Redox Titration Experiment

CHEM 251 Week of September 27th, 2010 Alexis Patanarut

CHEM 251 Laboratory

The week of October 4th

- Experiment: Redox Titration of Oxalate with Permanganate, pp. 131-136
- Prelah
- Quiz: Material in laboratory manual
- Due this week: Coordination Compound lab report

An Overview

- Titration is a method that is commonly used to determine the unknown concentration of a known reactant.
- The titrant is the reagent of known concentration and the volume is used to react with the analyte, which is the reagent of unknown concentration.
- Redox titration is a type of titration based on a redox reaction between the analyte and titrant.
- A redox reaction is one in which the atoms have their oxidation numbers (or states) changed.
 - Oxidation = loss of electrons, increase in oxidation number
 - Reduction = gain of electrons, decrease in oxidation number

An Overview, con't

- Today you will be analyzing your coordination compound from last semester's experiment for its oxalate content by performing a redox titration with potassium permanganate.
 - The reaction of permanganate tends to be pretty slow (30-60 seconds), which may make the concept of titration seem impractical.

 However, this rxn is sped up by the addition of a catalyst.

 - The catalyst in this case is manganese. The addition of manganate will speed up the reaction in an example of autocatalysis.
- The method to today's madness can be summarized in one statement:
- Vol (KMnO₄) x M (KMnO₄) x mole ratio x M.W. (oxalate)
- All in all, if you are left with the unit you are trying to find when all is said and done, you are in good shape.

The Titration

- Place \sim 0.1 g of coordination compound into three 250mL Erlenmeyer flasks and add \sim 20 mL of 1.0 M sulfuric acid.
- Fill a buret half-full with KMnO₄ and make sure there are no air bubbles in the tip of the buret. Perform the titration in the following fashion:

 Gently heat the solution until the coordination compound dissolves and the temperature of the solution is 80-90 degrees. Please do not boil the solution or use the thermometer as a stirring rod.

 Titrate the solution with the KMnO₄ in the buret while maintaining the solution temperature above 60 degrees.

 Because our coordination compound is yellow-green, our solution will appear orange in the flask. As we near the endpoint, the solution will turn colorless. The endpoint itself is marked by a clear pink color.

 Titrate until the solution remains pink for 15 seconds after a drop is added.

 - Do three trials of this titration and make sure your volumes agree with one another.

Outside of Class

- Calculate the following:
 - moles of KMnO₄
 - moles of oxalate in the samples
 - mass of oxalate
 - experimental weight percent of oxalate for each titration
 - average weight percent of oxalate
 - standard deviation
 - theoretical weight percent
 - percent error
- Create a histogram of the distribution of experimental weight percent results.

	1
Outside of Class, con't	
Answer the questions in the accompanying handout.You should have the following in your lab	
report: - Class data (as downloaded)	
Results tableSample calculationsOne histogram	
one mategram	
	1
<u>A few reminders</u>	
 Hand in your carbon copies to me at the end of class. 	
 Your lab report will be a formal lab report, which includes: 	
 Cover page/abstract Introduction/Purpose/Procedure 	
3. Data4. Sample calculations	
5. Results 6. Discussion/Conclusion	
o. Discussion conclusion	
The Object Chart	1
The Cheat Sheet	
 # moles of MnO₄ = (concentration of titrant) x (volume of titrant, 	
liters)	

 # moles of oxalate = (5/2) x (# moles of permanganate)

• Molarity = moles/liter