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Abstract—Circuit obfuscation has been proposed to protect
digital integrated circuits (ICs) from different security threats
such as reverse engineering by introducing ambiguity in the
circuit, i.e., the addition of the logic gates whose functionality
cannot be determined easily by the attacker. In order to conquer
such defenses, techniques such as Boolean satisfiability-checking
(SAT)-based attacks were introduced. SAT-attack can potentially
decrypt the obfuscated circuits. However, the deobfuscation
runtime could have a large span ranging from few milliseconds
to a few years or more, depending on the number and location
of obfuscated gates, the topology of the obfuscated circuit and
obfuscation technique used. To ensure the security of the deployed
obfuscation mechanism, it is essential to accurately pre-estimate
the deobfuscation time. Thereby one can optimize the deployed
defense in order to maximize the deobfuscation runtime.

However, estimating the deobfuscation runtime is a challenging
task due to 1) the complexity and heterogeneity of the graph-
structured circuit, 2) the unknown and sophisticated mechanisms
of the attackers for deobfuscation, 3) efficiency and scalability
requirement in practice. To address the challenges mentioned
above, this work proposes the first machine-learning framework
that predicts the deobfuscation runtime based on graph deep
learning. Specifically, we design a new model, ICNet with new
input and convolution layers to characterize the circuit’s topology,
which is then integrated by composite deep fully-connected layers
to obtain the deobfuscation runtime. The proposed ICNet is an
end-to-end framework that can automatically extract the deter-
minant features required for deobfuscation runtime prediction.
Extensive experiments on standard benchmarks demonstrate its
effectiveness and efficiency beyond many competitive baselines.

I. INTRODUCTION

The considerable high capital and operational costs on
semiconductor fabrication have motivated most semiconduc-
tor companies to outsource it is a fabrication to off-shore
foundries. Despite the reduced cost and other benefits, this
trend has led to ever-increasing security risks such as IC
counterfeiting, piracy and unauthorized overproduction by the
contract foundries [23]. The overall financial risk caused by
such counterfeit and unauthorized ICs was estimated to be
over $169 billion per year [16]. The major threats from the
attackers arise from reverse engineering (RE) an IC and fully
identifying its functionality through brute force approaches by
applying test inputs and obtaining outputs. To prevent such
reverse engineering, Hardware obfuscation techniques have
been extensively researched in recent years [30]. The general
idea is to introduce the ambiguity in the functionality of the IC
through obfuscation so that the while preserving the original
functionality. Such techniques were highly effective until the
advent of advanced attacking techniques. This is based on
the fact that there are limited types of gates (e.g., AND,
OR, XOR) in IC, so the attackers can just brute force all
the possible combinations of types for all obfuscated gates

to find out the one that functions identically to the targeted
IC to be deobfuscated. As brute force is usually prohibitively
expensive, more recently, efficient methods such as Boolean
satisfiability problem (SAT)-based attacks have been proposed,
which have attracted enormous attention [14].

The runtime of the SAT attack to reverse engineer the IC
highly depends on the complexity of the obfuscated IC, which
can vary from milliseconds to years or more depending on
the number and location of obfuscated gates. Therefore, a
successful obfuscation defence is to increase the amount of
time (i.e., many years) required to reverse engineer the design.
However, obfuscation comes at a substantial cost in finance,
power, and space, and such trade-off requires us to search for
optimal positions instead of purely increasing their quantity.
The obfuscation policy tries to select a set of gates such
that maximum obfuscation can be achieved while incurring
minimal overheads. Although such selection can significantly
influence the deobfuscation runtime, however, until now it
is still generally based on human heuristics or experience,
which is seriously arbitrary and sub-optimal [7]. This is major
because it is unable to “try and error” all the different ways of
obfuscation, as there are millions of combinations to try and
the runtime for each execution (i.e., to run the attacker) can
be days, weeks, or years.

To address this issue, this paper focuses on efficient and
scalable ways to estimate the runtime of an attacker to reverse
engineer an obfuscated IC. This research topic is highly under-
explored because of its significant challenges: 1) Difficulty in
characterizing the hidden and sophisticated algorithmic
mechanism of attackers. Over the recent years, a large num-
ber of deobfuscation methods have been proposed with various
techniques [7]. In order to practically defeat the obfuscation
schemes, methods with more and more sophisticated theories,
rules, and heuristics have been proposed and adopted. The
behaviour of such highly nonlinear and strongly-coupling sys-
tems is prohibitive for conventional simple models (e.g., linear
regression and support vector machine [1]) to characterize. 2)
Challenge in extracting determinant features from discrete
and graph-structured IC. The inputs of the runtime estima-
tion problem is the IC and the selected gates for obfuscation,
where the first input is a heterogeneous graph while the
second is a vector with discrete values. Conventional feature
extraction methods are not intuitive to be applied to such type
of data without significant information loss. Hence, it is highly
challenging to instantly formulate and seamlessly integrate
them as mathematical forms that can be input to conventional
computational and machine learning models. 3) Requirement
on high efficiency and scalability for deobfuscation runtime
estimation. The key to the defence against deobfuscation is the



speed. The faster the defender can estimate the deobfuscation
runtime for each candidate set of obfuscated gates, the more
candidate sets the defender can evaluate, and hence the better
the obfuscation effect will be. Moreover, the estimation speed
of deobfuscation runtime must not be sensitive to different
obfuscation strategies in order to make the defender strategy
controllable.

This work addresses all the above challenges and pro-
poses the first generic framework for deobfuscation runtime
prediction, based on graph deep learning techniques. In the
recent years, deep learning methods in complex cognitive
tasks such as object recognition and machine translation
have achieved immense success [27], [12], which motivates
the generalization of it into graph-structured data [8]. By
concretely formulating ICs and the obfuscated gates as multi-
attributed graphs, this work innovatively leverages and extends
the state-of-the-art graph deep learning methods such as Graph
Convolutional Neural Networks (GCN) [8] to instantiate a
graph regressor. Such end-to-end deep graph regressor can
characterize the underlying and sophisticated cognitive pro-
cess of the attacker for deobfuscating the ICs. To adopt the
powerfulness of GCN and handle the aforementioned issues,
we extend it by adjusting the connectivity representation in-
spired by domain facts. Our enhanced GCN can automatically
extract the discriminative features that are determinants to the
estimation of the deobfuscation runtime to achieve accurate
runtime prediction. After being trained, the prediction based
on this deobfuscation runtime estimator just runs instantly fast
by simply performing a feed-forward propagation process. The
major contributions of this paper are:
• Proposing a new framework, ICNet, for deobfuscation

runtime estimation based on graph deep learning.
• Developing a new multi-attributed graph convolutional

neural network for graph regression.
• Conducting systematical experimental evaluations and

analyses on real-world datasets (ISCAS-85 benchmark).
The rest of the paper is organized as follows. Section II
reviews the existing work. Section III elaborates proposed
graph learning model for SAT runtime prediction. In Section
IV, experiments on real-world data are presented. This paper
concludes by summarizing the study’s important findings in
Section V.

II. BACKGROUND AND RELATED WORK

We discuss the logic obfuscation and SAT attacks followed
by graph convolutional networks and the relevant works.

A. Logic Obfuscation and SAT Attacks
Logic obfuscation often referred to as logic locking [29] is a

hardware security solution that facilitates to hide the IP using
key-programmable logic gates The activation of the obfuscated
IP is accomplished in a trusted regime before releasing the
product into the market, thereby reducing the probability to
obtain the secret configuration keys by the attacker. During
the activation phase, the correct key is applied to these key-
programmable gates to recover the correct functionality of the
IC/IP. Besides, the correct key will be stored in the IC in a
tamper-proof memory. Although obfuscation schemes try to
minimize the probability of determining the correct key by an
attacker, thereby curbing the ongoing piracy of the legitimate
IPs. However, SAT attack shows that the contemporary ob-
fuscation schemes can be broken [24] to retrieve the correct
key. In order to perform SAT attack, the attacker is required
to have The SAT attack first tries to find the Distinguishing
Input Patterns (DIP) Xi, which when applied as the input
can produce different outputs (Yi) such that (Y1 6= Y2) when

different key values are applied (K1, K2). This DIP can then be
used to distinguish the correct and incorrect keys. The number
of DIPs discovered during the SAT-based attack is the same
as the number of iterations needed to unlock the obfuscated
design. In each iteration, a constraint is added to SAT solver,
until SAT solver cannot find a satisfying assignment. This
results in finding the correct key.

Different SAT-hard schemes such as [9], [10] are proposed
Furthermore, new obfuscation schemes that focus on non-
Boolean Behaviour of circuits [28], that are not convertible
to an SAT circuit is proposed for SAT resilience. Some of
such defences include adding cycles into the design [18].
By adding cycles into the design may cause that the SAT
attack gets stuck in the infinite loop, however, advanced SAT-
based attacks such as cycSAT [32] can extract the correct
key despite employing such defences. To ensure that the
proposed defence ensures robustness against SAT attacks, the
defenders need to run the rigorous simulations which could
range from few minutes up to a few days. Furthermore,
this can be exacerbated when the defender verifies for large
and real-world circuits. This work proposes the use of graph
convolutional networks (GCNs) to alleviate the need to run
the attack to verify whether the defence is strong enough or
not. The work in [19] utilizes neural network with single-bit
supervision to predict whether a given circuit in Conjunctive
Normal Form (CNF) can be decrypted or not. However, this is
limited to determining for few kinds of SAT-solvers, but cannot
be applied to SAT-hard solutions such as SMT-SAT [31], a
superset of SAT attacks. However, with the proposed graph
convolutional network (GCN) based predictor, the defender
can determine the deobfuscation time in a single run of GCN,
which consumes a few seconds. We introduce the GCN below.
B. Graph Convolutional Networks

Spectral graph theory is the study of the properties of a
graph in relationship to the characteristic polynomial, eigen-
values, and eigenvectors of matrices associated with the graph.
Many graphs and geometric convolution methods have been
proposed recently. The spectral convolution methods [4],
[8] are the mainstream algorithms developed as the graph
convolution methods. Their theory is based on the graph
Fourier analysis [20]. The polynomial approximation is firstly
proposed by [6]. Inspired by this, graph convolutional neural
networks (GCNs) ([4]) is a successful attempt at generalizing
the powerful convolutional neural networks (CNNs) in dealing
with Euclidean data to modelling graph-structured data. Kipf
and Welling proposed a simplified type of GCNs [8], called
graph convolutional networks (GCNs). The GCN model natu-
rally integrates the connectivity patterns and feature attributes
of graph-structured data and outperforms many state-of-the-art
methods significantly.

Therefore, it is promising to apply GNNs for the circuit
problem, since ICs can be naturally represented using a graph
with connectivity among gates.

III. PROPOSED MODEL FOR RUNTIME PREDICTION

This section introduces the problem setting, and we present
the deobfuscation time prediction through the proposed ICNet.

A. Problem Setting
First, a circuit is modeled as a graph network: G =

(V, E ,W), where V is a set of n vertexes (gates), E rep-
resents links among gates and W = [wij ] ∈ {0, 1}n×n
is an unweighted adjacency matrix. A signal X defined on
the nodes is regarded as a vector X ∈ Rn×F . A graph
structure representation, i.e., combinatorial graph Laplacian,
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is defined as L = D−W ∈ Rn×n where D is degree matrix.
Accordingly, we formulate the estimation of running time on
IC as a regression task. Specifically, the model accepts graph
structure along with gate features as input, and predict the
running time:

Y = f(G,X)Θ, (1)

where f is a function integrating graph structure G and
gate feature X. G is often represented by graph Laplacian
L in graph theory [2] Θ indicates the parameters of fully
neural network layers connecting the actual runtime Y and
f . The purpose of Θ is (1) fitting dimension with Y and (2)
generalizing the logic pattern between Y and f . The goal
of 1 is to learn f and Θ so that the difference between
Y and f(G,X)Θ is minimized. However, there exists no
straightforward relationship among the number of obfuscated
gates, type of obfuscated gates and other factors to determine
the deobfuscation time. This makes it harder to efficiently
estimate the SAT-attack runtime with traditional machine
learning models. Hence, we survey a thread of works called
graph neural networks or geometric deep learning to address
the problem of deobfuscation estimation, as the netlist can
be perceived as the graph representation of various logical
elements.

Figure 1: GCN workflow.
Graph convolutional network (GCN) is a recently emerging

technique that integrate graph structure and node attributes,
and its general process is performed as follows: it determines
a vertex complete set of orthonormal Eigen vectors (frequency
components) and their associated ordered real non-negative
eigenvalues identified as the weights of these frequencies
components. Specifically, the Laplacian is first diagonalized
by the Fourier basis Uᵀ: L = U Λ Uᵀ where Λ is the diag-
onal matrix whose diagonal elements are the corresponding
eigenvalues, i.e., Λii = λi. The graph Fourier transform of a
signal X ∈ Rn×F is defined as X̂ = Uᵀ X ∈ Rn and its
inverse as X = U X̂ [20], [21]. To enable the formulation of
fundamental operations such as filtering in the vertex domain,
the convolution operator on graph is defined in the Fourier
domain such that f1 ∗ f2 = U [(Uᵀ f1)⊗ (Uᵀ f2)], where ⊗
is the element-wise product, and f1/f2 are two signals defined
on vertex domain. The intuitive workflow of GCN is shown in
Figure 1. It follows that a vertex signal f2 = X (gate features)
is filtered by spectral signal f̂1 = Uᵀ f1 = g (graph structure)
as:

g ∗X = U [g(Λ)� (Uᵀ f2)] = U g(Λ) Uᵀ X .

B. Proposed Model: ICNet
Our proposed method, namely ICNet, is a neural network

that is based on graph convolution operator. As shown in
Figure 2, ICNet encodes the obfuscated circuit into two
components:
• Graph Structure G: Complete set of local connections

are often used to represent the graph structure [2]. Typi-
cally, a graph Laplacian is employed, in this work since
it contains gate-wise connections.

• gate features X: Gate-level information is encoded as
numerical vector as input feature. Such information could
include gate type, whether it is obfuscated and so on.

By applying the GCN, we can easily build a model to learn
the relationship between the circuit and deobfuscation time
automatically. However, GCN suffers from several issues: (1)
the original graph convolutional operator is not suitable for
the circuit since the graph Laplacian will make the graph
convolutional operator behaviour as label propagation, i.e., the
attributes of each gate are similar to its neighbours. This is
called the smoothness assumption [13], and it does not fit the
fact that gate type or encryption location of each gate does
not determine its neighbours’ related attributes in theory. This
issue is due to that graph Laplacian matrix is used during
graph convolution operation, which counts each node as -Ni

(i is the index of the row in graph Laplacian), and counts the
weighted sum of its neighbours as Ni. Consequently, they are
cancelled out when gate representation are aggregated using
sum, and the model can hardly learn the relationship between
their sum (residues) and actual runtime. (2) The default setting
of GCN aggregate gates and their features using the mean
function, which is not supported by any domain knowledge,
and not likely to cover the actual pattern on features or gates.
To solve these issues, our model employs several policies to
enhance the traditional GCN for circuit learning.
• Graph Representation G = A: Our model uses adja-

cency matrix A instead of graph Laplacian. This represen-
tation can avoid intrinsic smoothness assumption which
is not compatible with ICs.

• Feature Aggregation(Θfeat): The mean function is a
typical methods for aggregating node feature. However,
the mean function does not consider the quantity of sum.
A more flexible way is to learn feature aggregation by a
neural network automatically.

• Gate Aggregation(Θgate): similarly, mean function can
also be used to aggregate gate representation. Due to
the complicated real-world aggregation, another neural
network is designed to learn the gate aggregation function
for more flexibility.

Our model is based on GCN which simplify the layer
parameters of graph convolutional operator and applies an
approximate technique to boost the efficiency. GCNs, as a
state-of-the-art deep learning method for the graph, focus
on processing graph signals defined on undirected graphs.
According to the analysis above, graph Laplacian is replaced
with adjacency matrix. To fit whole-graph level regression
task, the proposed method designs two aggregation neural
networks. Formally, it is denoted as:

Y =f(G,X)Θ (GNN definition Eq. 1)

= GCN(W,X)︸ ︷︷ ︸
f=GCN

Θ (apply GCN with adjacency matrix)

=GCN(W,X)ΘfeatΘgate (Θ→{Θfeat,Θgate})

=σ(WX ΘGCN︸ ︷︷ ︸
GCN

)ΘfeatΘgate, (rewrite GCN in matrix form)

(2)
where activation σ is implemented by ReLU function. The
running time tends to grow at an exponential rate as the
number of encrypted gates increase. Therefore, the model is
modified as:

Y = exp(WX ΘGCNΘfeatΘgate) (3)

As illustrated in Fig. 2, the proposed ICNet conducts two
graph convolutional operations (GCN) to fuse the information
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Figure 2: Illustration of ICNet structure: Two graph convolutions (WX ΘGCN) followed by ReLU activation, and attention
layers for features (Θfeat) and gate (Θgate) respectively.

from graph structure and gate features. Then two sets of neural
networks are performed for the feature and gate aggregation.
To further increase the model’s interpretability, we replace
fully connected layers Θfeat and Θgate as follows: Generally,
sum or mean function is a typical method for aggregating node
attribute into lower dimensional vector. This treats voting from
each gate equally, which is not fit in theory. For example,
the encrypted gate should be weighed higher, since it impose
more difficulty on obfuscation task; gate types also have a
significant impact on runtime [23]. Therefore, a more flexible
way is to build a neural network to automatically learn attribute
aggregation. To fit the whole-graph level regression task, the
proposed method designs two aggregation neural components
based on soft attention mechanism [26] for feature-level and
gate-level. Formally, the feature based attention is calculated
as:

ai =
exp(ei)∑
i exp(ei)

, ei =
∑
i

θiFi, (4)

where Fi represents ith feature after GCN, θi is the weight
parameter for Fi, ai is the corresponding attention and thereby
the output of this layer is

∑
i aiFi. This attention shows which

feature contributes more to the obfuscation time. Similarly,
gate-wise attention is utilized for gate-level aggregation by
setting Fi to ith gate in (4).

Algorithm 1: ICNet
Input: An integrated circuit graph G = {V, E}, gate features

set: xj(i), i ∈ 1, 2, ..., |V| for each encryption instance
Dj , the real runtime Yj for instance Dj

Output: A neural network function with parameters ΘGCN,
Θfeat and Θgate

1 // Data preparing
2 Calculate W which is the adjacency matrix of G
3 Split encryption instances D into training set Dtrain and

testing set Dtest
4 Split both Dtrain and testing set Dtest into batch set dtrain

and testing set dtest
5 // Update ICNet
6 θ = {ΘGCN,Θfeat,Θgate}
7 Initialize θ with Gaussian or uniform distribution.
8 repeat
9 Randomly select one dtrain = xd1, xd2, ...

10 Calculate predicted runtime Ŷ . Eq. 3 and 4
11 Calculate residues δ = Y − Ŷ
12 Compute derivatives to update parameters: θ ← θ + β∇θδ,

where β is learning rate
13 until δ convergence;

C. Algorithm description
The Algorithm 1 first prepare graph adjacency as circuit

connection representation (line 2). To fit the machine learning
schema, the whole dataset is split into training and testing
dataset. Each dataset is then split into small batch size to
improve learning efficiency (line 3-4). ICNet training is an
iterative process which updates the model until the residues

are small enough or converged (line 6-13). First, the model pa-
rameters are initialized by Gaussian or uniform distribution. In
each iteration, a batch of the training set is selected randomly.
By equation 3, the model computes the predicted runtime (line
10) and then calculates the residues between real runtime and
prediction (line 11). Following normal deep learning schema,
the model update parameters by the derivatives regarding the
parameters themselves with learning rate (line 12).

IV. EVALUATION

This section elaborates evaluation of the proposed method
ICNet with competitive baselines including: Graph deep learn-
ing methods: GCN [8], ChebNet [4]. The input of these models
above is exactly same as our model. We also compare against
several state-of-the-art regression models1: Linear Regression
(LR), LASSO [25], Epsilon-Support Vector Regression(SVR)
(Two kernels were applied: polynomial (P) and RBF (R)),
[22], Ridge Regression (RR) [17], Elastic Net (EN) [33],
Orthogonal Matching Pursuit (OMP) [15], SGD Regression,
Least Angle Regression (LARS) [5], Theil-Sen Estimators
(Theil) [3]. These regression models does not model graph
using Laplacian or adjacency matrix, since they can only
accept feature vector. Therefore, the input are encoded as mean
or sum on concatenation of Laplacian or adjacency matrix and
gate features.

A. Data processing

The datasets are obtained by running SAT algorithm [24],
[23] on real-world ISCAS-85 benchmark: First, we take a
circuit and select a random gate and replace it with LUT of
fixed size (LUT size 4 in current work). To deobfuscate, we
implement SAT attack algorithm [24], [23] with the obfuscated
circuit netlist as input. We monitor the time that SAT-attack
takes to decode the key, which is the deobfuscation time. The
proposed model is evaluated on two datasets: Dataset 1: the
total number of the encryption location ranges from 1 to 350,
this is for testing if the model is sensitive to the number of
encrypted quantity of gates. Dataset 2: the total number of
the encryption location ranges from 1 to 3, this is for testing
if the model can handle very small value.

The circuit in the experiments is the same, and the total
gate number of the circuit is 1529. For graph deep learning
methods, the graph is represented using Laplacian matrix or
adjacency matrix, while for general regression baselines, the
graph Laplacian or adjacency matrix is summed or averaged
across gates. Though the evaluations showed here are mere
proof-of-concept of how powerful the proposed GCN based
deobfuscation runtime prediction is, it can be applied to an
SAT-hardening solution utilizing any replacement policy, LUT
size and other SAT parameters, by retraining GCN.

1https://scikit-learn.org/stable/modules/linear model.html
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B. Experiment configuration
The features of gate used in experiments include: gate

mask: if the gate is encrypted, the value is set to 1, otherwise
0. and gate type: the gate type include {AND, NOR, NOT,
NAND, OR, XOR}, they are encoded using one-hot coding,
such as [1,0,0,0,0,0] for AND and [0,1,0,0,0,0] for NOR gate.

For graph deep learning model (ChebNet and ICNet), the
graph structure is represented using graph Laplacian matrix or
adjacency matrix. These model employ ADAM [11] optimizer
and will stop learning when the learning loss is converged. The
implementation of our model will be available online. All the
baselines and the proposed model are tested on two different
feature set, since gate type is useful or not is unknown.:
Location: Only the gate mask is included. All features:
Besides gate mask, gate type is also included.

For node aggregation, we apply sum, and mean since they
are popular. Deep learning model can have another node aggre-
gation method, i.e., learning by a neural network automatically.
Therefore, in the results, ChebNet-NN and ICNet-NN denote
the automatic version. It is expected that a deep neural network
can learn an optimal aggregation which is not worse than our
assumption, i.e., sum or mean.

Table I: Regression Performance (MSE) on Dataset 1

Location All feat
Method Sum Mean Sum Mean
SVR RBF 1.6791 0.6784 1.6675 0.6739
SVR Poly 0.1913 2.1890 0.1696 2.2091
SGD 2.1450e+25 2.1823 1.0430e+26 2.2072
LR 0.2839 0.2284 0.2449 0.2253
RR 0.2309 2.1508 0.2058 2.1738
LASSO 0.9213 2.1843 1.0127 2.2083
EN 0.5763 2.1843 0.6409 2.2083
OMP 1.8182 1.9192 1.8651 2.0337
LARS 1.9968 2.1277 2.0434 2.1833
Theil 0.2948 0.2238 0.2385 0.2277
ChebNet 0.1484 8.8370e+33 0.1761 0.1760
ChebNet-NN 0.17858 3.8549e+27
GCN 0.3364 0.4149 0.2496 0.3290
GCN-NN 0.1811 0.1606
ICNet 0.1534 0.1256 0.2390 0.1902
ICNet-NN 0.0843 0.1367

C. Regression Results
In the dataset 1 experiment (Table I, all methods achieved

acceptable mean square error (MSE) except SGD (sum) which
did not learn a reasonable model to predict the runtime, since
the value is tremendous (at e+25/+26 scale). Most regression
methods are sensitive to the aggregation method. For example,
only using location feature, MSE of RR is 0.2309 when
using sum, but it got 2.1508 when using the mean function.
Sensitive models include SVR, LASSO, and EN. The best of
the regression baselines is SVR (ploy), which achieved MSE
of 0.1913. On the other hand, ChebNet is slightly better than
the best regression model. However, ChebNet is not stable
and sensitive to the aggregation method and feature set since
it may yield a substantial error. Our proposed ICNet-NN is
stable to the feature and aggregation setting and outperformed
all the other methods, i.e., 0.0843 of MSE. Note that ICNet-
NN is better than ICNet with sum or mean function, which
demonstrates that there exists a better aggregation method,
and graph neural network can learn it automatically. ICNet is
always better than GCN under any settings, which shows that
our improvement based on GCN works on circuit scenario.
While in the dataset 2 (Table II), it is more challenging,
since all the runtime are small and the model has to be very
precise to achieve low MSE. All methods at almost the same
level of MSE. Once again, some of the regression models
are not stable such as SGD and LR. Graph deep learning
method includes ChebNet and ICNet still at the best error
level. ChebNet can achieve the best level but sensitive to the

Table II: Regression Performance (MSE) on Dataset 2

Location All feat
Method Sum Mean Sum Mean
SVR RBF 0.0051 0.0048 0.0050 0.0051
SVR Poly 0.0048 0.0048 0.0048 0.0051
SGD 7.6301e+25 0.0045 2.0675e+26 0.0049
LR 6.9063e+23 4.6521e+20 7.2916e+25 5.8600e+23
RR 0.0070 0.0045 0.0065 0.0049
LASSO 0.0047 0.0045 0.0046 0.0049
EN 0.0047 0.0045 0.0046 0.0049
OMP 0.0047 0.0045 0.0045 0.0049
PAR 0.0054 0.1918 0.0051 0.3143
LARS 0.0047 0.0045 0.0046 0.0049
Theil N/A N/A N/A N/A
ChebNet 0.0047 0.0045 4.3570e+28 0.0048
ChebNet-NN 0.0043 0.0047
GCN 0.0061 0.0046 0.0048 0.0050
GCN-NN 0.0050 0.1606
ICNet 0.0049 0.0047 0.0040 0.0043
ICNet-NN 0.0051 0.0048

settings (i.e., location or all feature), while ICNet is insensitive
to this setting. Therefore, ICNet is more stable than GCN and
ChebNet, since the difference of MSE between location and
all feature is smaller than that of ChebNet or GCN. Under
all feature setting, ICNet-NN is still the best method, and it
outperformed its mean and sum version.

The proposed method, ICNet, not only predicted the value
very precisely but also with small variance. The runtime of
ICNet is 1.1336 seconds on average, ranging from 1 to 2
seconds on dataset 1 and 2. This is because runtime of ICNet
only depends on its parameter number. The instance with the
largest runtime on dataset 1 and 2 spends 2411.11 seconds by
actual solver. Therefore, ICNet can save 99.95% of solver’s
time to get accurate runtime.

Next, Fig. 3 illustrates several predicted value along with
real value to analyze the prediction characterization. Since
there is little difference in dataset 2, we choose several
competitive baselines in dataset 1 experiments under all feature
setting. Several baselines performed very badly such as OMP
and SGD which only output values around a constant level.
SVR (RBF) is also bad and yield constant value when the
real runtime is larger than a threshold. The results of EN
and LASSO is positively related to the real values, but the
correlation parameters are significantly different from the
truth. Linear, RR, SVR (POLY) and Theil predicted the values
that are relatively closer than that of the other baselines, but
with high variance.

D. Case Study: Attentions on Attributes

The subsection studies the attention mechanism quantita-
tively. Several circuits are evaluated, as shown in Table III.
Gate number consistently attracted greater attention than the
gate type by 9.64% on average. This motivates us to study
the correlation between actual runtime and gate number. The
Pearson (P) and Spearman (S) correlation are 0.8238 and
0.9722 on average in Table III. Take circuit c7553 as an ex-
ample, the runtime is 2.37% of gate number. Different circuits
show different linear parameters, which gives us a convenient
message that can accurately predict the deobfuscation time and
could serve circuit obfuscation task.

Table III: Case study: attributes and extracted rules.

circuit gate # gate type corr(P/S) linear param
c7553 56.40% 43.59% 0.8754 / 0.9345 0.0237
c499 54.39% 47.05% 0.8149 / 0.9965 0.1300
c2670 52.94% 47.05% 0.7769 / 0.9753 0.0559
c1335 56.27% 43.72% 0.8282 / 0.9846 0.0599
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(a) EN (b) LASSO (c) Linear (d) OMP (e) RR

(f) SGD (g) SVR(Poly) (h) SVR(RBF) (i) Theil (j) ICNet-NN

Figure 3: Comparison between predictions and real values: Pink dot are real values, blue lines are the predictions. x-axis is
data index in testing data while y-axis is runtime value in log scale. Note that only SGD has different y-axis scale, i.e., 1e+13.

V. CONCLUSION

In this work, we have introduced a neural network model for
recovering SAT runtime on ICs, which expedites the evaluation
on the hardness of obfuscated instances and therefore boosts
the efficiency of developing obfuscation policy. To properly
fuse graph structure and gate features, an enhanced graph
convolutional operator is introduced. The proposed ICNet can
avoid attribute propagation which is in the original GCN but
not suitable for ICs. ICNet automatically extracts determi-
nant features and aggregates gate representation regarding the
runtime. Experiments on real-world datasets suggest that the
proposed model is capable of modelling the runtime regarding
the circuit graph accurately and stably, improving the baselines
by a significant margin.
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