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Primal-Dual Nonlinear Rescaling Method for
Convex Optimization!
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Abstract. In this paper, we consider a general primal-dual nonlinear
rescaling (PDNR) method for convex optimization with inequality
constraints. We prove the global convergence of the PDNR method
and estimate the error bounds for the primal and dual sequences. In
particular, we prove that, under the standard second-order optimality
conditions, the error bounds for the primal and dual sequences con-
verge to zero with linear rate. Moreover, for any given ratio O<y <1,
there is a fixed scaling parameter k, >0 such that each PDNR step
shrinks the primal-dual error bound by at least a factor 0 <y <1, for
any k>k,. The PDNR solver was tested on a variety of NLP prob-
lems including the constrained optimization problems (COPS) set.
The results obtained show that the PDNR solver is numerically sta-
ble and produces results with high accuracy. Moreover, for most of
the problems solved, the number of Newton steps is practically inde-
pendent of the problem size.
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1. Introduction

For LP calculations, interior-point methods (IPM) in general and pri-
mal-dual IPM in particular are a great success story, brilliantly written in
Ref. 1; see also the references therein. The key idea of the primal-dual
(PD) methods consists in replacing the unconstrained optimization of the
log-barrier function by solving a particular PD system of equations. Then,
instead of solving the PD system, one has to perform one or two Newton
steps toward the solution followed by a barrier parameter update.

In LP calculations, the central path properties (see Refs. 2-4),
structure of the PD system, and substantial advances in numerical linear
algebra (see Ref. 1) produced spectacular numerical results (see Refs. 1,
5-7). Moreover, along with polynomial complexity, superlinear or even
quadratic rate of convergence was proven for some IPM (Ref. 8).

The success in LP stimulated the extension of the PD-IPM approach
for nonlinear programming (NLP, see Refs. 9-12 and references therein).
But the situation in NLP is not as bright as in LP. Even the most
advanced solvers based on the PD-IPM approach sometimes experience
numerical difficulties. This motivated us to try an alternative to the IPM
approach based on NR theory (Refs. 13-17). There are four basic reasons
for using NR theory to develop a PD method.

(1)  NR methods do not require an unbounded increase of the scal-
ing parameter and they have better rate of convergence under
standard assumption on the input data than classical barrier
methods.

(i1) The areca where the Newton method for unconstrained minimi-
zation is well defined does not shrink to a point when the PD
approximation approaches the PD solution.

(iii) The condition number for the Hessian of the Lagrangian for the
equivalent problem remains stable up to the end of the compu-
tation process.

(iv) It does not require any computational effort to find the initial
approximation for either the primal or dual vector, because the
NR methods are exterior in primal space and interior in dual
space.

Although fixing the scaling parameter is not our recommendation, the
ability to find a good approximation to the primal-dual solution with a
fixed and often not very large scaling parameter and use it as a starting
point in the NR methods allowed us to produce robust and very accurate
results on a number of large-scale and difficult NLP problems including
the COPS set (Ref. 18).
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In this paper, we describe and analyze the primal-dual method for
constrained optimization with inequality constraints, which is based on
NR theory. Each step of the NR method is equivalent to solving a pri-
mal-dual (PD) system of nonlinear equations. The first set of equations is
defined by optimality criteria for the primal minimizer. The second set is
given by the formulas for the Lagrange multipliers update.

The primal-dual NR (PDNR) method consists of using the New-
ton method for solving the PD system. The Newton method for the PD
system converges locally to the primal-dual solution very fast under a
fixed scaling parameter. To guarantee global convergence, we combined
the PDNR method with the primal-dual path-following (PDPF) method,
which converges globally, but not as fast.

We introduce a general class of constraint tranformations and formu-
late the PDPF method, establish convergence and estimate the rate of con-
vergence of the PDPF method under very mild assumptions on the input
data. This is our first contribution.

Our second contribution is the globally convergent PDNR method.
One can consider PDNR as three-phase method. In the first phase, we fix
the Lagrange multipliers and increase the scaling parameter from step to
step, so that the primal-dual approximations stay close to the PDPF tra-
jectory. In the second phase, we fix the scaling parameter and update the
Lagrange multipliers from step to step, so that the primal-dual approxima-
tions follow the NR trajectory. In the final phase, the NR method turns
automatically into the Newton method for the primal-dual NR system.

To formulate the PDNR method, we introduce a merit function,
which measures the distance between a primal-dual approximation and a
primal-dual solution. We proved convergence and estimated the rate of
convergence of the PDNR method. It was shown in particular that under
the standard second-order optimality conditions, from some point on only
one PDNR step is required to shrink the distance from a primal-dual
approximation to the primal-dual solution by a chosen factor 0 <y < 1.
This is our third contribution.

Our fourth contribution is the numerical realization of the PDNR
method. The MATLAB code, which is based on NR theory, has been
tested on a wide class of NLP including the COPS set (Ref. 18). The
numerical results obtained corroborate the theory and provide strong
evidence that the PDNR method is numerically robust and able to
produce solutions with high accuracy. Moreover, in many instances, the
number of Newton steps is independent of the size of a problem.

The paper is organized as follows. In Section 2, we consider a convex
optimization problem with inequality constraints and discuss the basic
assumptions. In Section 3, we describe a class of concave and smooth
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enough scalar functions of a scalar argument, which are used to transform
the inequality constraints of a given constrained optimization problem
into an equivalent set of constraints. We describe the basic global and
local properties of the Lagrangian for the equivalent problem in the neigh-
borhood of the primal-dual solution. The extra features of the Lagrangian
for the equivalent problem (as compared with to the Lagrangian for the
original problem) lead to the most important properties of the NR mul-
tipliers method, which we describe at the end of Section 3. In Section 4,
we describe the primal-dual system of equations. Solving the system is
equivalent to one step of the NR method. Then, we consider the Newton
method for the PD system and show that the primal Newton direction for
the PD system coincides with the Newton direction for the primal minimi-
zation of the Lagrangian for the equivalent problem.

The PDNR method converges fast, but locally in the neighborhood
of the solution. Therefore, in Section 5, we consider the globally con-
vergent path-following (PF) method and the corresponding trajectory. We
prove convergence and establish the rate of convergence of the PF method
under very mild assumptions on the input data. The results of this section
complement the convergence results of SUMT type methods (see Refs.
19-21).

In Section 6, we consider the PDPF method. In Section 7, we estab-
lish the rate of convergence of the PDNR method under the standard
second-order optimality conditions. In Section 8, we describe the globally
convergent PDNR method for convex optimization, which combines the
best properties of the PF and NR methods and, at the same time, is free
from their main drawbacks. Also in Section 8, we describe the numeri-
cal realization of the PDNR method and provide some details about the
MATLAB code, which is based on the PDNR method. In Section 9,
we discuss the numerical results obtained for the COPS set (Ref. 18). In
Section 10, we discuss issues related to future research.

2. Statement of the Problem and Basic Assumptions

Let f:R"—R! be convex; let ¢; :R* - R!,i=1,...,m, be concave
and smooth functions. We consider a convex set

Q={xeR":¢;(x)>0,i=1,...,m)}
and the following convex optimization problem:
x* e X*=Argmin{ f (x)|x € Q}.

We assume that:
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(A) The optimal set X* is not empty and bounded.
(B) The Slater condition holds; i.e., there exists X € R" : ¢;(x) > 0,
i=1,...,m.

Due to the Assumption (B), the Karush-Kuhn-Tucker (KKT) condi-
tions hold true; i.e., there exists a vector A*= (A7, ..., A}) €RY such that

VXL(x*,A*)=Vf(x*)—ZA?‘VC,-()C*):O, (1)
i—1

where

Lo, N =f(x) =) hici(x)

i=1

is the Lagrangian for the primal problem P and the complementary slack-
ness conditions hold; i.e.,

¢i(x*)=0, Af>0, Af¢;(x*)=0,i=1,... ,m. )

Also, due to (B), the dual optimal set
L*:{,\GM:Vf(x*)—Z,\ivci(x*)=o,x*ex*} (3)

i=1

is bounded.
Along with the primal problem P, we consider the dual problem D,

A" e L* = Argmax{d (1) |1 e R"}},
where

d() = inf L(x, 1)
xeR

1s the dual function.

3. Equivalent Problem and Nonlinear Rescaling Method

Let —oo <19 <0<t <oo. We consider a class ¥ of twice continuously
differential functions v : (7o, 1) — R that satisfy the following properties:
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»  ¥(0)=0,

i) ¢’ >0,

(i) ¢'(0)=1,

iv) ¥"(1) <0,

(v) there is a >0 that ¥ (¢) < —at?,1<0,

i) (@) <br ', —y"(t)<ct™2,t>0,b>0,c>0.
It follows from (vi) that

(vil) lim t¢'(z/7)=0,¥z>0.
04

The functions ¢ € ¥ are used to transform the constraints of a given
constrained optimization problem into an equivalent set of constraints. Let
us consider a few transformations v € W:

(a) exponential transformation (Ref. 22),
Y1) =1—-e™";

(b) logarithmic modified barrier function (Ref. 13),
Yo (1) =log(r +1);

(¢) hyperbolic modified barrier function (Ref. 13),
Y3()=t/(1+1).

Each of the above transformation can be modified in the following
way. For a given —1 <t <0, we define the quadratic extrapolation of the
transformations (a)-(c) by the formulas

Vi (1), 1>,

(d)llfqi(f)Z{qi(z)zaiz2+bit+ci, <t

where a;, b;, ¢; are found from the following equations:
Vi =qi(0), ¥(O)=¢/(D), ¥/ (@)=4¢/).
We obtain
a=0.5y"(0),b=9'(0) = 1¥" (), c =¥ (@) — ¥/ () + ¢ (1),

so that v, (1) e C 2. Such modification of the logarithmic modified barrier
function (MBF) was introduced in Ref. 23 and was successfully used in
Ref. 24 for solving large-scale NLP.
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The modification leads to transformations, which are defined on
(—00, 00) and, along with the penalty function properties, have some extra
important features. Other examples of transformations with similar prop-
erties can be found in Refs. 14, 17, 19.

For any given transformation ¥ € ¥ and any k > 0, due to properties
(i)—(ii1), we obtain

Q={x:k"Wkei(x))>0,i=1,...,m}. 4)
Therefore, for any k > 0, the following problem:
x*e X*=Argmin{ f )k Y ke;(x)=0,i=1,...,m} 5)

is equivalent to the original problem 7P. The classical Lagrangian
L:R"xR7 xRl . — R! for the equivalent problem (5), which is our main
tool, is given by the formula

L0 A k)= F0) =k~ nipr(kei (x)). (6)

i=1

It follows from the convexity of f(x), concavity of ¢;(x),i=1,...,m, and
concavity of v that L(x, A, k) is convex in x eR”" for any AR’} and k> 0.
Due to property (vii), for any given AeR’}, and k>0, there exists

x(A, k) =argmin{L(x, A, k)|x e R"}.

Therefore, the following NR method is well defined.

Let A0¢ R% ., be the initial Lagrange multipliers vector and let k >0
be fixed. We assume that the primal-dual pair (x*, A*) e R" x R/, has been
found already. We find the next approximation (x**!, A5*1) by the follow-
ing formulas:

Tl = argmin{L(x, A%, k)|x e R"} Q)
or
x5t :Vxﬁ(xﬁ—l, A% k)

=Vf(x5+l)—§:1ﬂ’ (kci (le)),\;vC,»(xS“):o, (8)

i=l1

and

At =y (kci (x”l))xj, i=1,...,m, 9)
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or

)Ls—i-l v (kc (xs-i-l)) )Ls’
where
/ s+1 = / . s+1 m
W' (ke (1)) = ding (v (kei (1)) -
From (8) and (9), for any k>0, we have
Vo LT A8 k) =V Lt st =o.
For the dual function d:R’} — R, we have

dOS)=L(x*,2°),2° €RY,, s=1.

(10)

Generally speaking, the NR method is an exterior-point method for
the primal problem and interior-point method for the dual problem due

to (i) and the formula (9) for the Lagrange multipliers update.

4. Newton Method for the Primal-Dual System

For a given x € R", Lagrange multiplier vector A € R’Y,, and
k>0, one step of the NR method (7)-(9) is equivalent to solving the fol-

lowing primal-dual system:

ViLE MK =V @) =D 9 (kei(®)AiVei (%)
i=1
=V,L(%, 3 =0,
A=W (kc; (%))A,

for £ and A. We consider the Newton step for solving the system

VL@ M=VfE) =) AiVea@) =0,
i=1

A=W (kc; (2))A,

for £ and A under a fixed k>0, using (x, 1) as a starting point.

Assuming that

f=x4+Ax, A=Ai+AX,

(11)
(12)

(13)

(14)
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where
r=W (ke(x)A,

and by linearizing (13)—(14), we obtain the following system for finding the
primal-dual (PD) Newton direction (Ax, A}):
V2 L(x,\)Ax —Ve@x)T Ah=—V,L(x, ) =—V,L("), (15)
—kW" (ke(x))AVe(x)Ax + AL =0, (16)

where

W) = W (ke (x)
— diag(y" (kei ().
A =diag\),,

or
No ¥ ALLO =V O [Ax]_[=VL0)
AL T =k ()AVE() T AL|T| O ’

where I is the identity matrix in R” and Ve(-) = Ve(x).

The matrix N(-) is often sparse; therefore, sparse numerical linear
algebra techniques are usually very efficient (see Refs. 1,7,12,25). We can
reduce also the system (17) by substituting the value of A\ from (16) into
(15). Then, the primal Newton direction is found from the following sys-
tem:

(17)

M(x, 2, A, k)Ax ==V, L(x, A), (18)
where

M()=M(x, %, A k)
=V2 L(x, %) —kVel (0)W” (ke(x) AVe(x).
The matrix M(-) is not only symmetric, but also positive definite under
some standard assumptions on the input data, which we will discuss

later.
The Newton direction for the dual vector is found by the formula

AL =kV" (kc(x)) AVc(x)Ax. (19)
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So, we obtain the new primal-dual vector as

Xxi=x+Ax, A=i+AA
= A+ kW" (ke(x))AVe(x)Ax. (20)

In other words, one step of the primal-dual method consists of the
following operations:

Step 1. Find the dual predictor
A= (kc(x))A.

Step 2. Find the primal corrector Ax from (17) or (18).
Step 3. Find the dual corrector

AL =kW" (kc(x))AVc(x)Ax. (21)
Step 4. Find the new primal-dual vector
Xi=x+Ax, r=i+AA (22)

Before we discuss some numerical aspects of the Newton method for the
PD system, we would like to show that the primal Newton direction is at
the same time the Newton direction for the unconstrained minimization of
L(x, A, k) in x under fixed A €R?, and k> 0. Thus, the following lemma
takes place.

Lemma 4.1. The primal Newton direction for the PD system
(13)—(14) coincides with the Newton direction for unconstrained minimi-
zation of L(x, A, k) in x under fixed A eR’}, and k> 0.

The proof of the lemma is in Ref. 26.

The most costly part of the Newton method for the primal-dual sys-
tem is solving the system (17) or (18). We would like to concentrate on
(18) for the moment. In contrast to the classical log-barrier function, the
matrix V. L(x, A, k) exists at (x*, A*); i.e., the matrix

My =M (x*, \*, A%, k)
=V LG* ) kY (0)Vel () A* Vg () (23)

exists and has a bounded condition number for any fixed k& > 0.

If P is a convex optimization problem and if f(x) or one of the
functions —c;(x),i =1,...,m, is strictly convex and the correspondent
A7 >0, then the matrix Mj is positive definite. It remains true for any
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matrix M(x, A, A, k) in the neighborhood of the primal-dual solution
(x*, A%, if f and ¢; are smooth enough.

Moreover, if the standard second-order optimality conditions are sat-
isfied and if k>0 is large enough, then due to the Debreu theorem, the
matrix My is positive definite even if none of f(x) or —c¢;(x),i=1,..., p,
is convex. It remains true also for any matrix M(-) = M (x, X, A, k), when
(x, 2) is in the neighborhood of the primal-dual solution.

The possibility of using M (-) with a fixed k > 0 in the PDNR method is
one of the most important features of the method. It keeps stable the con-
dition number of matrix M(-) as well as the area where the Newton method
is well defined (see Ref. 27) when the primal-dual sequence approaches the
primal-dual solution (x*, A*). At the same time, the NR method (8)—(9) has
a linear rate of convergence. The ability to compute the Newton direction
with high accuracy allows us to obtain robust and very accurate results on
a number of NLP including the COPS set (see Ref. 18).

Being very efficient in the neighborhood of the primal-dual solution,
the Newton method for the PD system might not converge globally. In
Section 5, we describe a general primal-dual path following (PDPF) method,
which converges globally but not very fast. Later, we will describe an algo-
rithm which allows us to turn automatically the PDPF method into the
PDNR method from some point on. As a result, we obtain a globally con-
vergent method, which combines the best qualities of both the PDPF and
PDNR methods and at the same time is free from their main drawbacks.

5. Path Following Method
For a given transformation ¢ € ¥ and a fixed k£ >0, we consider the
penalty type function P:R" x R, — R! given by formula
P(x,k)=L(x,e, k)
m
=) =k~ Y kei(x). (24)
i=1
Due to (vii), the primal minimizer
x (k) =argmin{P (x, k)|x e R"} (25)
exists for any given k > 0. So, x(k) is the solution for the following system:
m
ViP(x,k)=Vf(x)— Z ' (kei (x)Vei(x)

i=1

=0. (26)
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Let
A(k) = k), ..., Am(K))
be a vector of the Lagrange multipliers, where
ri(k) =y (kei(x())), i=1,....m.
Then,
Vi P(x(k), k) =V f(x(k)) — i Li(k)Vei(x(k))
i=1

= Vi L(x(k), A(k))
=0

and
A(k) =W (ke(x(k)))e,
where

e=(1,...,1)eR™.

27

(28)

(29)

The primal trajectory {x(k)}72, is generally speaking an exterior-point tra-
jectory, while the dual {A(k)}2, is an interior-point trajectory due to (ii)

and (27).

First, we will show the convergence of the path-following method

(25)—(27) and estimate the rate of convergence. Let

c-(x(k)) =max{0, —c; (x(k))|i=1,... ,m}

be the maximum constraint violation at x (k). Keeping in mind that x (k) is
generally speaking a primal exterior point, while A(k) is the dual interior

point, we cannot claim that

f(x(k)) =d (k).
To measure the duality gap, we introduce
A(k) =] f(x(k)) —d (k)| = Zki(k)lcz‘(x(k))l-
i=1
Keeping in mind that

Vi L(x(k), 2(k)) =0,
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we can view

p(x k), A(k)) =max{c_(x(k)), Ak)}

>0

as a merit function, which in a sense measures the distance from (x(k), A(k))
to the primal dual solution (x*, 1*), because

(), A(k)) =0 x (k) =x*, A(k) =1*. (30)

In the following theorem, we establish convergence and estimate the
rate of convergence of the PF method (25)-(27), assuming that ||x|| =

\/XT .
Theorem 5.1. If X* and L* are bounded, then:

@ klirgof(X(k))Zf(X*), klin;od(K(k))Zd(k*)- (3D

(i) The following estimations hold

c-(x(k) =0k, (322)
A()=0k1). (32b)

Proof. Without restricting the generality, we can assume that € is
bounded. If it is not so, then by adding one extra constraint f(x) <M for
big enough M >0, we obtain a bounded feasible set (see Ref. 21 Corollary
20 on p. 94) due to the boundedness of X*. For M >0 big enough, the
extra constraint cannot affect the solution.

First, we prove that {x(k)}72, is bounded. We consider the interior
point x°:¢;(x%) > 0, which exists due to the Slater condition. Assuming
that the sequence {x(k)};2, is unbounded, we have

Jim{]x (k) — x| = 00, (33)
The sequence
{2 = (x(k) =) (k) —x°11 7R

is bounded. Without restricting generality, we can assume that

z= lim z(k).
k— 00
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For
1 (k) = lx (k) — x°|I,

we have

x(k)y=x"+1(k)z (k)
and, due to (33), for any large enough 7 >0, we can find k >0 that 7(k) >
t. From boundedness of Q, we obtain that, for any k > 0 large enough,

x(k) ¢ Q. Therefore, for such k>0, there is an index 1 <i <m, such that
(x>0 and ¢ (" 41(k)z(k)) <0.

Let i =1; then, due to the continuity of c;(x), there is 7 such that

1+ 1z (k) =1 (F (k) =0

and we can assume that x(k) €0Q2; i.e.,

ci(x(k)=0, i=1,..
If it is not so, we will continue this process up to the point when x(k) €

Q2.
The sequence {7} is bounded. Without restricting generality, we can

assume

t=1lim #>0.
k—o00

Therefore,
i=x"+1ze0.
Let us assume that
1 (x" +12) =1 (¥) =0.
Then, from the concavity of c¢j(x), we obtain
a(x)=c1(x”) — 1" +172)
<—t(Vc1(x), 2),

ie.,

(Ver(7),2) < —e1 (x07!
a>0.

:—C(,
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Therefore, for kg >0 large enough and any k >k, we obtain

(Ver(x(k), z(k)) = —a/2,  k=ko.

For a given vector x e R", we consider two sets of indices,

Ly (x)={i:ci(x) >0}
and
I.(x)={i:ci(x) <O}
In view of
x(k) = argmin{ P (x, k)|x e R"},

we obtain that, for any & >0,

Fa®R) =k ke (e(k) < £ =k "y (kei ()

i=1 i=1

< f&).
Keeping in mind that

Ykei x>0, i=1,...,m,
¥ (kei(x (k) <0, iel_(x(k)),

the convexity of f(x), the concavity of v (z), as well as properties (i)—(v)

of the transformation v, we obtain

ka(c (x(k)))? < =k~ 1y (kep (x (k)
< fG) — FGER) + FGEK) — fx (k)
Y Wk (k) — ¥ (0)

iely(x(k))

< F&O) = FEER) = (Vf (E ), x (k) — % (k)

+ > k)

il (x(k)

<1f G0 = FERE)| = (k) = R (V f(E(K), 2(K))

+ Y (eilx(k) — i (k)
i€l (x(k))
+ Y a@E@m).

iely(x(k))
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Invoking the concavity of c¢j(x), we obtain

c1(x(k)) =ci(x(k)) —c1(x(k))
< (Ver(x(k)), x (k) — x(k))
<t (k) —1x) (Ve (x k), z(k)).
Keeping in mind (34), we have
ka(c1 (x(k)))* > ka(a® /4) (¢ (k) — )*.
Using concavity of ¢;(x), i € I+ (x(k)), we obtain
i (x (k) — ¢ (F0)) = (Vei (R(K), 1 (k) — $(K))
= (t(k) — 1) (Vi (x(k)), z(k)).
Let
I(VFE).DI=Po, 1Y) = fE®I=n.
[(Vei(x), D|=Bi, ci(X)=y, i€l (x(k)).
Then, for k>0 large enough, we have
[(V f(x(k)), z(k))| <2Bo,
[(Vei(x(k)), z(k)| <28,

i (X)) <2y i € Ly (x(k)),
If(x%) — F(EK))] <2y

Therefore, we can rewrite inequality (35) as follows:

ka(o?4)1(K) — i < 2[yo ) -0

+ Y Bt —R)

i€l (x(k))
PR
i€l (x(k))
By introducing
a=ad’/8, f=po+ > B
i€l (x(k))

y=w+ Y, ¥ u=t0)—i,
RE)

(36)
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we can rewrite inequality (36) as follows:
k&tkz — B —y <0.

Therefore,

1(k) — 1y = < (2ka) ! [B +/B? +4k&y} =0k

and
l1x (k) — ()| = (t (k) — TG |z(K) || =1 (k) — i = Ok~ 1/,
where x (k) e Q.

Let us consider the distance from x (k) ¢ Q to Q,

d(x(k), Q) =min{||x (k) — x|||x € R}
=||xk) —y )|l

Then,
d(x(k), Q) =lx(k) — y(R)[| <||x (k) — ¥ (k) || = Ok~ /?)

and

klim c_(x(k))=0.

127

(37)

The sequence {x(k)}72; is bounded due to the boundedness of € and (37).
The dual sequence {A(k)}2, is also bounded. In fact, assuming the oppo-
site, we can find such index iy that limy_, o A;0(k) =00. We can assume

Aio (k) =max{X; (k)|1 <i <m]},

for all k>1. By dividing the left-hand side of (28) by A;,(k), we obtain

2OV £ (k) = > hi(k) Vei (x (k) =0,

i=1

where

X(k):(i,-(k):x,»(k)/\;ol(k), i=1,...,m).

(38)
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T_he dual sequence {X(k)},fil is bounded. Therefore, both {x(k)}72, and
{A(K)}P2, have converging subsequences. Without restricting the generality,
we can assume that

¥=lim x(k) and A= lim A(k).
k— 00 k—o00
Passing to the limit (38) and keeping in mind that, due to (vi),

X:klim V' (kei (x (k) =0, i€l (X),

we obtain
> hiVei(¥)=0, (39)
iel

where
I={i:c;(¥x)=0}.

Due to (37), we have x € Q. In fact, x €92 and 3A; >0, i € . However, (39)
is impossible due to the Slater condition. So, both the primal sequence
{x(k)}p2, and the dual sequence {A(k)}2, are bounded.

We consider any converging primal-dual subsequence

{x(), A(B)}kekx C{x k), A(K)}p2,
and the primal-dual limit point
)E:llier%x(k), ’_\Z;PGI}}M]‘)'
Keeping in mind that
Jim d(x(k). 2) =0,
we obtain
klingoci(x(k)) =c;(x)>0, i=1,...,m.
Passing (28) to the limit, we obtain
kli)rr;OVxL(x(k),)\(k)):VxL()E,)_\):O.
Also, for I1(x) we have ¢;(x) >0 and, due to (vi), we have

X :klim V' (kei (x (k) =0, iely(X).



JOTA: VOL. 122, NO. 1, JULY 2004 129

Therefore, the pair (i, ) satisfies the KKT condition; hence, ¥ =x*, 1=
A*. In other words, any limit point of the primal-dual sequence is the
primal-dual solution. Therefore,

kli)ngof(X(k))=f(X*), kli)H;od(?»(k))=d()»*).
Now, we will prove that
c_(x(k)=0&™ .
Let us consider the sets
Qi={xeR"¢;(x)=0}, i=1,...,m.
Then,
X (k) = argmin{||x (k) — x|||x € €2;}

is a projection of x(k) onto the set ;. If x(k) ¢ 2, then for k >0 large
enough, there exists at least one active constraint which is violated at x (k).
In fact, due to

lim d(x(k), X*)=0,
k—o00

none of the passive constraints can be violated for k >0 large enough. We
assume that cj(x) is violated and therefore

c1(x1(k)) =0.
We can assume also that
maxi<j<p||x (k) — X; (k)] =|lx (k) — X1 (k)]].
For any k>0 and x =x;(k), we have
FR) =k ke (x (k) < fE@) — k™Y Y (kei (7).
i=1 i=1

Keeping in mind that ¥ (kc;(x)) =0, we have
kM (ke (x (k) < f (&) — f(x (k)

Y i (e (k) — kY (ke ()

i=2 i=2
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= f &) — f(x(K)
+) Y Oilei(x (k) — ¢ (), (40)

i=2
where
¥ Oi=9 (0 +6f (e (x(k) —¢;(9),  0<6f <.
We can assume that
ci(x(k)—ci(x)=0, i=2,...,m;

indeed, if for a particular i =2,...,m it is not so, we can omit the corre-
spondent term in (40) and strengthen the inequality.

It follows from the boundedness of the sequence {x(k)};2, that its pro-
jection {x1(k)}72, on a convex set Qi is also bounded. Therefore, taking
into account properties (iii)—(iv) of the transformation v, we can find such
B >0 that 0 </(-); < B. Keeping in mind property (v), from (40) we obtain

aket(x(k)) < f(F) — f (x (k) + Z B(ci(x (k) — ci(x)). (41)

i=2

Recall that

x =argmin{||x (k) —x|||x € 21}, x(k)¢& Q.
Then, c¢;(x¥)=0 and

(Ver (%), x (k) —x) =—[[Ver(Olllx (k) — x| <0.
Using the concavity of ¢j(x) and ¢ (x) =0, we have

cr(x(k)) =ci(x(k)) —c1(x)
= (Ver(x), x(k) —X)

<0,
ie.,
—c1(x(k)) = = (Ve (), x (k) — X)
>0,
or

let(x (k)= [(Ver (%), x (k) — )|
=[IVerIlx k) — x1].
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Note that there is a u >0 such that
[Ver()|[=pn>0, Vx:ci(x)=0;
otherwise,

Ve (x)=0, c¢j(x)=maxcy(x)=0,
xeR?

which contradict the Slater condition. Then,

[lx (k) —X||=[(Vc1 (X)), x (k) = %)|/|IVe1 ()]
<ler(x(NI/11Ver ()]
<let(x(k)|/,

or
ct(x (k) = P |x (k) — X%,

ie.,
akei (x(k)) = akp?|x (k) — &1,

For the convex function f(x), we have
Fa®) = fE) = (V) x(k) =),

or

f@) = fx(k) =(Vfx), x —x(k))
<V fXIllx k) —x]].

Using the concavity of ¢;(x), we obtain

ci(x(k)) —ci(x) = (Vei(X), x (k) —X)
HVa@llxk) —xll,  i=2,...,m.

Therefore, we can rewrite (41) as follows:

ak?||x (k) — %||* < [va)n +BY ||Vc,-<2>||]||x<k> —xll,

i=2
or

|l (k) — | < (@p®) k! [IIVf(f)II +BY ||Vci(i>||].

i=2
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Since the sequence of projections {)E(k)},fiko is bounded, we can find such
C >0 that

IVF®I+B Y lIVa@Il<C.
i=2
Therefore,
llx(k) — || =0k ™).

The concave functions c¢;(x),i =1,...,m, are continuous in R”. On the
other hand, there is a bounded and closed set X c R” that {x ()1,
and {x(k)}22, C X. Therefore, the functions ¢;(x),i=1,...,m, satisfy the
Lipschitz conditions on X; i.e.,

lci (X (k) —ci(x (k)| < L||x(k) —x ()|, i=1,...,m.
Without restricting generality, we can assume that

c_(x(k)) =max{0, —c; (x(k))|i=1,... ,m}

=—cy(x(k))
=lc1(x) —cp(x (k)|
<Ll|lx—xk)|
=0k,

Finally, let us estimate the duality gap
m
A() <Y wik)lci (x(K)).
i=1
For any i =1,...,m, we have
either ¢; (x(k)) <0 or c¢;(x(k))>0.

If ¢;(x(k)) <0, then we have proven already that |c;(x(k))|= Ok ™). Due
to the boundedness of {A(k)}72 |, we have

2i(k)ei (x (k)] = Ok ™).

If ¢;(x(k)) >0, then due to property (vi) of the transformation ¥ (¢), we
have

i (k)ei (x (k) = ¥ (ke (x (k) (x (k)
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< b(ke; (x(k))) " ei (x (k)
=bk 1.

Therefore, the duality gap is
Ak) = f(x (k) —d (k)]
<Y ri®)ei(x (k)]

i=1

=0®k™.

We have completed the proof of Theorem 5.1. |

Theorem 5.1 complements the results regarding the convergence prop-
erty of the SUMT type methods (see Refs. 19-21) for the class of con-
straint transformation W. To find

x (k) =argmin{P (x, k)|x e R"},

we will use the Newton method. The following lemma establishes the con-
ditions under which the function P(x, k) is strongly convex.

Lemma 5.1. If the standard second-order optimality conditions are
satisfied, then for ko > 0 large enough and any k > kg, the function P(x, k)
is strongly convex in the neighborhood of x (k).

The lemma is proven in Ref. 26.

The penalty function P(x,k) is strongly convex along the path
{x(k),k(k)},f;ko. Also, the penalty function P(x,k) is strongly convex in
R” for any k>0, if f(x) or one of the functions —c; (x) is strongly convex.

If f and all the functions —c¢; are just convex, but none of them
is strongly convex, then to guarantee the correspondent property for the
penalty function P(x, k) in R” and any k>0, one can regularize the func-
tion f(x); (see Ref. 28). Let us consider instead of f(x) the regularized
function

fe(x):i= f(x) +ellx]|?,

with & >0 small enough. Then, the following function:

P(x,k)=f(0) +ellxllP =k~ Yy (kei(x)

i=1
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is strongly convex in x € R” for any k> 0. Let us assume that
x} =argmin{ f; (x)|x € Q}
is the solution of the regularized problem. Then,
F@) +elbefIP < f(5) +ellx*| .
Keeping in mind that x} €, we obtain
0=<f(x)— f(x*)
<e((x*,x™) — (x7, x.)),
and from the boundedness of 2, we have

gi_rg(f(x;k) — f(x™)=0.

So, for any a priori given accuracy y >0, one can find such small ¢ >0
that an approximation to the solution of the regularized problem will be
a solution to the original problem with a given accuracy.

In Section 6, we describe the primal-dual path following method,
where the strong convexity property of P(x,k) plays an important role.

6. Primal-Dual Path Following Method

The PDPF method alternates one or few steps of the Newton method
for solving the primal-dual system

ViP(R.K)=VfE) =) hivVed)
i=1

=V,L(%, 1)
—0, (42)
A=y (kei(®), i=1,...,m, (43)

for £ and A with the scaling parameter k >0 update.
By linearizing the system (42)—(43) at (x, A), where

A=, ..., hn) and A=y (kc;(x)), i=1,...,m,
we obtain the following system for the primal-dual PF directions (Ax, A)):

V2 L(x,)Ax —Vex)T AL=—=V,L(x, ), (44)
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—kW" (ke(x))Ve(x) Ax 4+ Ar =0, (45)
where
W (ke(x)) =diag(y” (ke (x)))jL-
Let
L()=L(x,1), Ve()=Velx), V'()=¥"ke(x)).

We can rewrite the system (44)—(45) as follows

N Ax] [ A2.L()  —=vel()][Ax
AL T =k ()Ve() T Ak

_ [—XXL(')] , (46a)

Then, the next primal-dual approximation is obtained by the formulas
Fi=x4+Ax, A=A+AA, (46b)

where ¢ >0 is a steplength.

Usually, N(-) is sparse. Therefore, the system (46) can be solved
efficiently when k > 0 is bounded. The system (46) can be reduced by
substituting

AA=k¥"()Ve()Ax

into (44). Then, one can find the primal Newton direction by solving the
following system:

M@, M, k)Ax=—V,L(x, 1), 47)
where
Mx, M k)=M()= VfXL(-) —kVelT (YW (ke(-)Ve().

It follows from property (vi) of the function v that, for kg > 0 large
enough and for any k >k, we have

Y (kei () =0k, i¢l*
Therefore,

M)~ VELE* 1) — kg (0)Vel () Ve (x). (48)



136 JOTA: VOL. 122, NO. 1, JULY 2004

Under the standard second-order optimality condition for k > 0 large
enough, and due to property (iv) and the Debreu theorem (Ref. 29), the
matrix M (-) is positive definite even if none of the functions f(x), —c¢;(x)
is convex.

Solving the system (46) is often much easier than solving (47) because
usually the matrix N(-) is sparse, while M(-) might be dense. Also, the
unbounded increase of k>0 has a negative effect on the accuracy of the
primal Newton direction Ax because the elements of the first term of
matrix M (x, A, k) become negligibly smaller as compared to the elements
of the second term, which eliminates the impact of the Hessian V2 L(-) on
the Newton direction Ax.

We would like to emphasize that, in LP calculations, the first term in
(48) is just the zero matrix. Therefore, the ill-conditioning effect in LP is
substantially different than in NLP. It is much easier to handle using the
means of modern numerical linear algebra and the structure of the corre-
spondent matrix N(-) in LP calculations (see Refs. 1,5-7,25). However, it
is fortunate that, in NLP calculations, for not very large k the system (46)
or (47) can be solved with high accuracy.

The following lemma is similar to Lemma 4.1.

Lemma 6.1. The primal Newton direction obtained from the system
(44)—(45) coincides with the Newton direction for the minimization of
P(x,k) in x.

The lemma is proven in Ref. 26.
Finding
x (k) =argmin{P (x, k)|x e R"}

by the Newton method is generally speaking an infinite procedure. Also,
the Newton method converges to x(k) from a neighborhood of x(k) where
the Newton method is well defined (see Refs. 28, 30). To make the Newton
method globally converging, one can use the stepsize Newton method with
the Goldstein-Armijo rule by checking the inequality.

P(x+1tAx,k)— P(x)<et(VyP(x,k), Ax), O0<e<l/2.

Lemma 6.2. If P(x,k) is strongly convex, then for any k > 0 large
enough, the following estimations hold:

e (R (k) — c(x (k)| = Ok ™),

AGRK)) =0k,
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The lemma is proven in Ref. 26.

By using the logarithmic modified barrier function ¥ (¢) =log(t + 1)
in the formulation of the PF method, we end up with the path-following
method for the shifted barrier function. For a wide enough class of
functions ¢;(x),i=1,...,m, the corresponding function

P(x,k)=f@x) =k~ loglkei(x)+1) (49)

i=1

possesses the self-concordance properties (see Ref. 31), so that the
corresponding PF method under appropriate change of the scaling param-
eter k>0 from step to step has polynomial complexity for LP and for
some classes of NLP including important class of quadratic programming
problems with quadratic constraints (see Ref. 31). The self concordance of
P(x, k) can be used in the first phase of the PDNR method. Starting with
a warm start for a given k >0 and alternating the Newton step for the
minimization of P(x,k) in x with appropriate scaling parameter update
(see Ref. 31), one obtains an approximation for the primal minimizer with
accuracy &> 0 in O(y/nloge™") steps.

At the point when the scaling parameter gets large enough, the PDPF
becomes less efficient. At this point, the PDPF procedure turns into the
PDNR method. It allows to speed up the process substantially without
increasing the scaling parameter. At the same time, it keeps stable the
area where the Newton’s method is well defined (Refs. 28,30) as well as
the condition number of the Hessian V,,L(:). It allows us to compute
the Newton direction with high accuracy and stabilize the computational
process at the final stage. We describe the correspondent procedure in
Section 8.

7. Rate of Convergence of the PDNR Method

In this section, we discuss the rate of convergence of the NR method
(8)—(9). It turns out that, under the standard second-order optimality
conditions, the NR method converges with Q-linear rate for any ¢ € W.
Moreover, the ratio 0 <y <1, can be made as small as one wants by
choosing a fixed but large enough k> k.

To keep the Q-linear convergence, there is no need to find the exact
solution to problem (7). It is enough to find an approximation to x**!. We
point out the accuracy for the approximation to x**!, which is enough to
keep the Q-linear rate of convergence.

The main result of this section is Theorem 7.3, which establishes that,
from some point on, only one Newton step for the primal-dual NR system
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is enough to guarantee a linear rate of convergence with a priori given
ratio O<y < 1.

To formulate the first result, we have to characterize the extended
dual domain, where the main facts of the theorem takes place.

Let

: *
0<8<minj<;<,A;

be small enough and let ky >0 be large enough. We split the extended dual
domain in the active and passive parts, i.e.,

D()=D(%,k, )

= D(r) Q1. D(m—r) (),

where

Dy ()= DAy, k, 8) ={(hr), k) 1 1 =8, |A; — 4[| <8k,

i=1,...,r,k>ko},
Dn—ry() =D Agn—r), k, 8) ={(Am-r), k) :0<A; <6k,
i=r+1,...,m,k>ky}.

In the following, we assume that

[lx[| =max;<j<pn|xi]-

The following theorem establishes the rate of convergence of the NR
method for any ¢ € W. It generalizes results of Refs. 13, 16 on the class W
and explains the role of properties (i)—(vii) of the function ¢ in the con-
vergence analysis.

Theorem 7.1. If f(x) and all ¢;(x) € C? and if the standard second-
order optimality conditions are satisfied, then:

(i) For any (A, k) € D(Ak,8), there exists x = xX(A, k) =
argmin{L(x, A, k)|x eR"}; i.e., V,L(x, 1, k)=0.

(ii) For the pair (X, A :A=A(h, k)= (ke(£))A, the following estima-
tion holds:

12 —x*|| < (/A =21, A =A% < (c/k)I|A — A% (50)
and ¢ >0 is independent on k > kq. Also, for any k >k(, we have
FOF ky=x* and A(\ k)=1%

i.e. A* is a fixed point of map A — A(A, k) for any k > k.
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(i) The Lagrangian for the equivalent problem L(x, A, k) is strongly
convex in the neighborhood of x=x(}, k).

The proof of Theorem 7.1 is similar to correspondent proof of The-
orem 6.2 in Ref. 16 and is given in Ref. 26.

It follows directly from Theorem 7.1 that the primal-dual sequence
generated by the method (8)—(10) converges with Q-linear rate,

et x| <ek A =A%) I = < ek I =KL (5

It follows also from Theorem 7.1 and the estimation (50) that, if (A%, k)€
D(-), then

Wtk eD(), for anys>1.

Therefore, for a given 0 <y =ck~! <1, one can find k, > ko such that, for
any fixed k >k, , the following estimation holds:

T x* [ < plIAS =%, (ST = <y [IAS =A%) (52)
In other words, for any given 0 <y <1, there is k >k, such that
max{||x® —x*||, ||A5 — 2|} < y*. (53)

The ratio 0 <y <1, can be made as small as one wants by choosing a fixed
but large enough & > 0.

Finding x**! requires solving an unconstrained minimization problem
(7), which is generally speaking an infinite procedure. So, to make the
multiplier method (8)—(10) practical, one has to replace the infinite proce-
dure of finding x**! by a finite one. As it turns out, x**! can be replaced
by an approximation x¥*t!, which can be found in a finite number of
Newton steps. If #**! is used in the formula (10) for the Lagrange mul-
tiplier update, then an estimate similar to (50) remains true.

We assume that the pair (A, k) € D(-) and that the vector X satisfies
the inequality

TV L(E, A, )| <ok~ (ke(@)n — Al|
=ak A =2l (54)

where A =W’ (kc(¥))A. Then, the following theorem takes place.
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Theorem 7.2. If the standard second-order optimality conditions hold
and the Hessians V2 f and Vi,i=1,...,m, satisfy the Lipschitz condi-
tions,

IIV2f(x) = V2 FDII < Lollx — yll, (55a)
IV2¢i (x) = VeI < Lillx —yll, i=1,...,m, (55b)

then there is a ko >0 large enough such that, for the pair (x, 1), the fol-
lowing estimations hold true:

1Z —x*[| <c(1+0)k ™ [n— 2%, (56a)
1A= A¥[| <c(l o)k |n— 2%, (56b)

and ¢ >0 is independent of k> k.

The bound (56) can be established for any v € W using considerations
similar to those which we used in Ref. 16 to prove Theorem 7.1. The
bounds (56) can be used as stopping criteria, which makes the multiplier
method (7)-(10) executable.

Let us consider the PD approximation (x°,A%) as a starting point.
Then, using the stopping criteria (54), we can generate a PD approxima-
tion (X**!, 25t1) by the following formulas:

DL VLETL A B <ok (ke )RS — 20|

=ok At =28, (57)
M =0 (ke (@ HH)A8. (58)
It follows from Theorem 7.2 that if, f and ¢;,i =1,...,m, are smooth

enough, and if the standard second-order optimality conditions are satis-
fied, then the following estimation holds for any s> 1:

N —x* | <c(1+o)k ™ A — %), (59a)
(A — 2% <e(1+ o)k HAs =A%) (59b)

In other words, for any given 0 <y <1, we can find k, >k that, for any
k>k,, we have

(1+0)ck™ ! < y <1 (59¢)
and

max{||¥° —x*||, IR =2} < p 1A =A%) (60)
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Finding %! by using the stopping criteria (57) may require several
Newton steps (20). We conclude this section by establishing that from
some point on only one Newton step for solving the primal-dual system
(11)-(12) is enough to shrink the distance from the current approximation
to the solution by a given factor 0 <y < 1. We call such point the hot start
(see Ref. 13).

For a given ¢ >0 small enough, we consider an e-neighborhood

Qe={z=(x, ) eR" xR} ||z —z"|| <&}

of the primal-dual solution z*=(x*, A*). The following theorem establishes
the existence of the hot start.

Theorem 7.3. If the standard second-order optimality conditions are
satisfied and if the Lipschitz conditions (55) hold, then for a given 0 <y <
1, there exists k, > ko and & >0 small enough such that, for any fixed k>
k, and for any PD pair (x°,1°) € Q. as a starting point, it requires only
one primal-dual NR step (18)—(22) to obtain the new PD approximation
(x5!, A5*1) such that the following bound holds:

max{||xS ! — x|, (ST -ty <ey. (61)

Proof. We start by establishing the bound (61) for the PD pair
(&St A5+ given by (57)~(58). Then, we prove it for (x*+!, A5t1). Recall
that, due to the standard second-order optimality conditions, for a given
fixed k> ko, there exists 0 <m} < M}, such that

mi(y, y) < (V2 Lx* A5 k)Y, y)
<M;(y,y), VyeR". O

If the Lipschitz conditions (55) hold, then corresponding bounds remain
true in the neighborhood €2, of the primal-dual solution; i.e., there are 0 <
m < M, such that the following inequalities hold:

m(y, y) < (VZL(x, 7, k), y)
<M(y,y), VyeR" and V(x, L)€ Q. (62)

Again due to the Lipschitz condition (55), there exists L >0 such that, for
a fixed k> kg, we have

V2, L(x1, A, k) — VZ L(x2, &, k)| < Llx) — xall, (63)

lf (-xlv)\') EQS’ (-x27)\') EQS'
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Together, conditions (62) and (63) guarantee that the Newton method
for the minimization of L(x, A%, k) in x converges with quadratic rate from
any starting point x* such that (x*, A¥) € Q,; (see Ref. 32, page 28).

This means that, for ¥*t! =x* + Ax, we can find R > 0, which is
independent of (x*, A*) and k > kg, such that

17! x5 0l < RIIx® —x (G2 )12,
where
x(*, k) =argmin{L(x, A*, k)|x € R"}.

We recall also (see Lemma 4.1) that each primal-dual NR step produces
the primal Newton direction Ax for the minimization of L(x, A%, k) in x.
First, we show that, for ¢ >0 small enough and a given y,0<y <1,
there is k, > ko that, for any k >k,,, one Newton step in the primal space
followed by the Lagrange multiplier update produces a primal-dual pair
(st 25ty such that
e —x I <ye, IR =2 lI<ye, VG L) Qe (64)

In other words, we assume that Ax is found from the primal-dual sys-
tem (17) with x =x° and A =A% as a PD starting point. Then, Ax is the
Newton direction for finding min,crr L(x, A%, k) and

)ES+1 zxs +A.x, XS+] Z‘I//(kc(is+l)))\.s.

We will prove that, for the PD pair (x**!, 2**1), the bound (64) holds.
We consider two cases.
Case 1. The approximation ¥**! satisfies the inequality

IV LGE TS 0| <ok W (ke(@TH)ns — %],

for some o > 0.
Case 2. The approximation **! satisfies the inequality

IV LG22, 0l > ok~ W/ (ke (@A =27, (65)
In Case 1. the bound (64) follows from Theorem 7.2; i.e.,

max{[|F 1 —x*||, ]A T =A%)
<c(l4+o)k A =¥l <ye (66)

Now, we consider Case 2. Let us estimate ||V, LT, A5, k)||. We
recall that V2 f(x) and V2¢;(x) satisfy the Lipschitz conditions (55) and
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so it is true for the gradients V f(x) and Vc;(x); i.e., there is such L >0
that

IV f) =V DIl =Lllx—yll, (67)
[IVei(x) = VeI =Lllx=yll, i=1....m. (68)
It follows from (62)—(63) that the Newton method applied to finding
x(A°, k) =argmin{L(x, \*, k)|x e R"}
converges with quadratic rate; i.e., there is R > 0 such that
I+ —x (0, DI < Rl —x (3 0|, (69)

Keeping in mind that k£ > 0 is fixed and ||A* — A*|| <¢, it follows from
(67)—(69) the existence of L >0 such that

Ve LEFTL AT ) = Ve LETL A5 k) = Ve LA, k), A%, )|
<Lyl —x (2, bl
<LiR||Ix* — x5, k)|
=ClIx* —x(*, 0%, Cr=LiR.

Since
[lx* —x*|| <e,

from Theorem 7.1 we obtain
[lx(A°, k) —x*|| <ce/k

and ¢ > 0 is independent of k,,k >k, > ko. Therefore, for ko > 0 large
enough, we have

e =x G5, O < 1 = x|+ [1x S, k) — ]|
<(1+c/k)e
<2s. (70)

Hence, we have

IV LGEL A8, k) =V LGS st
<2, Cp=4C).

Therefore, from inequality (65), we have

KN (ke(@ DS =A%) < C3e?, C3=0"'C,. (71)
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Let us consider seperately the active and the passive constraints sets [*
and In={r+1,...,m}. For i e I'*, we have

¢(x")=0, ¥'(c;(x")) =1
Therefore,
¥/ (ke ETINAT = A8 =9 (ke R TNAS — ¥/ (kei (x*)AS
=ky" (0 c; G (@F ) — e ()AS
=ky" (07 i (F* T (TS,
0<6’ <1, iel”.
From (71), we obtain
[0 i (B ) (@ THas | <eze?, iel”
Moreover for ¢ >0 small enough, there is § >0 such that
[y (6 i (75T > 8.

Due to the standard second-order optimality conditions and [[A" —1*|| <e,
there is a § >0 such that

AM>8>0, iel*
So, there is a C4 >0 such that
lei (B Th < Che?,  C4=C389)7", el

Now, let us consider the passive set Iy. We recall that the transforma-
tion y (¢) satisfies the following property (vi):

v <bt™', >0, b>0.

Due to the standard second-order optimality conditions, there exists
n1 >0, such that

m<c@th, iel, if(x*,1%) Q..

Therefore, for the Lagrange multipliers which correspond to the passive
constraints, we have

A =0 ke (211
<bA/kei ()
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<bAj/km
=(Cs/k)x;, Cs=b/v;.

Let us summarize the results obtained. If (x*, A") € 2, then for the next
primal-dual approximation (x**!, x5*1), the following bounds hold true:

IV LE 25T < Cae?, (72)

le(@th < Cae?, iel, (73)

Mt < (Cs/be, i€l (74)
1

Let us estimate ||¥*+! —x*||. Due to (50) and (69), we have

R — x| < 12 —x (5, DI+ 11X (08, k) — x¥)|
<RIIx* = x5, 0|2+ X (A, k) — x*]|

<4Re’ 4 (c/k)e
<(Ce/k)e,
where
Ce=4Rke+c.

Notice that k& > 0 is fixed; therefore, for ¢ > 0 small enough, Cg > 0 is
independent of k.

Using (72) and (73), we obtain the following bound for the gradient
of the reduced Lagrangian which corresponds to the active constraints:

IV LEHL D=1V f2H = Ve, @ THTA!

_Vc(m—r) (£S+1)T)_\‘§"—"’l_l—r)
+Veim_r) (if“)%f;:l_r) I

<|IV, LG 2
HIVEmon EFHINAST |

(m—r)

< C3e? +(Csna/k)e < (C1/k)e, (75)
where
IVem-—rn@EHII<n
and
C7=Cske+Csna

is independent of & > 0.
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Using the smoothness of f(x),c;(x),i=1,...,m, and V,L(x*, A’("r)):
0, we obtain
Vo LETL AT = VLo, RS+ VE LGS, RS -6
_i_(/)”)ESJr] _x*||2

=V L* A5 = VeL(x*, AF,)

FVRLG RDH@EH - x4 O+ -2
=V L(x*, i;;l)()zf“ —x%)
—Ve (x*)T(I\f;gl — M) + Ol — x| 2,

Also,

ey E T =y () + Ve ) E ! —x*) + O — 2%
— VC‘(,-)(X*)()ES—’_] _x*) +O||.7Z'S+l _x*llz.

Let us rewrite the expressions above in the matrix form

[V%XL(x*’XE;gl) —VC(r)(x*)T:| |:)Es+l —x* :|

35+l
VC(,«)(X*) 0 )»zr) _)“?r)
_| VRLEFLASD + ol -2
= C(r)(ix—i-l)_’_olpzs—i-l_x*||2
ss+1 s+l
_[ 4@ AL | (76)
pEH 2%

Keeping in mind that
125+ —x¥| < (Co/R)e

and the inequalities (73) and (74), we can find Cg > 0 independent of k>0
such that

O[()ES+1 , Xi;&;l )
pEH x*)

=(Cg/k)e.

Let us show that the matrix

v | VRLES A =V )T
VC(,)(x*) 0

is nonsingular, which is equivalent to showing that

MW=0=W=0.
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Using standard considerations (see for example Ref. 32), from MW =0 we
obtain

(foL(x*,i‘z;gl)u,u)z(). (77)

On the other hand, from the standard second-order optimality conditions,
we obtain

Ve (Y u=0= (Vi L&* Afu,u) > pu,u),  p>0. (78)

Now, we show that, for the Hessian V2, L(x*, )_L‘Z:gl), we can obtain a sim-
ilar estimation. First of all, we have

,
IVE L@ 2D = VLGS Ap I < Y A =2 Ve ()l
i=1
From (71), we have
IRF! = 2% <kC3e.
Hence, for a fixed k >ky and small enough & >0, we have
IR =21 < Coe,
with
Cog=kC3e>0
independent of k. Therefore,
IR =A< IR =R 1128 = 2%
<Coe+e¢
= (Co+ De.

So, for small enough ¢ >0, it follows from (78) that

(V2 L(x*, /_\ﬁf)l)u, u) = p1(u,u), Yu: Ve (xu=0,
0<p1 <p. (79)

It follows from (77) and (79) that u =0. Keeping in mind that

rankey (x*) =r,
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we conclude that v = 0. Therefore, the matrix M is nonsingular and
[|M~Y|| <mg. Then, from the system (76), we obtain

Bty [ et RS )
At g =||M Zs+l Lk
" Mo BT xT)
=mo(Cs/k)e
=(Cro/k)e,

and Cjo=myCg is independent of k>kq and ¢ > 0.
In other words, in Case 2, we have also local linear convergence.
Therefore, combining Cases 1 and 2, we establish the following estimation:

max{[|# T —x*|, 15 = A¥ |1} < (Cri/k)e, (80)
where
Ci1=max{c(1+0), Cs, Cgq, C1p}

is independent of a fixed k > ko for ¢ >0 small enough.
We complete the proof of Theorem 7.3 by establishing the bound
(61). For

o — gt s 1 Ax,
we have already proved that
[ =Xl < (Cui/bye.
Let us estimate ||A5t! —A*||. We have
P =W (ke (@t ))a0
=0/ (ke(x* + Ax)A®
=W (ke(xX*DAS + kU (ke(x*) A*Ve(x®) Ax
+O)1& T — %2
=t opEt -2,
ie.,
I == oIt =2 1P).
Keeping in mind that

e — x| < 12— x* | | — x| < (enn/k+ De
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and the bound
12T =251 < (er1 / B)e,
we obtain

S < RS = |+ s = 25T < (Cpi /b)e + Oe?)
=(C/k)e.

So, for ¢ >0 small enough, there exists C >0 independent of k >ky such
that, for the pair (x*t!, A5t1), taking k >max{ko, Cr—'}, we obtain

max{||[x$ ! —x*||, ]AT =A%) < (C/k)e < ye.

The proof of Theorem 7.3 is complete. |

8. Primal-Dual Nonlinear Rescaling Method

We combine the primal-dual path-following method (46) with the NR
multiplier method (57)—(58), which from some point turns into the PDNR
method (20).

To guarantee global convergence, the path-following method is used
at the first stage. When the scaling parameter becomes big enough, the PF
method turns into the NR method. At this stage finding an approximation
for the primal minimizer followed by the Lagrange multiplier update while
the scaling parameter is fixed. At the final stage, the NR method automat-
ically turns into the PDNR method.

Although we are using potentially different tools at different stages
of the computational process, the core of our computation at each step is
solving the primal-dual system of equations, which arise out of either the
PF or NR method.

The turning points where the PF method turns into NR method and
the latter turns into the PDNR method can be characterized through the
parameters of the problem at the solution, which are not available a priori.
Therefore, we introduce a merit function

v(x, k)=maX{IIVxL(x, MII,
1<i<m

— min ¢;(x), — mln )‘“ZM Cz(x)|}

which, together with the stopping criteria (57), controls the convergence
and allows eventually to turn the process into PDNR method. Due to
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(27), we have A(k) € R}, and, due to (28),we have V,L(x(k), A(k)) =0;
therefore, the merit function v(x,A) for x =x(k) and A = A(k) coincides
with the merit function wu(x(k), A(k)), which has been used in the PF
method; see Section 5.

The method is designed in such a way that, from the very beginning,
it performs a step of PDNR algorithm. If it does not reduce the value of
the merit function v by a given factor 0 <y <1, then it switches into the
NR method by using the Newton direction Ax for primal minimization.
If again the algorithm does not reduce the merit function v(x,A) by the
given factor 0 <y <1, the algorithm increases the scaling parameter fol-
lowing the PF trajectory. Since the PF algorithm is globally convergent,
the global convergence of whole method can be guaranteed. On the other
hand, since each step of the algorithm starts with the Newton step for
primal-dual NR system the method turns to PDNR automatically when
the primal-dual approximation (x*,*) is in the Newton area for the pri-
mal-dual NR system and the Lagrange multipliers A* € D(-).

The situation here is similiar to the Newton method with steplength
for unconstrained minimization. The difference is that, instead of finding
a Newton direction for minimization, in fact we perform from some point
on only one Newton step for solving the Lagrange system of equations
which corresponds to the active constraints.

The PDNR method is implemented according to the following algo-
rithm.

Step 1. Initialization. An initial primal approximation x° e R” is
given. An accuracy parameter ¢ and an initial scaling
parameter k are given. Parameters ¢ >1,0<y <1,0>0,6 >
0,0 <n <0.5 are also given. Set x := %0, = 1,....Dhe
Rm,rzzv(x,)»),xpzzxo.

Step 2. If r <eg, stop; output x, A.

Step 3. Find the dual predictor A and the primal-dual direction
(Ax, AL).

Setf:=x—+ Ax, A=A+ AX

Step 4. If v(ﬁ,i)fyr, set x:=£,k:=i,r:=v(x,k). Go to Step 2.
Step 5. Find ¢ such that

Lx+tAx, A k)—L(x, A, k) <nt(VL((x, A, k), Ax).
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Step 6. Set :=x+1Ax, =1y (ke(X)).

Step 7. If VLR, A, k)| < (a/kTO)|A—All, go to Step 9.
Step 8. Find the primal direction Ax.

Step 9. If A=e, set x,:=3X.

Step 10. If v()?,):)>yr, set k:=ko,x:=xp,,A:=e, go to Step 2.
Step 11. Set x:=x,A:=A,r:=v(x, A); go to Step 2.

The most costly computational part is finding the primal-dual Newton
direction from the system (17) or (46). Sometimes the system (17) or (46)
can be reduced to (18) or (47). The matrices M (x, A, A, k) and M(x, A, k)
are positive semidefinite and symmetric. For such systems, modern linear
algebra techniques (see e.g. Refs. 1,6,12,25) usually are very efficient. If
M(x, x, A, k) or M(x, A, k) are dense, then to find the primal-dual direction
one has to use the PD system (17) or (46), for which the correspondent
matrices are usually sparse. The sparcity of (17) or (46) is one of the moti-
vations for developing the PDNR method. Also, it can be efficient to fix
matrix M(-) for a number of Newton steps to avoid the factorization of
M(-) at each Newton step.

We conclude this section with a few comments in regard of the com-
plexity of the PDNR method. A slight modification of the PDNR method
allows us to turn directly the PF method into the PDNR method.

As we mentioned in Section 6, the penalty function (49) with the log-
arithmic MBF transformation

Yo (t) =log(t + 1)

possesses the self-concordance properties (Ref. 31) for a wide enough class
of constraints ¢;(x) >0,i=1,...,m. So, if only the PF method is used,
then under appropriate change of the scaling parameter the complexity is
O(/nloge™"), where ¢ >0 is the required accuracy, 0 <& < 1. In such case,
we move from one warm start to another warm start. Therefore, if the NR
phase never occurs, then it requires O(/nloge~!) Newton steps to find
an approximation (x,A):u(x, 1) <e. Any attempt to switch from the PF
method to the PDNR method i.e., from warm start to hot start has the
risk of extra computational work, which eventually will never be used.

So, if we consider each new primal-dual approximation in the PF
method as a potential hot start, but the hot start never occurs, then
instead of O(/nloge~!) Newton steps in PF we have to compute in the
worst case

No=0O(/nlog?s™) (81)

Newton steps.
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On the other hand, if the triplet (xg, Ao, ko) is a hot start, then to get
the primal-dual solution (x, A):u(x, A) <& from the starting point (xg, Ag) :
w(xg, M) < &g, (0<eg<1), will take due to Theorem 7.3 only O(loge ™! +
logey) PDNR steps.

So, if the hot start (xqg, Ao, ko) is correctly identified, then the total
number of Newton steps is

Ny =0O(/nlogey ") +Ologe™" +logep). (82)

The first term corresponds to the PF part of the trajectory, which
we followed from a starting point to the triple (xg, Ao, ko). The second
term is the number of PDNR steps from the triple (xg, Ag, kg) to the point
(x, M) p(x, A) <e. If e Kgp, then the estimation (82) represents a substan-
tial improvement as compared to the PF estimation O(/n logZe™1).

9. Numerical Results

The PDNR method has been implemented in MATLAB and tested
extensively on a variety of large scale NLP including the COPS set(Ref.
18), which is a selection of difficult nonlinear constrained optimization
problems from applications in optimal design, fluid dynamics, population
dynamics, trajectory optimization, and optimal control.

One of the main purposes of testing the PDNR solver is to observe
the hot start phenomenon (see Theorem 7.3). The other goal was to
obtain results with high accuracy in order to check the numerical stability
of the PDNR. We tried also to understand the robustness of the PDNR.
Therefore, it was tested on a wide class of NLP.

For the numerical results obtained, we refer the reader to Ref. 26. In
most cases, we used the transformation

¥ (t)=log(t+1).

We concentrated in particular on the COPS set (Ref. 18). The description
of the problems and basic parameters such as number of variables, con-
straints, etc can be found in Ref. 18.

In Tables 1-12 of Ref 26, we show the results of testing the COPS
set. The tables describe whether or not the PDNR solved the problem,
the constraint violation at the solution, the duality gap, and the number
of PDNR iterations, which is in fact the number of Newton steps. Tables
13-18 of Ref. 26 show the number of Newton steps required to reduce the
infeasibility and the primal-dual gap by an order of magnitude. We show
the number of variables n and constraints m.
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The results obtained corroborate the theory: the primal-dual method
converges very fast in the neigborhood of the solution (see Theorem 7.3).
In most cases, the path-following phase of calculations never occurs. So,
the algorithm performs as the combination of the NR multiplier method
with the PDNR method. Practically, the scaling parameter never exceeds
k=10* (in most cases, k =10% —103), which contributes to the numerical
stability. On the other hand, it is enough to guarantee fast convergence
and to optain solutions with high accuracy. In particular, for all problems
solved, the duality gap and primal infeasibility are of order 10710 at least.

In all problems solved, we observed the hot start phenomenon, which
was predicted in Ref. 13 (see also Ref. 16 and Theorem 7.3) where few
steps and from some point on only one PDNR step are required to
improve the primal-dual approximation by an order of magnitude. More-
over, for each set of problems, the total number of Newton steps is inde-
pendent of the problem size.

The PDNR method is an exterior-points method. Therefore, the value
of the infeasibility is a very important parameter. As it turns out, the
constraint violation and the duality gap occurs simultaneously. They both
converge to zero with practically the same rate. The dynamics of the
primal-dual gap and constraint violation reduction is given in Tables 13-18
of Ref. 26.

The PDNR solver turned out to be robust. It failed in very few cases
and produced results with high accuracy. In most cases, the number of
Newton steps corresponds to the estimation (82) rather than (81). Over-
all, the numerical results obtained show that the PDNR solver has a good
potential to become competitive in the NLP arena.

10. Concluding Remarks

The NR approach for constrained optimization produced results
which are in full compliance with the outline theory. In particular, we
observed systematically the so called hot start phenomenon, justified by
Theorem 7.3. Due to the hot start, it is possible to reduce substantially the
number of Newton steps required for the reduction of the primal-dual gap
and the infeasibility value by a given factor. Moreover, from some point
on, only one Newton step is enough for such reduction.

Both the theoretical and numerical results obtained show that there
is a fundamental difference between the PF and methods. The PF meth-
ods not only converge globally, they allow also to establish the rate of con-
vergence and estimate the complexity under very mild assumptions on the
input data. However, the rate of convergence for the PF methods is rather
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slow. Moreover, to guarantee the convergence of the PF method, one has
to increase the penalty parameter unboundedly, which might compromise
the numerical stability and in many cases makes difficult to obtain solu-
tions with high accuracy.

On the other hand the NR method may not be effcient far from the
solution because it requires the minimization of the Lagrangian L(x, A, k)
in x at each step. But it is very efficient in the neighborhood of the solu-
tion, because it does not require the unbounded increase of the scaling
parameter and keeps stable the area where the Newton method is well
defined. The PDNR methods provides a unified approach combining the
advantages of both the PF and NR methods and eliminating their basic
drawbacks.

A few issues remain for future research. First, the linear rate of
convergence for the PDNR method can be improved by increasing the
scaling parameter from step to step without sacrificing the numerical sta-
bility, because at the final phase the PDNR method does not require
primal minimization. The numerical results show that it can be done; it
seems important to understand better this phenomenon. Second, in the
NR method with dynamic scaling parameters update (see Ref. 17), the
Lagrange multipliers which correspond to the passive constraints con-
verge to zero quadratically. Therefore, at the final stage of the compu-
tational process, the PDNR methods turns into the Newton method for
the Lagrange system of equations which correspond to the active con-
straints. Thus, under the standard second-order optimality conditions one
can expect a quadratic convergence (see Theorem 9, p. in Ref. 32).
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