the system along with differ-
ent components and their corresponding models that are
utilized in this work. The main components of the Smart-
DPM system are: cores, voltage–frequency regulators and
connectivity between cores.

An Intel Xeon microarchitecture58 core model is cho-
sen to build the system. QuickPath interface is used
for point-to-point connection for cores. External compo-
nents such as DRAM are connected with the help of
buses. The system is supported with DRAM memory con-
troller(s) for memory access. In the recent years, there
has been a surge of interest to build on-chip integrated
switching voltage–frequency regulators.59–61 To enable the
support for power management with SmartDPM, stan-
dard on-chip voltage–frequency regulators that are used
in industrial processor like Xeon X5550 are embed-
ded into the system. The latency involved in changing
voltage and frequency levels is less than 2 �s.58,59 It
needs to be noted that the proposed SmartDPM is not
bound to any specific core architecture, i.e., the proposed
work can also be deployed in microprocessors with other
(micro-)architectures. The system architecture is described
below.

4.2. System Architecture
The system architecture to perform SmartDPM based
power management is presented in Figure 2. The compo-
nents used in the system inherits the model description
in Section 4.1. The microprocessor comprises of multi-
ple cores with private L1, L2 instruction and data caches
and shared L3 cache(s). The microprocessor is equipped
with on-chip DRAM controller for DRAM access. In
addition to the traditional core and caches, system is
equipped with an Application monitor unit that moni-
tors the workload statistics of each application execut-
ing on the microprocessor core(s). The workload statistics
refer to the power traces of the workload when executed
on the core(s), which are then provided to the Smart-
DPM unit. Each SmartDPM unit performs prediction of
the workload in two stages: modeling and optimization
in an observer-controller loop fashion. Further, based on
the predicted workload a suitable voltage–frequency (VF)
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pair is decided and assigned to the core(s) running the
corresponding application towards an efficient power man-
agement. These voltage–frequency values are set and pro-
vided to cores with the aid of on-chip power converters.
As continuous prediction adds computational overheads,
the prediction is performed at regular intervals of
time.

A multi-core microprocessor running different applica-
tions, equipped with SmartDPM power management is
depicted in Figure 2. Shading over cores in Figure 2 rep-
resent different applications. An application refers to a
program that runs on the core(s) of the microprocessor.
For instance, multi-threaded applications such as Parsec
‘blackscholes’ requires multiple cores to run. As such,
to avoid the associated overheads, especially for multi-
threaded applications, we employ per-application power
manager that autonomously learns and updates the predic-
tion model depending on the variations in the workload;
and further assign the voltage and frequency to the core(s)
for an effective power management.

4.3. Associated Research Questions
Other than the basic challenges such as voltage–frequency
level changing latency, some of the main challenges to be
addressed for an efficient power management using work-
load prediction are:
• How to learn and adapt to workload variations?
Workload(s) of an application(s) often varies with time.
Underlying factors and computations can result in sporadic
variations in workload behavior. As such, it is of vital
importance to effectively learn the behavior of workload
by capturing the underlying variations, adapt the model in
case of deviations.
• How to learn fast? In addition to learning and adapting
to workload variations, the amount of time it needs to learn
and adapt also impacts the performance.
• Robustness of the prediction? It is critical to perform
prediction that is robust to the variations such as sporadic
behaviors in the workload, and initial value.

4.4. Problem Statement
The power consumption of a core depends on the work-
load that it is running. For instance, a core running a com-
putationally intensive application consumes more power
compared to the core which executes computationally less
intensive and lightweight workload. Based on the posed
research questions and the presented system architecture,
we define the problem as follows.

In a multi-core microprocessor, the workload(s) needs to
be learned along with its underlying variations and further
predict the behavior so that the core(s) can be provided
with appropriate voltage and frequency levels towards
an effective power management under the constraints of

achieving a targeted performance. This could be mathe-
matically defined as:

min�PTotal�

S.T. �i� ��xi�n�− x̂i�n���1 < �� �→ 0

�ii� vj�n�� fj �n�← x̂i�n�

�iii� vL ≤ vopt ≤ vH

�iv� Thr ≥ Thrmin

(2)

The main objective of this work is to minimize the over-
all power consumption PTotal without violating the perfor-
mance requirements. Here, the performance is measured as
throughput. The throughput setting is provided externally
to the system in this work. This objective has to be fulfilled
subject to an accurate prediction of workload(s), as given
in (i) of (2); it is desired to have a small prediction error �
between the predicted workload x̂i�n� and the actual work-
load xi�n� for application i for time instant n; Secondly,
based on the predicted workload x̂i�n� at a phase n, the
an optimal voltage vj�n� and frequency fj�n� levels have
to be assigned to the core(s) running workload i without
overpowering the core(s), as given in (ii) of (2); and the
voltage level assigned to the application needs to be suf-
ficient i.e., the core(s) must be supplied with a minimal
voltage to keep the application running, as given in (iii) of
(2) along with achieving a performance (throughput Thr)
better than the lower bound (Thrmin). In addition to the
above constraints, as mentioned in the previous sections,
the power manager should not incur large overheads.
To predict and learn the workload behavior, the predic-

tion needs to be based on the previous inputs (observer).
To capture and adapt to the sporadic variations in the work-
load behavior, a feedback has to be provided to the predic-
tor to update the model. As such, the problem of prediction
can be mathematically stated as

x̂�n�= z�x�n−1�� x�n−2�� � � �� x�n−p�� (3)

where x�n−p� is the workload at �n−p�-th time instant,
and z�� � �� denotes the observer-controller loop based pre-
diction function.

5. SMARTDPM: ONLINE LEARNING-BASED
DYNAMIC POWER MANAGEMENT

Our proposed multi-core microprocessor power manage-
ment scheme SmartDPM efficiently manages the system
power under the constraints of lightweight yet low error
in the workload prediction (with the aid of observer-
controller loop) and a minimized overhead. This is per-
formed in two steps. In the first step, an observer-controller
loop based prediction is performed to learn and predict the
workload(s) at an application-level granularity, under the
constraints of low prediction error and lightweight. Fur-
ther, depending on the application and the predicted work-
load characteristics, the voltage–frequency (VF) pairs are

J. Low Power Electron. 14, 460–474, 2018 465



IP: 129.174.252.250 On: Tue, 20 Aug 2019 22:47:13
Copyright: American Scientific Publishers

Delivered by Ingenta

SmartDPM: Machine Learning-Based Dynamic Power Management for Multi-Core Microprocessors Manoj et al.

assigned to the corresponding core(s) that run the work-
load towards minimizing the overall power consumption
under the constraints of performance. Predicting at regu-
lar time-intervals is adopted in order to reduce the com-
putational overheads. A detailed description of the whole
process is presented below.

5.1. Learning and Prediction of Workload
At a more higher abstract level, observer-controller loop
based predictor as a part of SmartDPM is shown in
Figure 2, enclosed in a zoomed-out rectangle. A more
detailed architecture of the observer-controller loop based
predictor employed in SmartDPM is depicted in Figure 3.
As continuous prediction of workload characteristics might
cause additional overheads, we predict the workload char-
acteristic, i.e., power trace at regular time intervals. Please
note that the workload characteristic here refers to the
power trace when the application is run on the core(s).
The workload prediction in SmartDPM uses a observer-
controller loop prediction equipped with an online learning
to learn and predict the workload effectively by captur-
ing the underlying variations in real-time. Additionally, the
weights of the predictor are updated continuously depend-
ing on the prediction error. The prediction mechanism min-
imizes the prediction errors in a least-square sense. The
online learner continuously learns the workloads running
on the core(s) and adapts the weights in order to capture
the variations, if the prediction error increases. This could
be explained in two phases: modeling phase (observer) and
optimization phase (controller to minimize the prediction
error).
Phase 1 Modeling (Observer). Towards predicting the

workloads (at phase-level), the first step is to build a model
that effectively represents the workload. A linear model is
initially built to estimate the workload at the phase-level
and perform prediction. The model is built considering
the workload values at previous phases under the con-
straint of minimizing the prediction errors. The prediction
errors aid in adapting the model by learning the variations
more effectively and capture the variations effectively. This
modeling phase can be seen as learning phase, where the
model is built so as to estimate the workload effectively.
As shown in Figure 3, the observer monitors the workload

Microprocessor

Learning based prediction

Linear model

Optimization

Observer

VF regulator

R
M

SE

Workload

Predicted 
workload

VF pairai

xi(n)

xi(n+1)^

Fig. 3. An observer-controller loop based workload prediction used for
SmartDPM.

of the applications and provides the observed values to ini-
tially build a model. The built linear model for prediction
can be given as

x̂i�n� = a1xi�n−1�+a2xi�n−2�+···+apxi�n−p�+�

=
p∑

j=1

ajxi�n−j�+� (4)

here aj , j = 1�2� � � � � p are the coefficients, p represent-
ing the order of prediction i.e., number of previous sam-
ples considered for the prediction; xi�n� represents the
workload at phase n for application i; � represents the
prediction error; and the predicted value is indicated as
x̂i�n�. The utilized modeling and learning phase is linear
in nature, and hence faster.
As the workloads may deviate from the built model

under sporadic events, it is necessary to update the built
linear model with time without overhead. To capture such
sporadic variations, the model building phase is succeeded
by an optimization phase with an objective to minimize
the prediction errors along with updating the built model
with time.
Phase 2 Optimization (Controller). The model built in

the modeling phase is efficient in predicting the work-
loads based on the trained data. However, workloads could
experience sporadic variations during the runtime due to
underlying factors compared to the data learned during the
modeling phase. In order to capture those variations in the
workload and predict more precisely using (4), the model
needs to be updated if the workloads change i.e., the coef-
ficients (ai) need to be tuned if the prediction is not close
to the actual values. This is performed by updating the
weights in order to minimize the prediction error i.e., to
satisfy auto-correlation criterion. As such, the choice of
coefficients is made by

p∑
i

aiR�j− i�=−R�j� (5)

for 1≤ j ≤ p, and R�j� is the autocorrelation for the signal,
given by

R�j� = E�xi�n�xi�n− j�� (6)

where E�xi�n�� denotes the expected value of workload
xi�n�.
This optimization phase can be seen as updating of the

prediction model based on the observed prediction errors
and deviation of the predicted and actual values. This opti-
mization phase helps to capture underlying factors that
contribute to sporadic variations.

5.2. Voltage–Frequency Assignment
Once the workload is efficiently predicted for an appli-
cation, the corresponding core(s) must be provided with
the voltage–frequency (VF) levels that meet the work-
load requirement. This ensures that the core(s) running
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the workload is neither overpowered or underpowered to
run the application workload. The VF assignment to the
application based on the predicted workload (power) is
presented in this section. We chose four VF levels in this
work, as the chosen levels support the considered Intel
Nehalem microarchitecture.58 However, the same tech-
nique could be extended to more levels, depending on the
requirements.

SmartDPM has a set of pre-defined voltage–frequency
pairs (VF levels) for which the corresponding providable
power is calculated based on model in (1), and based on
the predicted workload value the corresponding application
is assigned with one of the suitable VF levels. A Maha-
lanobis distance metric based clustering is employed to
determine the cluster (pre-defined VF level based on the
power model) to which the application will be assigned.
The clustering is done by considering the suitability of the
predicted power trace for an application and the power that
can be supplied when a VF level is assigned. The Maha-
lanobis distance between two vectors can be given as

d��x� �y�=
√
��x− �y�S−1��x− �y� (7)

where �x and �y are the vectors between which the Maha-
lanobis distance is calculated and S is the covariance
matrix. In our case, the vectors are the predicted workloads
and the formed centroid for four voltage–frequency levels
i.e., the power that can be provided when run at particular
VF level. The closer the Mahalanobis distance similar the
vectors. The application (workload) will be assigned with
the VF level to which it has smaller Mahalanobis distance.
The same clustering technique could be utilized when con-
sidering additional multiple metrics. It needs to be noted
that when the performance is not met with the assigned
VF settings, the VF of the next higher level are assigned
to the application.

The multi-core power management using our proposed
SmartDPM is presented in Algorithm 1. Initially, the
workloads are monitored by the observer for few phases
instances. Then, a linear model is built based on the previ-
ous p values, as given in Line 1 of Algorithm 1. Further,
an online learning is employed to update the coefficients
and minimize the prediction in case of variations, as in
Line 4 of Algorithm 1. Further, based on the predicted
workload values, the Mahalanobis distance metric is used
to map the application (workload) to one of the four VF
levels for which the providable powers are defined based
on the model, represented by ck. In Line 5, q represents
the number of VF levels. The VF level with smaller dis-
tance is assigned to the predicted workload of the appli-
cation, as described in Line 5–11 of Algorithm 1. For the
brevity, the performance requirement is not presented in
the Algorithm, however, when the performance constraint
is not met, the VF settings of the next higher-level is set
until the performance is met.

Algorithm 1 (Proposed SmartDPM Based Power
Management).
Input: Workloads (W = �W1�W2� � � ��), supported voltage–
Frequency (VF) pairs (C = �c1� c2� � � � � cq�)
Output: Minimized power consumption with VF Scaling
1: Workload Wi = �xi�1�� xi�2�� � � � � xi�n��;
2: for j = p to n do
3: x̂i�j�=

∑p
k=1 ak ∗xi�j−k�;

4:
∑p

i aiR�j− i�=−R�j�; (Find ai)
5: for k = 1 to q do

6: d�x̂i�j�� ck�=
√
�x̂i�j�− ck�S

−1�x̂i�j�− ck�;

7: if d�x̂i�j�� ck�=min then
8: Wi�j�← ck;
9: else
10: k = k+1;
11: end if
12: end for
13: end for

6. RESULTS AND DISCUSSION
First, we present the simulation settings and our tool flow
for evaluating the efficacy of our SmartDPM technique,
followed by achieved power savings.

6.1. System Settings
The proposed SmartDPM power management scheme
is implemented in the SniperSim multi-core simulator,40

which is a parallel, interval-accurate, and high-speed ×86
simulator. The maximum voltage and frequency levels are
1.2 V and 2.66 GHz, respectively. In simulations, we
use four voltage–frequency levels for power management,
that are supported by standard Nehalem microachitecture
based cores: (1.2 V, 2.66 GHz), (1.1 V, 1.8 GHz), (1.0 V,
1.5 GHz) and (0.9 V, 1.0 GHz). However, this could be
modified depending on the simulation environment and the
utilized cores. A standard switching time for the voltage–
frequency regulator (less than 2 �s) is considered in the
simulations, as reported in Ref. [58]. Additional details on
the configuration of microprocessor core and other com-
ponents are presented in Table I. In order to validate the
performance of SmartDPM, simulations are run with Par-
sec62 and SPLASH-263 benchmarks. The number of cores
are varied from 1 to 32. A machine learning predictor
with observer controller loop based predictor of order 4, as

Table I. Overview of core configuration.

Item Description Value

Microprocessor core Frequency (Max) 2.66 GHz
Voltage (Max.) 1.2 V
Technology node 22 nm

L1-I cache 32 KB
L1-D cache 32 KB
L2 cache 256 KB

L3-cache 8 MB
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described in Section 5.1 is employed to learn and predict
workloads.

6.2. Tool Flow for SmartDPM
The tool flow to perform SmartDPM in Sniper multi-core
simulator is presented in Figure 4. The Sniper multi-core
simulator is initialized with the configurations such as
number of cores, VF levels, applications to be run and
so on. For an unbiased and better evaluation of Smart-
DPM, applications are assigned to the core(s) in a ran-
dom manner. Next, the workload statistics at application
level granularity are monitored from the simulator and are
provided to the SmartDPM power manager. The predictor
builds the model during the training phase based on the
training data and to minimize the root mean square error
(RMSE) of the predicted values. During the test phase or
post-training phase, the model will be updated with the aid
of online learning in an observer-controller loop manner
so as to adapt to the workload variations, as described in
Section 5.1. Based on the predicted workload(s), the cor-
responding voltage and frequency levels are assigned to
the core(s) that are running the corresponding applications.
Lastly, McPAT64 is used to obtain the power consumption
statistics of the microprocessor. To perform Non-DVFS,
the workloads can be run on similar settings without invok-
ing the DVFS.

6.3. SmartDPM Performance
In this section we present the power savings in a multi-
core system with SmartDPM and compare the achieved
power savings with non-DVFS technique and other simi-
lar proposed approaches such as use of traditional linear
regression,43,44 SVM regression based power manage-
ment38 and space-time multiplexing (STM) based power
management.8 For a fair comparison, these techniques are
re-implemented as described in Refs. [8, 38, 43, 44] and
adapted for application based power management. Before
presenting the performance of SmartDPM, we illustrate the
performance of SmartDPM when performed at different
granularities and the associated overheads.

6.3.1. Power Management at Different Granularities
The proposed SmartDPM focuses on power management
at application level. However, it is also possible to employ

Snipersim

Learn and predict  
power traces

Map predicted power 
to VF level

McPAT
Assign VF level(s) to

core(s) running application

application 
Power Traces for 

Fig. 4. Experimental tool flow to perform SmartDPM in SniperSim.

SmartDPM at lower granularity (core-level) and higher
granularity (system-level or per-chip level). As a case
study, we present the impact of power management at dif-
ferent granularity levels for a 4-core microprocessor. For
analysis, multi-threaded applications are chosen based on
the manner the workloads are distributed among cores.
The two workloads categories chosen are: (a) tightly cou-
pled workload; (b) loosely coupled workload. Here, tightly
coupled workload indicates that the workloads of an appli-
cation are evenly distributed among multiple cores, and
loosely coupled workload indicates that the workload of an
application is unevenly distributed among multiple cores.
The power consumption at three different granular-

ity levels for a microprocessor running multi-threaded
application(s) is shown in Figure 5. Following are the
observations:
• For loosely coupled multi-threaded applications, appli-
cation level power management has better power savings
compared to system level, if the applications are uncorre-
lated i.e., applications are dissimilar.
• If the workloads are loosely coupled and correlated
i.e., similar workloads, system-level and application-level
power management achieve similar power savings.
• In case of single multi-threaded application distributed
among all the cores, irrespective of granularity, the power
management achieves similar performance, if the applica-
tion is tightly coupled.
• For a loosely coupled application, system-level
and application level power management has similar
performance.

Per-core power management has better power savings,
however this adds additional overheads such as monitor-
ing, power regulators for each of the core. System level
power management has smaller overhead, and reduced
power saving compared to per-core power management.
Per-application level power management has performance
in-between per-core and system-level power management.
As running multiple applications is much realistic on
multi-core microprocessor, per-application based power
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Fig. 6. An observer-controller loop based workload prediction for
SPLASH-2 Raytrace benchmark.

management is a better choice for power management to
have power savings with smaller overheads.

6.3.2. Workload Prediction
Workload prediction at phase level is one of the key steps
in the proposed SmartDPM. Prediction of the SPLASH-2
Raytrace benchmark’s power trace with time is depicted
in Figure 6. As it can be clearly observed that the pre-
dicted power trace follows the original trace, even under
some of the sporadic variations, such as at 1.1 ms. The
RMSE is 0.21. The number of previous inputs con-
sidered for prediction in observer-controller loop is set
to 4. It can be observed that the sudden variations such
as spikes and peaks are well captured with the use of
observer-controller loop based prediction. On an aver-
age, the RMSE for all the benchmarks is 0.49. The
RMSE varies with benchmark. For the employed bench-
marks, a max RMSE error of 0.88 is observed, which is
smaller compared to maximum RMSE error obtained with
other prediction techniques such as covariance, and neural
networks.

6.3.3. Power Saving with SmartDPM
As each of the applications has different power con-
sumption, we present the normalized power saving with
SmartDPM. Figure 7(a) shows the normalized power
consumption of different SPLASH-2 benchmarks that run

No DVFS –1; Trad Lin –0.65; Proposed –0.64; SVM –0.89; STM –0.81
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Fig. 7. Performance comparison of non-DVFS, SmartDPM, neural network and SVM based power management in a single-core microprocessor:
(a) Power savings; and (b) runtime.

on a single-core microprocessor, whose configuration is
presented in Table I. In Figures 7(a), 8(a) and 9(a), X-axis
represents the application that is run on microprocessor
and Y -axis represent the normalized power consumption.
For a single-core microprocessor, an average power

saving of 36% is observed compared to non-DVFS
implementation as shown in Figure 7(a). Similarly, the
power consumption by employing SmartDPM on a dual-
core microprocessor compared to non-DVFS technique is
depicted in Figure 8(a). In case of dual-core microproces-
sors, where SPLASH-2 and Parsec benchmarks are ran-
domly executed in different experiments, nearly 36% of
power saving on average compared to non-DVFS imple-
mentation is observed.
On an average, 34% power saving is observed for micro-

processors with up to 32-cores, running SPLASH-2 and
Parsec benchmarks on it, as illustrated in Figure 9(a).

6.3.4. Comparison
To evaluate the effectiveness of SmartDPM, we compare
the achieved power savings of SmartDPM with other pro-
posed works. Despite the fact that there exist many works
on power management, we implemented few works such
as Refs. [8, 38, 43, 44] (with minor adaptations such as
power management at application level) for a fair compari-
son. The rationale for choosing those works are as follows:
In Ref. [8], prediction of workload using auto-regressive
moving average (ARIMA) and a singular value decom-
position (SVD) based voltage–frequency level assignment
is carried out, which is close to our work. Machine
learning equipped power management is proposed in
Ref. [38], where support vector machine (SVM) based
regression for predicting workloads and SVM classifier
based voltage–frequency level assignment is employed.
The sparse encoding is not implemented, as the data is not
as large as that in the original work. A linear regression
with offline learning or modeling based workload predic-
tion and VF level assignment is utilized in Refs. [43, 44].
Similar resemblances can be observed from other existing
works as well. Our proposed methodology as well fol-
lows a two step process for power management: prediction
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Fig. 8. Performance comparison of non-DVFS, SmartDPM, neural network and SVM based power management in a dual-core microprocessor:
(a) Power savings; and (b) runtime.

of workload in an online learning observer-controller loop
manner and voltage–frequency level assignment by clus-
tering of data. The updating of predictor model based
on the observation and the voltage–frequency assignment
methodology with Mahalanobis distance primarily differ-
entiates our work from other works. The comparison is
provided in Figures 7–9. In the legend, ‘Proposed,’ ‘No
DVFS,’ ‘Trad Lin,’ ‘SVM,’ and ‘STM’ represents the
achieved performance (power or runtime) with SmartDPM,
non-DVFS, traditional linear regression based power man-
agement, SVM and space-time multiplexing based power
management techniques, respectively.
For a single-core microprocessor, SmartDPM consumes

nearly 36% less than that of non-DVFS implementation,
whereas linear regression based power management
consumes 35% less than non-DVFS implementation;
similarly, space-time multiplexing and SVM based power
management techniques consume 11% and 19% less
power compared to the non-DVFS technique. As such, it
can be derived that linear regression and proposed Smart-
DPM based power management performs nearly similar in
case of single-core microprocessors for the experimented
benchmarks. Nearly 24% and 16% additional power sav-
ing is achieved with SmartDPM compared to SVM and
STM based power management techniques, respectively,
in a single-core microprocessor.
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Fig. 9. Performance comparison of non-DVFS, SmartDPM, neural network and SVM based power management in a multi-core microprocessor:
(a) Power savings; and (b) runtime.

For multi-core microprocessor simulations, benchmarks
(mixture of Parsec and SPLASH-2) are assigned to cores
with SmartDPM deployed for power management. A com-
parison of power consumption in a 2-core microproces-
sor with randomly assigned benchmarks is presented in
Figure 8. For a dual-core microprocessor, proposed Smart-
DPM has nearly 20% and 12% more power saving com-
pared to SVM and STM based approaches, respectively.
However, the linear regression performs similar to that of
SmartDPM.
Similarly, we compare the power savings of Smart-

DPM for more number of cores. Compared to simi-
lar implementation as space-time multiplexing (STM) in
Ref. [8], proposed method achieves nearly 14% higher
power saving on average; compared to proposed method,
support vector machine based implementation similar to
Ref. [38], has nearly 14% lower power savings on aver-
age for 32 cores; and compared to linear regression based
approach in Ref. [43], a power saving of nearly 2% is
obtained. However, it can be observed from Figure 9(a),
that the linear regression and proposed method performs
similarly for smaller number of cores. However, for micro-
processors with large number of cores such as 16 cores
or 32 cores, SmartDPM outperforms linear regression in
terms of power saving, showing that proposed technique
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is scalable for many-core systems with large number of
cores.

The achieved power savings with SmartDPM depends
highly on the distribution of application(s) in micro-
processor. A tightly coupled core-application distribution
achieves higher power savings similar to per-core DVFS
i.e., when an multi-threaded application is partitioned and
evenly distributed among cores, the power saving is higher
than unbalanced distribution. As one more instance, in
an 8-core microprocessor, we have observed a saving of
nearly 30% compared to non-DVFS when the cores run
similar workloads, whereas to analyze the impact of dis-
tributing application in an unbalanced manner is carried
out, a power saving of only 8% is observed. In the demon-
strated results, especially in multi-core simulations, appli-
cations are distributed among cores randomly to analyze
the power savings with SmartDPM under no controlled
application distribution among cores.

6.3.5. Overhead Analysis
The proposed SmartDPM power management scheme is
effective in minimizing the overall system power. How-
ever, the power management with SmartDPM involves
some overhead, that are: (a) additional computations
needed for predicting the workload characteristics;
(b) Updating the prediction model; (c) voltage frequency
assignment based on the predicted workload character-
istics. These overheads can be justified as follows: Pre-
diction of workload helps to assign the VF level to the
core(s) running the application, thereby avoiding overpow-
ering of cores. Updating the model leads to learning the
workload effectively and predict the workloads accurately
during sporadic variations as well. As the predictions
are performed at phase-level granularity, the computations
required for prediction and assigning the VF levels are
smaller compared to continuous prediction and changing
the assigned VF levels.

We provide an analysis of the proposed method in
terms of its impact on runtime. Similar to power sav-
ings, we compare the overhead as well with other works.
As each application has different runtime, we present the
runtime for different benchmarks on single-core, dual-core
and multi-core in a normalized manner. The runtime for
single-core microprocessor, dual-core microprocessor and
multi-core microprocessor running SPLASH-2 and Parsec
benchmarks are depicted in Figures 7(b), 8(b) and 9(b)
respectively.

On average the proposed method, SmartDPM, requires
nearly 10% more time than non-DVFS technique; 3%
lower time than linear regression based power manage-
ment; 23% lower runtime compared to SVM based power
management; and 5% higher runtime than STM based
implementation for microprocessors up to 32 cores, which
can be seen in Figure 9(b). As the non-DVFS method-
ology involves no additional computations, it is obvious

that the non-DVFS is faster than SmartDPM, but at the
cost of additional power. As seen in motivational case
study that SVM requires more time for prediction, the
same is reflected in the runtime measurements. As tra-
ditional linear regression and proposed SmartDPM uses
linear models, they have similar runtime, however due to
better convergence, and adaptations, SmartDPM is faster
and has better power savings even for large number of
cores. In case of STM, the clustering is performed rela-
tively simpler compared to the proposed work, though the
prediction takes similar time. As such the SmartDPM has
5% more runtime on average than STM based power man-
agement technique.
As a summary, the proposed SmartDPM tech-

nique performs efficient per-application power manage-
ment utilizing accurate yet lightweight online learning
observer-controller loop predictor with less overhead.
It outperforms some of the existing power management
techniques.

7. CONCLUSION
SmartDPM with online learning observer-controller loop
based workload prediction at phase-level to perform power
management in a multi-core microprocessor is proposed in
this paper. SmartDPM performs power management at an
application level and utilizes lightweight linear predictor
with continuous feedback of prediction error to learn the
underlying patterns in the workload behavior. Based on the
predicted workload characteristics, voltage and frequency
pairs are assigned to the applications. A power saving of
nearly 34% on average is achieved with SmartDPM com-
pared to non-DVFS technique and nearly 15% more power
saving on average compared to other power management
techniques for a microprocessor with up to 32-cores.
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