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9 Abstract—Memory access latencies and low data transfer bandwidth limit the

10 processing speed of many data intensive applications such as Convolutional

11 Neural Networks (CNNs) in conventional Von Neumann architectures. Processing

12 in Memory (PIM) is envisioned as a potential hardware solution for such

13 applications as the data access bottlenecks can be avoided in PIM by performing

14 computations within the memory die. However, PIM realizations with logic-based

15 complex processing units within the memory present complicated fabrication

16 challenges. In this letter, we propose to leverage the existing memory

17 infrastructure to implement a programmable PIM (pPIM), a novel Look-Up-Table

18 (LUT)-based PIM where all the processing units are implemented solely with

19 LUTs, as opposed to prior LUT-based PIM implementations that combine LUT with

20 logic circuitry for computations. This enables pPIM to perform ultra-low power &

21 low-latency operations with minimal fabrication complications. Moreover, the

22 complete LUT-based design offers simple ‘memory write’ based programmability

23 in pPIM. Enabling precision scaling further improves the performance and the

24 power consumption for CNN applications. The programmability feature potentially

25 makes it easier for online training implementations. Our preliminary simulations

26 demonstrate that our proposed pPIM can achieve 2000x, 657.5x and 1.46x

27 improvement in inference throughput per unit power consumption compared to

28 state-of-the-art conventional processor architecture, Graphics Processing Unit

29 (GPUs) and a prior hybrid LUT-logic based PIM respectively. Furthermore,

30 precision scaling improves the energy efficiency of the pPIM approximately by

31 1.35x over its full-precision operation.

32 Index Terms—Processing in memory, look up table, convolutional neural network,

33 deep neural network, DRAM

Ç

34 1 INTRODUCTION

35 MEMORY-CENTRIC processing is an emerging area of research
36 which is gaining an increasing attention due to its ability to address
37 the memory-processor communication bottleneck, popularly known
38 as the ‘Memory Wall’ [1]. Highly memory-intensive applications
39 such as Convoluted Neural Networks (CNN) and Deep Neural Net-
40 works (DNN) demand massive parallel computations to be per-
41 formed at a very low latency. Processing-in-memory (PIM) is
42 envisioned as a desirable alternative to eliminate the power and per-
43 formance bottleneck of the traditional VonNeumann architectures as
44 it enables computation either in or near data. However, due to imple-
45 mentation constraints, only small processing units capable of simple
46 computations are featured in PIM architectures. On the other hand,
47 image processing and Deep Learning (DL) applications such as
48 CNNs require relatively simple arithmetic calculations on massive
49 amounts of data. Therefore, PIMs capable of intense parallelization of

50simple computational tasks that largely eliminating the power-delay
51cost of data movement between the processors and the memory ele-
52ments are suitable for DL applications.
53Attributing processing abilities to the memory can be per-
54formed in different ways such as logic-based processor implemen-
55tation [2], bulk bit-wise in-situ processing with specialized logic
56circuits [3], [4], [5], [6], LUT-based processor implementations [7]
57and 3-D implmentations [8]. In this paper, we propose a program-
58mable PIM (pPIM) architecture based on Look-UP-Tables (LUTs)
59within a Dynamic Random-Access Memory (DRAM) chip. LUT-
60based PIMs [7] have been shown to be significantly faster and
61energy-efficient compared to bit-wise logic circuit based architec-
62tures [3], [4], [5] due to the absence of switching power consump-
63tion of logic gates. Moreover, LUTs of the pPIM provide functional
64flexibility to implement different types of computations necessary
65in DL applications such as linear algebraic operations, different
66activation functions and pooling. Data movements among the
67pPIM processing nodes are facilitated by existing data movement
68mechanisms in DRAM with minimal modifications for faster oper-
69ation and ease of adoption.
70The LUT based approach also enables us to support approxi-
71mate computing through precision-scaling. The pPIM is capable of
72operating on scaled 4-bit approximate representations of the oper-
73ands, resulting in further lowering of latency and power consump-
74tion without significant compromise of the accuracy of the CNN
75applications. The baseline pPIM is capable of achieving a frame
76rate of 96.5 fps at a power consumption of 3.35 W for AlexNet.

772 PPIM ARCHITECTURE

78The PIM architecture proposed in this work is designed to perform
79data-intensive applications such as CNNs and DNNs. This archi-
80tecture is presented in a hierarchical view in Fig. 1. At the center of
81this architecture is the proposed pPIM core, which facilitates pro-
82grammable operations on two 4-bit inputs. Nine of the pPIM cores
83are grouped together to form a pPIM cluster that can perform mul-
84tiple operations such as Multiply-and-Accumulate (MAC) and acti-
85vation functions on 8-bit operands. These clusters are arranged in
86rows across DRAM subarrays, forming an overall 2-D array of clus-
87ters across a DRAM bank. An array of these pPIM clusters can be
88used to perform CNN or DNN computations.

892.1 pPIM Core

90In order to offer a larger degree of functional flexibility and
91programmability, an LUT-based design is adopted for the pPIM
92core instead of a pre-defined logic circuit. Moreover, it has been
93shown in recent works such as [7] that an LUT-based, in-memory
94arithmetic unit can perform multiplications with significantly
95lower delay compared to bitwise computing [3], [4], [5], [6] without
96any trade-off in accuracy. Our proposed pPIM with LUT-based
97approach provides the ability to set its functionality to any arbi-
98trary operation. The LUTs are implemented with 8-bit 256-to-1
99multiplexers, as shown in Fig. 1. The 8-bit MUX is necessary to
100accommodate 8-bit operations such as the multiplication of two 4-
101bit operands. The MUX select lines are controlled by two 4-bit
102inputs which serve as the operands, as shown in Fig. 1. The inputs
103to the MUX, calledQ1 function-words, are directly read from a register
104file located inside the pPIM core. Therefore, switching between
105functionalities can be achieved simply by reading new a function-
106word from the register file into the MUX inputs. Additional func-
107tion-words can be accessed from the DRAM subarray when neces-
108sary. The inputs to the pPIM cores are received through the
109interconnection Router of the pPIM cluster. These can be data-words
110stored in the DRAM subarray or from the chip I/O (in case of
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111 direct streaming data), the output from another PIM cluster or
112 another pPIM core. This communication method of the pPIM cores
113 is discussed in detail in the next subsection.

114 2.2 pPIM Cluster With Precision-Scaling

115 The pPIM clusters are formed by having nine pPIM cores arranged
116 in 3 x 3 2-D grid, with a view to scaling up the size of the operands.
117 In the case of CNNs or DNNs, a MAC operation is the most expen-
118 sive and the most frequently used arithmetic function in a convolu-
119 tional layer. Therefore, here we discuss a use-case where a cluster
120 can be efficiently used to perform MAC operations on 8-bit oper-
121 ands. We choose 8-bit operands in our use-case as it represents the
122 majority of image & video pixel data.
123 In order to achieve this, the 8-bit MAC instruction is disinte-
124 grated into a series of 4-bit operations that can be performed by

125individual pPIM cores. The 8-bit multiplication is disintegrated into
126four 4-bit multiplication and nine 4-bit addition operations. We
127define partial products Vx ðx ¼ 0; 1; 2; 3Þ to be obtained through
128multiplication of the two 8-bit inputs, ‘a’ and ‘b’, where each input
129is split into its upper and lower four bit segments. Subscripts ‘H’
130and ‘L’ refer to the upper and lower segments respectively:

V0 ¼ aL � bL (1Þ
V1 ¼ aL � bH (2Þ
V2 ¼ aH � bL (3Þ
V3 ¼ aH � bH; (4Þ 132132

133

134Aggregation of the individual partial products from (1), (2), (3),
135(4)above is achieved in 8 stages of accumulation by adopting the
136data flow shown in Fig. 2. Data communications among the pPIM
137coreswithin a cluster are achieved through theRouterwhich is capa-
138ble of establishing parallel connections among all cores. It consists of
139eightteen 8:1 4-bit MUXes which together form a SPIN interconnec-
140tion fabric. In order to increase the performance of the pPIM,we fur-
141ther propose the use of approximate computing through precision
142scaling of operands. This is obtained by aggressive truncation of 8-
143bit operands down to only the 4 most significant bits (MSBs). The
144MAC operation for precision-scaled 4-bit operands require only 4
145stages of operation in total for the product to be accumulated after
146the multiplication is achieved from (4) using only the most signifi-
147cant 4 bits (aH & bHÞ of the operands. This reduces the MAC opera-
148tion execution time by half. This precision-scaled approach is
149evaluated against the baseline 8-bit approach in terms or perfor-
150mance, power and accuracy in Section 3.

1512.3 PIM Chip Architecture – Integration With Memory and
152Data Communication Support

153A 2-D array of pPIM clusters is implemented on the memory chip
154in one memory bank where each cluster can performs at least one
155independent operation (i.e., MAC). The clusters are arranged along
156subarrays and are interfaced to the sense-amplifiers whereby they
157can communicate to the memory bit lines to perform read and
158write operations. The mapping of the data onto the proposed pPIM
159is performed as a weight stationary approach i.e., by loading the
160weights onto the pPIM, one can feed in the input data to obtain the
161output. Data communication is carefully limited to vertical move-
162ments so that the source and the destination of the communications
163are always located on the same bitlines, either in the same or differ-
164ent subarrays. If the source and the destination clusters are located
165in the same memory subarray but different rows, then a row copy-
166ing mechanism called RowClone [9] is utilized in which the entire
167row of memory is loaded into the subarray row buffer. The row is
168then written into the destination row(s) from the row buffer.

Fig. 1. Hierarchical pPIM Architecture showing pPIM cluster arrangement in a DRAM bank, Core organization inside a cluster and the Core microarchitecture respectively
from the left to the right.

Fig. 2. Sequential model of 8-bit MAC (exact) operation and 4-bit precision-scaled
(approx.) MAC. In the figure, blue and red boxes represent cores performing 4-bit
multiplication and 4-bit addition respectively. The left and right arrows coming out
of each box represent the upper and lower 4-bit results of the core’s operation
respectively.
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170 rays, then an access-transistor based modification, as proposed
171 in LISA [10], is adopted to facilitate fast data transfer. For complete
172 parallelization of operations such as matrix manipulations
173 required by CNNs and DNNs through data re-use, multicasting of
174 data is essential. Multicasting is facilitated by writing the subarray
175 row buffer to multiple destination rows. This is implemented by a
176 custom control command from the memory controller, inspired
177 from a similar mechanism presented in AMBIT [3], which enables
178 multicasting to specific destination rows using only one additional
179 custom row decoder. By resizing the sense-amplifiers, multicasting
180 can be expanded to more than three rows. Since the adopted mech-
181 anism of RowClone [9] for intra-subarray data transfer is faster
182 than LISA [10] for inter-subarray communication, we propose to
183 enlarge the subarrays as much as possible in order to accommodate
184 maximum number of pPIM clusters in the same subarray. To avoid
185 longer bitlines for larger subarrays, we envision increased number
186 of columns rather than increased number of rows for enlarging the
187 subarrays. This can be implemented by having fewer but larger
188 memory banks in the DRAM. These modifications primarily opti-
189 mize the performance of the PIM architecture [5], rather optimizing
190 the memory organization itself.
191 Due to programmability of the pPIM cores and hence that of the
192 clusters as well, the proposed pPIM fabric can perform CNN or
193 DNN applications involving matrix multiplications or filtering
194 when disintegrated into a series of parallel MAC operations. More-
195 over, by appropriate programming of the function-words, pPIM
196 clusters can also perform more CNN or DNN operations such as
197 pooling and activation functions.

198 3 PERFORMANCE EVALUATIONS

199 In this section, we evaluate the pPIM in terms of performance,
200 energy consumption and area for DL applications.

201 3.1 pPIM Core and Cluster Characteristics

202 The delay, power and area for the pPIM core and cluster are
203 obtained from Synopsys Design Compiler using 28 nm standard
204 cell libraries from TSMC and are presented in Table 1. To reduce
205 the area overhead, the LUT MUXes are implemented using Trans-
206 mission Gates (TG). The delay of a single 8-bit MAC performed
207 within a cluster involves computations inside the PIM cores as
208 well as communication among the cores. Power consumption of
209 the cluster is that of all the cores and the core-to-core communica-
210 tion. The power and delay for intra and inter subarray data trans-
211 fers are obtained from [9] and [10].

212 3.2 Performance Evaluation With DL Applications

213 We present the comparison of the proposed pPIM architecture with
214 a state-of-the-art CPU: Intel Knights Landing (KNL), GPU: Nvidia
215 Tesla P100 along with bulk bit-wise computation based PIM archi-
216 tectures such as the DRAM based DRISA [5], DrAcc [6] & SRAM

217based Neural Cache [4] and finally, another LUT based PIM, LAcc
218[7] in terms of power consumption and throughput for CNN infer-
219ence in Fig. 3a. We find that all the PIMs outperform both CPU and
220GPU architectures due to the absense of memory access overheads.
221Neural Cache is the slowest among the PIMs studied here due to its
222bit-serial nature of computing. pPIM achieves higher performance
223compared to LAcc due to pPIM’s finer (4-bit) granularity of opera-
224tions that results in smaller sized LUTs. Moreover, in-memory XOR
225opration based mechanism for adding the partial products adopted
226in LAcc is more expensive both in power and area compared to
227additions within the LUTs themselves in pPIM. DRISA has higher
228throughput than both of the LUT-based PIMs due to its ability to
229parallelize operations along multiple memory banks. Howeover,
230this also causes higher power consumption in DRISA compared to
231both LAcc and pPIM. The higher throughput of DrAcc can be attrib-
232uted to its use of ternary weighted convolutions that reduce MACs
233to simpler addition operations. A higher size pPIM-512 with 512
234clusters can improve the throughput significantly, albeit at
235increased power consumption.
236Figs. 3b and 3c shows a comparison of area and efficiency per
237unit area of the PIMs respectively. The pPIM with 256 clusters has
238a low area overhead (10.64 mm2) with TG implementation. LAcc
239[7] reserves 4K lines per bank (of size 16K) for the LUTs and DRISA
240[5] occupies �40 percent chip area for implementing the logic,
241leading to inefficient utilization of memory space. The LUT-based
242PIMs have higher efficiency per unit area as they leverage memory
243to implement their functionalities.

2443.3 Performance Evaluation With Precision Scaling

245We compare the performance and power consumption of the pPIM
246with full-precision 8-bit operands as well as with precision-scaled
2474-bit operands for various CNNs such as AlexNet, ResNet 18,

TABLE 1
Characteristics of PIM Components in 28 nm Technology Node

Component Delay (ns) Power(mW) ActiveArea
(mm2)

PIM Core 0.8 2.7 4616.85
PIM Cluster (MAC Operation) 6.4 5.2 41551.66
Intra-Subarray
Communication
(RowClone [9])�

63.0 0.028 mJ/comm N/A

Inter-Subarray
Communication
(Lisa–RISC [10]) for subarrays
1/7/15 hops away �

148.5/196.5/
260.5

0.09 / 0.12 / 0.17
mJ/comm

N/A

�Represented in 28 nm technology node.

Fig. 3. Comparison of (a) power and throughput of full precision pPIM-256 & preci-
sion scaled pPIM-256A with other processors, (b) PIM areas (c) energy efficiency
(power/throughput) per unit PIM area with other processors. Area of only PIMs are
considered.

Fig. 4. Comparison of Performance & Energy Consumption of both full precision
(8-bit fixed point) and scaled precision (4-bit fixed point) pPIM for different CNN
algorithms.
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249 of precision-scaled computing on pPIM in Fig. 4. We can see that
250 due to the use of only 4 core-steps with precision scaling, as was
251 shown in Fig. 2, the delay associated with performing one 4-bit MAC
252 operation is half of that for 8-bitMAC, improving its throughput dur-
253 ing inference by about 2x. For the 4-bit MAC operation, only 4 single
254 core-steps are required, resulting in approximately 1.35x reduction in
255 power consumption per MAC operation. This enables an overall
256 reduction in energy per frame in inference across all the CNNs as
257 shown in Fig. 4. While precision scaling improves both performance
258 and power, it can result in a loss of accuracy of the CNNs. Corre-
259 sponding top-5 accuracies on MNIST benchmarks are presented in
260 Fig. 5. For VGG-16 we used a representative set of images from
261 ImageNet for which the accuracy even with 64 floating point preci-
262 sion is only 72 percent. We observe that even with 4-bit fixed point
263 precision scaling, the accuracy of the CNNs do not degrade signifi-
264 cantly compared to that in the case of 8-bit fixed point precision.
265 Moreover, the programmability of pPIM enables the user to choose
266 the precision level depending on the application demand.

267 4 CONCLUSIONS AND FUTURE WORK

268 In this paper we present the design of a programmable PIM archi-
269 tecture, implemented with LUTs on a DRAM platform that can be
270 programmed to perform versatile CNN operations such as convolu-
271 tions, pooling & activation function, accompanied by a high-
272 bandwith & low latency data communication model built upon the
273 existing communication infrastructure of DRAM. The performance
274 evaluation of the pPIM chip for multiple CNNs and its comparison
275 against state-of-the-art CPU, GPU and other PIM architectures is pre-
276 sented. We also present the performance and power consumption of
277 pPIMwith precision scaling and can observe that it improves through-
278 put and power by 2x and 1.35x respectively over its full-precision
279 operation mode, while sacrificing minimal accuracy. The functional
280 flexibility of the LUT based pPIM enables the expansion of its range of
281 functionality beyond DL applications to finite-element method (FEM)
282 computations, large-scale linear algebraic operations or other scientific
283 applications aswell as support for online learning. In future,we intend
284 to implement online learning to take full advantage of the programma-
285 bility of the pPIMduringCNN training.
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Fig. 5. Accuracy comparison of both full precision (8-bit) and scaled precision
(4-bit) pPIM architecture for different CNN algorithms.
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