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The Modified Barrier Functions (MBF) have elements of both Classical Lagrangians
(CL) and Classical Barrier Functions (CBF). The MBF methods find an unconstrained
minimizer of some smooth barrier function in primal space and then update the
Lagrange multipliers, while the barrier parameter either remains fixed or can be updated
at each step. The numerical realization of the MBF method leads to the Newton MBF
method, where the primal minimizer is found by using Newton’s method. This
minimizer is then used to update the Lagrange muitipliers. In this paper, we examine
the Newton MBF method for the Quadratic Programming (QP) problem. It will be
shown that under standard second-qrder optimality conditions, there is a ball around
the primal solution and a cut cone In the dual space such that for a set of Lagrange
multipliers in this cut cone, the method converges quadratically to the primal minimizer
from any point in the aforementioned ball, and continues to do so after each Lagrange
multiplier update. The Lagrange multipliers remain within the cut cone and converge
linearly to their optimal values. Any point in this ball will be called a “hot start”.
Starting at such a “hot start”, at most O(ln In £') Newton steps are sufficient to
perform the primal minimization which is necessary for the Lagrange multiplier update.
Here, £> 0 is the desired accuracy. Because of the linear convergence of the Lagrange
multipliers, this means that only O(ln € Ho(In In ') Newton steps are required to
reach an e-approximation to the solution from any “hot start”. In order to reach the
“hot start”, one has to perform 0(«/; In C) Newton steps, where m characterizes the
size of the problem and C> 0 is the condition number of the QP problem. This
condition number will be characterized explicitly in terms of key parameters of the
QP problem, which in turn depend on the input data and the size of the problem.
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1. Introduction

The most remarkable property of the Classical Barrier Functions (CBFs) is
their self-concordance (see [19]). This guarantees for each Newton step, starting
from a “warm start”, i.e., a point “close” to the central path (see {11]), the decrease
of the duality gap by a factor which depends only on the size of the problem (see
[11,19] and bibliography in it). Every new approximation is again “well defined”
(see [31)) for the CBF when the barrier parameter is decreased by a factor, which
depends only on the size of the problem.

In other words, a “careful” barrier parameter update allows us to stay in the
Newton area, starting from the first “warm start” up to the end of the process. It
guarantees that every Newton step reduces the duality gap by a constant factor.
In the case of linear programming (LP) (see [28]), this factor is given by
(1 - (41¥m)~!) (recently Smale and Shub [32] proved that this factor can be
improved to (1 - (13vm)~1)). This means that ©(~/m) Newton steps are required
to reduce the duality gap by a factor of two. A more drastic barrier parameter update
does not lead to any improvements in the complexity bound. The so-called long step
interior point methods (see [11,30]) do not have better complexity bounds, although
their practical performance is better. In this paper, we will estimate the complexity
of the Newton Modified Barrier Function (MBF) method for quadratic programming
(QP) problems.

In contrast to CBF methods (see [7,9]), the MBF method for QP converges
for a fixed positive barrier parameter, whether the constrained optimization problem
is degenerate or not (see [15,26]). Note that in the LP case, the convergence of the
MBF method is R-linear (see [27]).

In the case of nondegenerate constrained optimization, the primal and dual
MBEF sequences converge at least linearly (see [24]), at a rate which can be made
as small as one wants by choosing a fixed but sufficiently small barrier parameter.

We will consider the MBF method with a fixed barrier parameter, determined
by the condition of the QP problem. We will show that from a certain point on, the
Newton MBF method converges such that, after every Lagrange multiplier update,
the current primal iterate is “well defined” (see [31]) for the next MBPF, while the
barrier parameter is fixed.

This means that from this point on, the “warm start” turns into a ‘hot start”,
i.e., with £> 0 the desired accuracy, only O(In In £7!) Newton steps are necessary
to compute the current primal minimizer and to update the dual variables, which
leads to an improvement of the primal and dual approximation by a given factor
0 < y< 1. Moreover, the number of Newton steps is decreasing from one Lagrange
multiplier update to another until finally only one Newton step suffices for the
multiplier update.

We will characterize the “hot start” through the condition number C > 0 of
the constrained optimization problem, which was introduced in [24] (see also [25]



A. Melman, R. Polyak, The Newton modified barrier method 467

for LP). The condition number is in turn characterized through the basic parameters
of the QP problem, which depend on the input data and the size of the problem.

In order to reach the “ hot start”, one can use any Interior Point Method.
Numerical results with MBF methods for both linear and nonlinear programming
problems (see [2,3,14,18]) strongly corroborate the theory of the “hot start”
phenomenon.

The fundamental difference between the MBF approach from the: interior
point methods based on CBF is the convergence of the MBF method for fixed
positive barrier parameter. It contributes to the stability of both the condition number
of the MBF Hessian and the area where Newton’s method is “well defined”, i.e.,
where the convergence is of quadratic order. It makes the Newton MBF method
numerically stable and causes the aforementioned “hot start” phenomenon.

The paper is organized as follows. After the statement of the problem, we
introduce some basic facts about the MBF theory for QP problems. We then describe
the Newton MBF method for QP in more detail and prove some basic properties
concerning this method. Based on these properties, we will prove the existence of
the “hot start” and estimate the complexity of the Newton MBF method for non-
degenerate QP.

2. Statement of the problem and the MBF Yor qQr

We assume that @ € R™" is a symmetric positive semidefinite matrix, that
a € R", that the feasible set Q = {x|r;(x) 20, i=1,...,m} is bounded and that

int Q# 3, (1)

where r;(x) =afx-b;; x, 4, €ER"; b;€R and ||q;]| = 1.
We consider the following QP problem:

x* =argmin{f0(x)=%xTQx—aTx|er}. (2)
Let k> 0. We then consider the extended feasible set
Q, ={xlnx) 22—k, i=1....,m}. ' 3)

The MBF for problem (2) is given by the following expression (see [24]):

F(x,uk) = fo(x) - k™! i u; In(kr; (x) + 1), (4)

i=1

and ‘assuming that for <0, In¢ = —oo. Taking into account that

Q={x|rx)20,i=1..,m}={x|k n(kr,(x) +1) 20, i =1,...,m},
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we see that the MBF F(x, u, k) is a classical Lagrangian for an equivalent problem.
In view of (1), there exists a vector u* = (u{,...,u,) € R, such that

Ox* —a= Au”, (5
and
wr(x*)=0 i=1,..,m. (6)

Here, A is an n X m matrix whose columns are given by gq;.

Let I={1,...,r} = {i: ri(x*) =0}, with r <n<m, be the active constraints
set and let J={r+1,...,m} = {i: r,(x*) >0} be the passive constraints set. We
define the matrices A, € R™’, the columns of which are given by the a;’s, i € I, and
the matrix A,,_, € R™™’, the columns of which are given by the vectors a;, i €J.
We also define the vectors u_ = (u1,...,4,), Ul _ry= (Uy41,..., Uy) and a diagonal
matrix U, = [diag(x;)]/_; with entries u;. It will be assumed that

rank A, =r and u,y €RI,. @)

Let L(x,u) = fo(x) - 2;';1 u;r; (x) be the Classical Lagrangian for the original
problem, then V2, L(x,u) = Q. We will also assume that there exists 7> 0 such that
>
1%

@y.y)2t(3y) Vy:ATy=0. ®)

Expressions (7) and (8) comprise the second-order optimality conditions and the
primal and dual nondegeneracy for the QP problem (2).

From the definition of F(x, u, k) and in view of (5)—(8), we obtain for k> 0
the following MBF properties:

(P1) F(x*,u*,k) = fo(x*).

P2) V. F(x*,u*',k)=0x"-a-Au" =Qx* ~a—Au} =0.

(P3) VLF(x*,u*,k)=Q+kAU/AT, where U; = [diag(u})]]_,.

(P4) There exists a k> 0, such that for any fixed k = k;, one has:
mineigenval V2, F(x*,u*, k) = mineigenval {Q + kA, U AT} 2 2 > 0;
maxeigenval V2, F(x*, u*, k) = maxeigenval {Q + kA, U AT} S A < oo.

(PS) There exists a ko > 0, such that for any fixed k 2 ko, x* = argmin {F(x, u®, k)|
x €R"}.

Here, [diag(w;)]’_, stands for the p X p diagonal matrix with the (i, i)th
element equal to w;. Due to (7), we have that 8" = min{x’|i €1} >0 and, due to
(1), p* = max{u;|i €I} < co. We will assume that 6= min{r,(x*)|i €J} > 0.
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3. Basic MBF theorem for the QP problem

We will reformulate the basic theorem from [24] (see also [22,23]) for the
QP problem.
Given €, 8, ky> 0, u* €R’, and 0< e<min{u]|i €I}, we define for i €I

D;(-) = Dy(u* ko, 8, ) = {(ui, k) € R?|u; 2 &,|u; — uf| < Sk, k = ko),
and forieJ:
D;(-) = D;(u* ko, 8,€) = {(u;, k) ER?|0 < u; < 8k, k 2 k). ~

D; (u*, ko,S,€) = Di(-)

O<e

Ko Igisr
Di(u*,k°.8,5)=Di(-)

l{l
ITTTR SO TN T IR s A s e e LA A

Ko

>

D(u* ko, 8,€)=D(-)=D(")®...® O (") @...® D)
U=UL ®...0ul®. oul

Figure 1. The sets D;(u’, ko, &, €) and U}.

The sets D;(-) are in fact cut cones and are represented in figure 1. The set
D(-) is defined as the direct product of the sets D;(-):
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D(-)=Di(-)® Dy(-)®...®8 D, ().

We also consider the set Uy =U} ® U? ® ... ® U (see figure 1), where, for
i=1,.,r:
Ul = {u; :u} — 8k Su; Suf + 8k, k 2 ko is fixed}

and fori=r+1,...,m:
Ul ={u; : 0 < u; <8k, k 2 ko is fixed}.

The set U, will also be denoted later on by Uy, with m = 1/k.
We define, whenever they exist:

#(u, k) = arg min{F(x, u, k)| x € R"}, 9)
f(u, k) = [diag(kr; (%) + 171" | u. (10)

We are now ready for the “Basic Theorem”, which is a restatement of a part
of the Basic Theorem in [24].

THEOREM 3.1 ‘t

(1) If Q'={x € Q|f(x)= f(x*)} is compact, then for any (u, k) €R", x R,,,
there exist X = X(u, k) and & = it(u, k) such that V, F(X,u, k) = 0, that is,

(2) x(u*,k) = x" and a(u*,k) = u* for any k>0, i.e. u* is a fixed point of the
map u — u(u, k).

(3) If (5)—(8) are satisfied, then there exist §> 0, £> 0 and ky > 0 such that for
any (u, k) € D(-), there exist vectors X = ¥(u, k) € Q; and & = u(u, k) such
that V, L(X,4) = 0 and

A E ] A * C * *
max{|| % - x*|l.,ll4 — u*ll.} < ;Ilu—u . <yllu-u*l,, (11)

with the constant C independent of (u, k) € D(-).

(4) For any fixed k 2 kg and any pair (X, u) € Q; x U, there exist 1 and A such
that:

mineigenval(V2, F(%,u,k)) 2 1 > 0, 12)
maxeigenval(V2, F(%, u, k)) < A < oo, (13)
0O



A. Melman, R. Polyak, The Newton modified barrier method 471

The important result, which will be used throughout this paper, is the
expression for the rate of convergence (11). It states that for any (u, k) € D(-), the
new minimizer X = X(u, k), as well as the new Lagrange multipliers & = fi(y, k),
are closer to the solution by a factor of y= C/k. Therefore, if y< 1, then u € U,
= it € Uy. In order to characterize the value of C, we first introduce two parameters,
which depend on k> 0:

o = max{(r(x")+ k) Mi=r+1,...,m and B =lI®;'Rl..,

where the matrices @, and R, (see [24]) are given by:

o [ @ —A, _ (0™~ A, [diag(r (x") + k~H)1m,
oAl -k ) o otrm=n ’

r

and Q = VL L(x*,u*), U = [diag(u; )]/_,. Furthermore, I, is the p X p identity
matrix and 0% is the p x s null matrix, We shall use this notation throughout the
paper.

The following assertion is a consequence of the Basic Theorem in [24].

?
ASSERTION 3.1

If the second-order optimality conditions (7)—(8) are satisfied, then there
exists a kg > 0 such that for any k 2 k; the following inequalities hold:

(247 SO'_I and ﬁk < ¢p,
where o and ¢, are independent of k 2 k.

An upper bound on ¢, is computed in appendix A.

DEFINITION 3.1

The condition of the QP problem (2) is defined as

C = max{o~!,¢p}.

We would like to emphasize that the condition number C not only does not
depend -on k 2 ky, it is also invariant to scaling of the input data (||a;|| =1 for all
i=1,...,m). It can also be made independent of the monotone transformation, which
is used to transform the initial problem to an equivalent one (in our case, the
transformation is given by In(1 + ¢)). The condition number depends on the input
data and the size of the problem. It is an important component in our further
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analysis. In particular, the value C is critical for the complexity bound of the
Newton MBF methods. The larger it is, the larger k has to be to achieve a given
rate of convergence, and the longer one has to follow the shifted barrier trajectory
before reaching the “hot start”.

An upper bound on C in terms of the QP problem parameters can be found
in appendix A.

We conclude this section with the following optimality criterion by con-
sidering a “merit function” v(x, u, k):

v(x,u,k) = maX{—lgun ri (), VF(x,u, kll, Zu,lr,(x)l}
i=1
It is easy to see that for any k> O:
vix,u,k)=0 iff x=x" and u=u". 14)
Also, there exists an L > 0 such that for any £ > 0,
v(w, k) - v(w*, k) < Lilw - w*ll, (15)

with v(w, k) = v(x, u, k). From (15) we have that for any sequence {w°}, converging
to w*, the rate of convergence of the merit function to zero can be estimated by the
rate of convergence of w®=(x*, u’) to w*=(x", u”).

4, The modified barrier method for QP
First, we will rewrite the MBF function
1,7 r._1 <
Fx,u,k)=3x"Qx—a'x— = Y, u; In(kr;(x) + 1)

i=1
as follows:

m
1xTQx —a%x - '112 2 (ln(r,(x)+ ,lc) +1nk). (16)
Setting p = 1/k, we obtain Q,=Q,, = {x|r;(x) 2 -}, and (16) becomes:

%xTQx—aTx—u Zu,- In(n(x)+ )+ puny Zui.

i=1 i=1

Dividing this last expression by g and dropping the last term, we formulate the
following definition:
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DEFINITION 4.1
The Modified Barrier Function for QP is defined as

OCx,u, 1) & %(% xTQx - a"x) - i u; In(r; (x) + ).
i=1

The reason for this definition is one of convenience only. It makes no
difference whether we minimize the original MBF or ¢(x, u, y) with respect to x,
since they differ only by a constant and a factor, both independent of x. The update
formula for the Lagrange multipliers remains of course the same, and we shall
therefore obtain the same iterates as with the original MBF. Therefore, all previous
results continue to hold for ¢(x, u, u). \

The first and second order derivatives of @¢(x, u, i) with respect to x are given
by

m
Ox —a _ 2 , a

u —t
oo () +u

Vx¢(xsu’l‘l') =g(x,u,pu)=g()=

T

U
2 = = D) = 2 3 _a’al—
Viad(x,u, p) = H(x,u, p) = H(-) ) 7 * Z;u' (r(x) + w2

The following assertion holds:

ASSERTION 4.1

(1) The MBF Hessian H(x, u, 1) is positive definite in x for any u € R7, and
u>0 if:
(a) Q is positive definite
or
(b) Q positive semidefinite and €2 is bounded.

(2) If the second-order optimality conditions are fulfilled, then the MBF Hessian
H(x, u, ) is positive definite in a neighborhood of x = x(u, u) for any
(u, w) €D(-).

Proof
Part (1a) of the assertion is obvious, part (1b) is proved in [13], and part (2)

is a consequence of the Debreu theorem (see [20]) and the basic theorem in [24].
O

Let us now consider the dual problem for (2) (Wolfe duality, see [33]):

w* = (x*,u*) = argmax{L(w)|w € W}, an
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where
W={w=(x,u)|V,L(x,u) = Qx —a— Au=0,u € RT}.

Let x° €intQ and Q° = {x € Q| fo(x) < fo(x%)}. In view of (1), the existence of x*
leads to the existence of u* € R? such that f;(x*) = L(w"). We will now describe the
MBF method for the simultaneous solution of problems (2) and (17).

To start, we choose g > 0, x° €Q, and u®=(,...,1) eR™ Let x* €2, and
u® € R™, have been found already. The next approximation x**! and u**! are
computed by: -
x5*! = arg min{@(x, u°, w)| x € R"}, ' (18)

m

u'tl = y[diag(n(x‘*l) + u)_l]‘ us. (19)

The following theorem holds [15]:

THEOREM 4.1

If Q° and W are nonempty and bounded, then for any u > 0, we have:
(1) fo(x*)>...> Lw™* )y > Lw®) > ... > LwP);
@) lim,. (x°,uf, @) = lim, . fo(x*) = lim, o LW*) = fo(x*);
(3) max{u,r,(x*)}>0,i=1,...,m, ie., strict complementarity holds;
@) I™ ufn(x*) = O(pay)'’?), where lim,_,., oy = 0. O

In other words, the MBF method generates primal and dual sequences, which
converge, respectively, to the primal and dual solutions in value (recently, Polyak
and Teboulle (see [26]) proved that the dual sequence {u°} itself converges to u*),
for any positive barrier parameter u, whether the primal and dual problems have
unique solutions or not.

The method (18)—(19) requires an infinite number of operations at each step.
To make this method executable, we have to change the infinite procedure of
finding the primal minimizer by a finite procedure, while keeping estimation (11).
Such a modification can be carried out in the following way. Let us consider a
positive number 7 and a pair (x,%) € R" x RY,, with

1V, ¢(x, u, )|l < Tl pldiag(r (%) + )~ lu - ull, (20)
7 = pldiag(r (%) + p)™" Ju. @1

If conditions (7)—(8) are satisfied, then for any 7> 0 there exists y > 0 such that
for any (u, i) € D(-) the following estimate holds:

max{|| X - x*||,[|# —ull} < CQA+ D)pellu —w?|l. (22)
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For a proof of this result, see [24, p. 206). To find X requires a finite number of
Newton steps.

Throughout the paper, we will assume that (x, ) belongs to the cut cone D(-)
as is stated in the Basic Theorem. We also assume that u is small enough so that
0 < y= Cu < 1. This ratio can be made as small as one wants by decreasing 4, and,
as was explained at the end of the previous section, can be estimated by checklng
the merit function v(x, u, #). We have the following definition:

DEFINITION 4.2

The barrier parameter 4 is consistent with a given ratio 0 < y < 1 if {y®} is
a majorant for the sequence {v(w’, u)}, i.e., {v(w®, u)} <7°.

This latter inequality can be verified explicitly after every Lagrange multiplier
update. Therefore, the merit function v establishes a feedback between the observed
rate of convergence and the barrier parameter value, allowing its proper choice.

We conclude this section with some inequalities for MBF parameters. We
shall prove a lemma, which will provide a lower bound on the Lagrange multipliers
in terms of certain parameters of the MBF method. The lemma will then be used
to derive two inequalities with those same parameters, one involving 6" and the
other involving o. These inequalities will be needed further on.

Since ||a;]l =1 for all i, we have:

Vx,y €Qp, Vi:lRx)-rmI<lx-yll.

Recalling that €, denotes the extended feasible region and rewriting the
update formula for the Lagrange multipliers as

Ao MU
TES Wy

where i = 1/k, the following lemma holds:

LEMMA 4.1

Let ||u® - u*|l.. < @ for some >0 and let 0 < y< 1 be the rate of con-
vergence, associated with g > 0, as in the basic convergence result (11).
Then the following inequalities hold:

(1) For the active constraints (i €):

u® 2 exp( - (11'_7; ) 7“’#“/; Ju}"). (23)
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(2) For the passive constraints (i € J):

ORS _ 50; _[1-7°) yoin ©)

u ‘”4: #)“%:(1-7 il (24)
with 6, = r;(x").

Proof
The proof of this lemma is given in appendix A. : O

We now use this lemma to prove the following theorem.

THEOREM 4.2

Let 0 < y= Cu < 1 be the ratio of convergence associated with g in estimation
(11), then the following two inequalities hold:

us(ﬁﬁ)w, (25)
Ls “n"yl. t (26)

Proof

[
(1) First we take a look at the active constraints. In order to apply the
previous lemma for given @, we choose 4@ as follows:

WO=u +0 i=1,..,m (27
Then, taking the limit for s — e in (23), we obtain:

S
lim u{® 2 lim exp(— (1 r ) ywﬁ]ui(o).

S§=)oo S=oo 1-y M

Since we assumed that the u{*”’s converge to the optimal Lagrange multipliers, this

means that
* _ yw«/ n )
u; 2 exp( ———#(1 — 7))u,- . (28)

We now choose an index I for which u§’) converges to 6°. For this index, (28)

becomes:

yo-n
uQ -y

[ M exp( - )(0* + o),
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and therefore

yon
“’exP( - ﬂ(l—r))

1- exp( rw«/;f))

or
a
= .
Xp (Z{‘l’-y")) -1

Taking the limit for @ — O on both sides of the previous ineqiiality yields:

6" >

.o ) (1—7)
@ 2 lim
Vn Jn
o0 (Zel] 1 T

The first part of the theorem follows immediately.

(2) Turning to the passive constraints, our choice for u® is

V=0 i€l

We now choose an index J for which o5 j¥oO= min{o;|i € J}. The basic con-
vergence result in theorem 3.1 then gives

(.\') s(O)_ s
u Sy rio.

With the previous lemma, we can therefore write:

SO - w,\/_
Sw 2 u® > exp| - —L |exp| - 14
ress p( ﬂ) p( (1-7) T

raen(- on|- (I-YJ"’f]

Taking the limit on both sides of this latest inequality for s — oo yields: Y2 exp(—o/u).
This completes the proof. O

This gives

5. The Newton MBF method

The Newton MBF method has a preliminary and a general phase. The
preliminary phase is similar to that in interior point methods (see [8,12]). We find
a “warm start” for the shifted barrier function ¢(x, e, ly), e € R™ with a fixed u,,
i.e., we find an approximation x°, from which the Newton method for the system
V. 0(x, e, o) = 0 converges quadratically.
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The general phase has two parts, which might alternate up to some point. In
the first part, we will follow the shifted barrier trajectory by changing “carefully”
the barrier parameter followed by a Newton step. In the second part, we will use
the relaxation operator

R:Q, - Q:Rx=%,

where x is defined by (20), followed by the Lagrange multipliers update (21),
while the barrier parameter is fixed. The efficient use of the relaxation parameter
R is possible only in the case where the current value of the barrier parameter u
is consistent with the chosen ratio 0 < y< 1. In such a case, due to (22), the primal
sequence {x}:

£ = Ryls=D

and the corresponding sequence of the Lagrange multipliers {u®}:
u®) = pidiag(n(x) + )~ =

converges to the K—K-T pair (x*, 4*) linearly with the given ratio 0 < y< 1, i.e.,
the process is following the MBF trajectory fast enough. If u is inconsistent with
0 < y< 1, then estimate (22) is not true and one has to find a mechanism that
decreases u without leaving the Newton area.

Before describing such a method, we estimate the computational cost for the
numerical realization of the relaxation operator R. Since R is always applied to x,
which is “well defined” (see [31]), it takes O(In In £!) Newton steps to solve the
system in x: V,@(x, u, i) = 0 with accuracy £> 0. We assume that:

(1) the accuracy £ =271 (L is the input length of the problem) is enough to find
x, which satisfies (20), starting from any “warm start” for the system
V,0(x, u, p) =0, when u € U, and g >0 is consistent with 0 < y< 1.

(2) m (m>n) is an upper bound on the number of bits needed to represent any
number appearing in the input data.

Under these assumptions, we have L = O(m>) and the numerical realization
of the operator R requires at most O(In L) = O(In m) Newton steps.

The Newton MBF method will produce a combination of the path-following
trajectory for the shifted barrier function (4 is decreasing while the Lagrange
multipliers are fixed: u® = ¢) and the MBF trajectory (4 is fixed while the Lagrange
multipliers are updated, followed by an application of the R-operator to the primal
vector). A key element in the method is the merit function v(w, i). As soon as the
barrier parameter [ becomes consistent with the rate of convergence 7, the relaxation
inequality v(w(?, g) < ¥* holds for any s > 1, which means that the process is now
on the MBF part of the trajectory and will stay on it from now on. If the latter
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inequality does not hold for some s > 1, it indicates that the current y is inconsistent
with the chosen y and we have to decrease p. To achieve this without leaving the
Newton area, we will turn again to the shifted barrier trajectory and will follow it
by “carefully” decreasing the barrier parameter 4. As soon as y is decreased by a
given factor 0 < k< 1, we will try again to turn to the MBF trajectory. If the new
barrier parameter value is consistent with ¥, our attempt to turn to the MBF trajectory
will be successful, otherwise we will continue to decrease g by following the
shifted barrier trajectory.

Therefore, the Newton MBF method might alternate between the shifted
barrier and the MBF trajectories, while always being in the Newton area. As soon
as U becomes consistent with 7, there will be no more alternation between the
trajectories. From this point on, only the R-operator will be used, the sequence
{w®) = (x9, 4} will converge to (x*, u*) linearly with the rate of convergence y
and the number of Newton steps required for the numerical realization of R will
decrease after every Lagrange multiplier update so that from some point on, one
Newton step is enough for the multiplier update.

The algorithm presented in the flow-chart of figure 2 is theoretical in the
sense that even though it correponds to the complexity analysis which is to follow,
in practice one might change a few things. In particular, instead of going back to
the shifted barrier trajectory when the inequality v(w, 1) < y* is not satisfied, one
can continue the calculation from the point X while changing u for xu.

The Newton direction p(x, u, i) at a given point x for fixed u and y is given
by: .

POt 1) = = (V20(x, 1, 1)V, 95, 1, ).

Any of the three conditions of assertion 4.1 guarantee the existence of
(Vix(p(x, u, ,u))'l. Whenever there can be no confusion, we shall write p, g H
instead of p(x, u, 1), V. ¢(x, u, i), V2,0(x, u, 1), respectively. We will frequently
use the H-norm ||-|| 4, defined as

lxllg = xTHx.

The flow-chart on the following page describes the Newton MBF method.

In the rest of the paper, we will prove that for nondegenerate QP, there comes
a point where the barrier parameter u becomes consistent with the chosen ratio Y.
As soon as such a point on the shifted barrier trajectory has been reached, the
“warm start” for this barrier parameter turns into a “hot start” (see definition 6.1).
From this point on, every multiplier update requires at most ©(In m) Newton steps
(see our previous assumptions (1) and (2)) and decreases the distance from the
current primal-dual solution to (x*, 4*) by a factor ¥.
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x° - warm start. W =e, g, >0
0<y<l1, >0,e>0
1>%>0

\J

> x=x"u=w =g rs=1
> x:=x-Hlg
Y
p:=p(1-a/ /m)
No
Bsxpy
Yes

xX:=x; u:igu;pe=p
—_—

l

x:=Rx;pu=p[diag((x) + p)' Ju

No -

u(W,p) < y3

No
v(W)se

Yes

wt:=w

Figure 2. Flowchart of the Newton MBF method.
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5.1. BASIC LEMMAS FOR THE INNER ITERATION

In this section, we shall state some basic lemmas that will be needed to
determine B(x), which was mentioned above. The proof of most of these lemmas
is technical and is deferred to appendix A. We start with some notation:

I = {i| ri(x) is active},

J = {ilri(x) is passive},

I, ={ilu;2p/2},

Jy = {ilu;<p/2},

|J,| = the number of elements in J,,,

u
@ = min{wli€l,},
P = max{ui}9
n = |Jy|max{ui|ie']y}:
M = max{uli€l,),

Ay = the smallest eigenvalue of H,
Q, = {x|Vi:r(x)+p20}.

In the rest of this paper, we will also use the quadratic approximation
q.(d, u, ) for ¢(x +d, u, yt) at the point x, defined as
&Y

qx(d,u, ) = (x,u, 1) + g7d + 3 d"Hd.

As was mentioned before, we want to determine the region in which full
Newton steps can be taken. In order to do this, we have to determine under what
conditions, for x €int Q, and d €R", x + d still lies in int Q

The following two lemmas deal with these issues. In the first one, we
determine a condition on d for x + d to lie in int ,, whenever x does. In this same
lemma, we also compute a bound on the error in the quadratic approximation to the
MBF, which will be needed for the proof of the next lemma.

LEMMA 5.1
If x € int Q, and [|d|| y < By (x), then x + d € int ;. Moreover, if lldll g < Bi(x)/2,
then .
x+d,u ) - d,u, < ——|Id|I3,
| §( W) = qx(d,u, ) 351(x)ll I
where

Ry(x) = min { Ay (;(x) + w1 j € J,,}
B1(x) = min {8, R (x)}

&(x)= 3 [ Rl(x)f G)'
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The following lemma gives a measure for determining the distance to the
minimum for the inner iteration, when we are close to this minimum. See also
lemma 2.16 in [13]. We recall that p denotes the Newton direction.

LEMMA 5.2

If Ry(x) 61(x)}

Il < Bao) = min { B2, 6
then
Ix - 2 s < 31 plla. | .

As a complement to the previous lemma, we also prove the following result,
similar to lemma 5 in [5]. It gives a lower bound on the reduction of the MBF that
can be achieved after a linesearch along the Newton direction, when we are far from
the minimum.

LEMMA 5.3

If
Il > Bo() = min 2, S},

then the reduction A¢ in the MBF after a linesearch along the Newton direction p,
satisfies

Ap > 2 B2 (x).
This remains true if B,(x) is replaced by any f, such that 8 < B,(x). O

The next step is to determine under what conditions taking a full Newton step
will actually bring us closer to the minimum, and at what rate. In order to do this,
we will investigate how successive Newton directions relate to each other. The main
result in this respect will be lemma 5.7.

For the proof of this result, we will need the following three lemmas which
give bounds on the change in various quantities depending on x when evaluated at
different points.

We first define the following quantity:

DEFINITION 5.1
B(x) 2 miin{r,-(x) + 1}

LEMMA 54

If
-yl 22 @, (29)
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then
( a ) 11 S( a ) 1
a+l) r(x)+p " nM+u " \a-1) n(x)+p’ O
LEMMA 5.5
If |
lx-yls 22 @>, (30)
then
T T T .
(a+1) dTH(x)d < d H(y)d<( 1) dTH(x)d. (31)
0
LEMMA 5.6

For x, x + p €int Q, with |[pll £B(x)/a (a> 1), the following inequality

holds:
3
16+ Pl < (i

1)3 B(x) O

The next lemma will determine the rate of :‘,onvergence for the norms of the
Newton directions in the inner iteration. The notation “g”, which will be used for
a Newton direction, should not be confused with the same “q” appearing in the
objective function in section 2, as the explicit form of the ob_]ectlve function is not
used here at all.

LEMMA 5.7

Let p,q and H, H be the Newton directions and Hessians at x and x + p,
respectively, with x, x + p €int Q, with || p|l < B(x)/a (a>1).

Then;
lqllz < a3n
Ipl% ~ (@-13Bx)Ag

Proof
We have

=-V¢(x) and Hgq=-Vé(x + p).

Therefore, with the previous lemma:

2
TH2g = | Hqll? = 2en[— @ Yy
g"Hq = Hql* =[IVé(x + p)ll S"((a-l)ss(x)) I pll%
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On the other hand, one has
q"H?q = (H'?q)T HH"?q) 2 Ag | H'q|* = Az llqlI%.

Therefore, we can write

3 2
Agligly sn| —%— 4,
7llqll n((a‘_l)w(x)) lpll

2
2 fn )2 Yy e

Dividing both sides by |l pll% and taking the square root completes the proof. [
p

which gives

We now define a quantity f;3(x, @, @), depending on x and two positive
parameters, & and C.

DEFINITION 5.2

() & 1 B)WAg (a—1)3 B(x)\Ax }

s
ﬂs(x.a,a)_mm{ 2 53 2 3 =

3
We will show that for certain values of ¢ and &, the following property
holds:
If, during the inner iteration (fixed » and u)
” P(x, u, ”) ”H(x,u,y) < ﬂ3 (x, o, a), (32)
then, if full Newton steps are taken from this point on, the algorithm converges and
each new iterate y generated in this way will satisfy:

) y€intQ,,
(2) “P(y, u, u)”H(y,u,[.l) < ﬂ3 ()', Q, a)'

Before we can do this, we must find a bound on the change, after one
full Newton step, in the quantities B(x), Ay, R (x), and &,(x), which determine
B3 (x, a, ). The next lemma will provide this.

We will use the following notation:

p =px u lb),
X =x+p,
q =p(x,u W),

Ay = the smallest eigenvalue of H(x, u, u),
A = the smallest eigenvalue of H( X, u, 1).



LEMMA 5.8
If

then
1

(2)

3)

4

A. Melman, R. Polyak, The Newton modified barrier method

B(x)4/2
Iplly < 20

(&5

)

E=1) b < 5% < 2 'I)B(x),
) <36
R < R < (S5 R0

E(x) &G < (“fl) 5 (x).

485

O

; We are now ready for the main results of this section. In the following
lemma, we will use the previous lemma and lemma 5.4 to find a relation between
o and @ so that (32) will be satisfied at the pa§nt X also.

LEMMA 5.9

If | pll g < B3(x, @, @) with

a>1,

a >

then |lqll7 < B3(%, @, @).

Proof

(=) (&)

From lemma 5.7, we have that:

lal < (225) ot ol
o) o5 22

IA

B(x)}\Ag

B iy L(E2 )10,
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Now, we assumed that

Ri(x) &(x) 1
27 5’2

B(x)\An (a - 1)3 B(x)\Ay }
] a ’

[|p||,,s/33(x,a,¢7)=min{ a a-/n

so from lemma 5.8 we have

and therefore

lpllg

IA
/N
R|R
L+
b | b
N’
(7]
=
w
=
R
S

We have obtained that

lgllz < é(“—”) (_&%1)3 B3 (F, . &).

o

The assumption on & concludes the proof. O

A convenient choice for a and @ is 6 and 125/36, respectively. This choice
satisfies all conditions imposed on & and @ and we will use it in our next definition.

DEFINITION 5.3

A sy _ i J&G) 1 BWAy
B(x)=ﬂ3(x,6,36)-nun{ S e |

Note that Ry(x) = /Ay B(x), so that it could be left out of the definition.
Substituting those same values for @ and @ in previous lemmas, we have
proved the following theorem, which summarizes the results of this section:

THEOREM 5.1

(1) If lIpllg < B(x), then

OREN ERp DI 31 pla,
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o lallg . 24n
1 = B

Gi) lgllg <2lplg.
2 Ifllpllg > B(x), then Ag > 2 B%(x). O

5.2. BOUNDS ON ALGORITHM PARAMETERS IN A NEIGHBORHOOD OF THE SOLUTION

So far we have derived results for points that were not necessarily close to
the solution. However, since we are ultimately interested in finding a lower bound
on f(x) in a neighborhood of the solution, we will now consider the algorithm for
(x, u) lying in the set S;, which is defined as follows:

DEFINITION 5.4
51 o max(llx = V-l < £},

In this section, we will compute bounds on S for previously defined quantities
in terms of their values at the solution. These bounds will be used in the next section
to prove the final results. The proofs of the first two lemmas are quite technical and
they can be found in appendix A. The first lemma gives bounds on the Lagrange
multipliers and on the quantity r;(x) + & in S;.

LEMMA 5.10

Let (x, u) €5, and let the rate of convergence of the algorithm be given by
¥ =1/(2v/n).

Then

(1) for the active constraints (i € I):

Tuf < <3uf, (33)

L, 3u
and 2<r,(x)+u< >

(2) for the passive constraints (i €J):

r(x)+u>0+ E.

2 O

We can use the results from the lemma we just proved to draw the picture
in figure 3. It shows that for (x, u) €S, the sets I, and J, are identical to I and J,
respectively, since all active Lagrange multipliers will lie to the right of 6°/2.
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T ¥ T t y T

0 g £ u j 6*
Figure 3. Location of Lagrange multipliers.

We will now have a look at the eigenvalues of the Hessian of the modified
barrier function in ;. The following lemma gives upper and lower bounds for the
smallest and largest eigenvalues of the Hessian of the function ¢(x u, ) for fixed
u and g and for (x, u) €S,.

LEMMA 5.11

For (x, u) €S8;, the smallest and largest eigenvalues of the Hessian of
o(x, u, ) at x for fixed u and u are bounded as follows:

22 <A s6A +—2m=D

2Vn(o + p/2)*’
ZA SAy s6A"+HmmD
) H 24n(0 + p/2)? O
H
We now define the following two quantities:
DEFINITION 5.5 e
iazn,
r . w(m—r)
4 6A .
27n(o + u/2)?

Here, A" and A" are the smallest and largest eigenvalues of V2 ¢(x*, u*, u),
respectively (for fixed ).

The following lemma gives a lower bound on B(x) in S;, but first we will
define the following quantities:

DEFINITION 5.6
Definition of &* and B™:

£ a 1{2 + 21(m - r)u -
T 10\ \Jo*  4vIaA(o +u/2)} )

N
B=m‘“{ i 184’«/‘}
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LEMMA 5.12
For (x, u) €S, px) 2 B

Proof
From the definition of B(x) and lemmas 5.10 and 5.11, we have immediately
that A
K pNA
> = >
B(x) 2 5 and B(x)\|Ag 2 Nk

Since J, = J, we have for R;(x) with lemmas 5.10 and 5.11:

Ry(x) 2 “23)"‘ (0'+ %)

whereas for 17 we can write:

(m -y
< —F.
LW
We now use these bounds and lemma 5.10 to compute the lower bound on
& (x) in §;: 3

1 1
_if, om ) 12 2im — Dt
&1(x) 2(@ + Rf(x)] - 2(49_* * 4475).’3/2(a+#/2)3) .

From these bounds and from the definition of B(x), it follows that

Bx) > p°. O

53 BEHAVIOR OF THE ALGORITHM IN A NEIGHBORHOOD OF THE SOLUTION AND
FINAL RESULT

In this last section, we consider the behavior of the algorithm in a subset of
S, and present the final results. The subset S C §; we will look at is defined as
follows:

DEFINITION 5.7
sa {u,u) : max(llx - x*ll,llu - u*ll_} <

)

Starting from a point (x®, @) in S, let us now examine the iterates (x', u®®).
We will use the following notation:
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* ¢s—l = ¢(x9 u(s—l), ﬂ)

o x© is the sth iterate, i.e., the approximate minimum of ¢,_;.

o £® js the exact minimum of ¢,_,.

e H®(x) is the Hessian of ¢, at the point x.

e p,(x) 1is the Newton direction of ¢, at the point x.

* p(x) is the Newton direction of ¢(x, u, i) at the point x for fixed u.
e A (x) is the smallest eigenvalue of H* at the point x. '

e A(x) is the smallest eigenvalue of H(x).

Figure 4 illustrates the labelling of the iterates.

f u ¥l
u’
ust
'
a
Y
.+
r >

Figure 4. Labelling of the iterates.

Under the assumption that the rate of convergence of the algorithm is given
by 7 = 1/(2+/n) and that (x@, u®) €S, all iterates will lie in S and they satisfy:

max{|| x — x*l|_,1u® - u*|| .} < r'o.

We now recall that, starting with x©, the algorithm first checks whether this
point is in the region of quadratic convergence for ¢. If not, we perform a linesearch
and continue to do so until this region is reached, from which point on full Newton
steps are taken until a point close enough to the minimum is reached and accepted
as the new iterate x(). This point is then used to update the Lagrange multipliers
and construct ¢;. We then, again, check if this point lies in the region of quadratic
convergence for ¢; and so on.
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The next lemma is the last one we need to prove our main results. Its purpose
is to provide a few bounds, which will be used to determine if there is an 5 for
which x® lies in the region of quadratic convergence for Newton’s method for
¢; and whether this will remain so for subsequently generated iterates.

LEMMA 5.13

Let the rate of convergence of the algorithm be given by ¥ = 1/(2/n) and
let (x, ) € S. Assume that each inner minimization is carried out with accuracy
€> 0. Then we have: :

1 12 - 26*D] < 2y° w/n,

28 s,

Vi

@ "Ps(x(s))”}]‘(x(:)) <

Proof
(1) We begin with the first part.
1 ~ 2D < 1x@ — xJ 42640 - 7]

< ||x(s) _ x"|| +”x(3+1) —x*| +||x(s+1) _ f(SH)”

<yiwn +y H\on + % <2y*wn,

where we have used the assumption that each minimization is carried out with
accuracy &/4.

(2) The second part follows almost immediately from part (1) and from a standard
theorem about convex functions which is stated in appendix A as lemma 8.4. We
have:

| ps (x(s))”H, (x0) = ((V¢s (x(S) ))T[Hs(x(s))]-l Hs(x(s))[H:(x(s))]—l Vo, (x(s) ))1/2

! 1/2
< (Envfps(xm)w) |
We can therefore write:
1 A
| ps N g (xt0y § =11V xO) £ =27 w/n.
3 X ﬁ 5 ,\/I

In the first inequality we used the fact that ¢(x, u, i) is strongly convex; the
latter inequality uses lemmas 5.13 and 8.4.
This completes the proof. |
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We are now ready to state the main results.

THEOREM 5.2
When the algorithm reaches a point (x®,u®) satisfying

max{[| x® - x*[l.., [1u® - u*]l.} < Tmm{#, % *}, (34)

and € < (1/(2+/n))* 1/(2+/n) (otherwise we have reached the desired accuracy and
there is no point in continuing the algorithm), then x will lie in the region of
quadratic convergence for ¢; and the same will be true for each subsequently
generated pair of primal and dual iterate (x), u®®).

Proof

Suppose we start from some initial point in S, then the iterate x will
certainly lie in the Newton area for ¢; if || p|| 4 for this point falls below 8, which
is a lower bound on B(x) in S,. With the previous lemma one sees that this will

certainly be true if i
2=y wyn < B’
a7

Yo < :/I B
. 2A+n
This completes the proof. a

or

Following this theorem we define the following set:

DEFINITION 5.8

Té{(x’"):ma"‘“x—x*ll.,.u wll. }<2—f"“"{ _{Xi-ﬂ}}

THEOREM 5.3

Let the algorithm have reached the point (x*), u‘®)), satisfying the conditions
of the previous theorem and let € also be as in this theorem. Then from this point
on, the convergence of ||p|l 4 to zero in any inner iteration (x and y are fixed) will
be quadratic with the rate of convergence given by:

I|q||127 < 1*-
Iplly — 3B
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Proof

When we start from a point (x, ) in 7, the iterates obtained in the inner
iteration will converge to X = arg min, @(x, », i), and all of them will satisfy || p|| 4
< B*. This inner iteration terminates with a point X, satisfying

lx - 2|l < /4,
We therefore also have
12— x*l <%~ 2| +]1x - x* <% - 21+ Vnllx - x*|l.;
e 1 * £ H
<= + —fu- <=+ .
7 2IIu ull, rRRW
We now show that any iterate w, obtained during the minimization of ¢(x, u, u)
starting from (x, u) €T, is such that (w, u) lies in S.

We start by looking at what happens to the first iterate z, obtained by taking
a full Newton step from x. We show that (z, ) lies inside S.

~ 1 A
i ——lz -
llz - xl '——Z(z)”z %y < 5 /’L( ——| p()la(z)

2
<Py * (from theorem 5.1)

<_S
2./A(z) 5

w/l(x
—— I p® g
’_l( '_l( P\X)H(x)

% (from lemma 5.8 with & = 6)
<71 #\/— L
ol JAx) 124~ T2dm

We can therefore write

lz=x*ll, <llz—x*I<lfz = 2l +1}2 - x|l

7 1 £
< + + —
ittt

/)
< .
24n

This means that (z, u) €S. The exact same procedure can now be carried out with
z instead of x and we obtain in this way that all iterates lie in S. This can now be
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used together with the rate of convergence result in lemma 5.7. Since all these
iterates lie in S C Sy, we can apply the bounds on various quantities which were
obtained for this set.

This gives (see theorem 5.1):

lala _ _2vn  _ [Bum; t(wlz)
lpll% = B(x)JAg 2+/n wn| © 3/3*’

which completes the proof. : O

6. Complexity estimation

Theorems 5.2 and 5.3 show that there comes a point, where in primal space
only the “pure” Newton method is used, i.e., Newton’s method with stepsize one,
while the sequence of Lagrange multipliers remains in U, (as defined in section 3)
with u fixed. In other words, from some point on, the primal iterates are in the
Newton area and remain there after every Lagrange multiplier update, while the
Lagrange multipliers remain in U, and the distance to both the primal and dual
solutions is reduced by a factor 0 <y<l1 after every multiplier update.

We say that u €U, is well definéd for the barrier parameter u if y=
Cl+7tu-= (2«/_ )1 Then estimation (22) gives:

max{[| % - x*[b,,ll4 - w*ll.} < 7 llu - u*|l..

We say that x € Q, is well defined for a particular u €U, if x lies in the area of
quadratic convergence for Newton’s method (see [31]) when applied to solving

Vi ¢(x, u, p) =0.

DEFINITION 6.1

We call an approximation x €€, a “hot start” if

x € Q, is well defined for u € Uy,
implies
x € Q, is well defined for ¥ € U,

where the pair (X, #) is defined by (20)-(21).

Theorems 5.2 and 5.3 tell us that there exists a neigborhood T of (x*, u*) such
that for any pair (x, u) €T, the vector x is a “hot start”. The first question is what
the size of this neigborhood is and by which problem parameters it is determined.
The second question is what it takes to reach T. First of all note that from theorem
4.2 with ¥ =1/(2+/n), we obtain 6" > pand ¢ = uIn(2+/n). In view of the formula
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for ﬁ' (see definition 5.6) and assuming that 8" = dand 6= U In(2+/n), we obtain
a lower bound for B, since these assumptions reduce £* and therefore also °.
Under the assumptions of assertion 4.1, we have

A~ow™), A~ow?)

Therefore (see definition 5.5), A" = Ou™").
For &, this gives

-1 .
> _ |42 .
: 10 ( ¥ 4+2n(ln 2~/n + %)3(#1‘)3/2 ] (35)

This means that & ~ Ou'/2) or & ~ Q2N ;112 depending on whether
the first or the second term in the sum on the RHS of (35) is larger.

In the definition of B*, we also have the expression u«/? /~/n, which in view
of our assumptions will be O(Jﬁ/ﬁ ).

If we put all of this together, we obtain for the RHS in (34):

il | of ] L Gan)?
0 {"’x”} ofwma . 22 ]}

Assuming that m > n, we obtain for the radius p of T': p = Ou’m™"). Keeping
in mind that u = 1/(2C+/n), we obtain

p=0( 1 ) (36)

C*mn

We first estimate the number of Newton steps necessary to reach the set 7.
We recall that by applying the path-following method to the shifted barrier function
¢(x, e, 11), one can reduce the duality gap to a given level Z >0 in O(mIng~")
Newton steps. Since after such a reduction, the primal approximation x will remain
in the Newton area for the system ¢(x, e, it) = 0, we can apply to x the operator R.
Then, due to (22) with 7= 1, we obtain for the pair

¥=Rx, u=p[diag(rn(X)+m  le: 37
max(|| X — x*|l,l|# - u*||} < 2CHlle — u*|l.
Therefore, to guarantee that {||X — x*||,|[# — «*||} < p, we must have:

2Culle—u*l < p,

ie.,
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E<ipCllle-wilt < LpC!lur| .

— 1
=o|—1 |
K (C3mn||u'|l)

Hence, it will take O(v/m In(C3mn||u*|| 4o)) Newton steps' from a “warm
start” x°, that corresponds to the barrier parameter p,, to the “warm start” x°,
corresponding to the barrier parameter [i. Due to assumptions (1) and (2) at the
beginning of section 5, it takes another @ (In m) Newton steps to apply the operator
R (see (37)) and to obtain the “hot start” x € Qg and the corresponding vector
u € Ug of the Lagrange multipliers. Therefore, it requires

With (36), this gives:

Ny = O (Vm In(C*mn||u"]|)) (38)

Newton steps (assuming Uy = 1) to get from the “warm start” x°€ Q u, for the
system @(x, e, u) = 0 to the “hot start” X € Q5 and to obtain a vector # € U 7 such
that

max{|| ¥ — x*[l..,Il& - w’ll.} < ylle - u*]l,,,

y = (2+/n)"!. Moreover, X is again in thz Newton area for the system V, ¢(x, &, 1)
= 0. Therefore, it takes at most O(In m) Newton steps to obtain

*® = R, u® = [diag(r, (RxD) + B)~1 1z
and again we have

max{ | x® — ¥l Nu® - w*ll } < ylla -l

o0

¥ = (2v/n)"! and x() is well defined for the system V¢(x,u®, ) = 0. This means
that in s outer iterations, the MBF method produces a sequence

x = RxC¢~D and 4 =[diag(r(Rx*"!) + @)~ Jut-V
such that
max{[| ) — x*|l.,1u® - u*ll..} < y*lle — u*l...

Every outer iteration requires at most @(lnm) inner Newton steps. Therefore,
to get an an approximation with accuracy 2°L from any “hot start” (and with
¥ = (24/n)7") takes

Ny = o((L ~ In(C2mn)) (in n)™" In m) (39)

Newton steps. We point out that N, is an upper bound. In fact, the number of
Newton steps is decreasing drastically after every multiplier update until one Newton
step is enough for the update (see {2,3,14,18]). Therefore, the main part of the
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estimate N; + N, for the total number of Newton steps is N,. This means that the
complexity of the Newton MBF method is a function of the condition number, the
size of the problem and ||#*||. The important point here is that the complexity grows
logarithmically. Assuming that C > mn||u*||, we obtain from (38) and (39) that the
total number of Newton steps is given by

N=0(mmC)+O0((L-InC)nn) " Inm). (40)

The first term is the number of Newton steps from the “warm start” to the “hot
start”, while the second term is the number of Newton steps from the “hot start”
to the solution.

We have to mention though that the estimate for N can be achieved if we have
an estimate to the barrier parameter [ in advance. Without knowing such an
estimate, we will make a few attempts to turn from the shifted barrier to the
MBEF trajectory, before finding the first “hot start”. Every such attempt requires
O(L -1n C)(In n)~! In m) Newton steps. Therefore, the few attempts which might
be necessary before the process turns to the MBF trajectory cannot substantially
change estimate (40). Note that the upper bound for the number of attempts is
O(In C). This means that even in the case of a degenerate problem, when we can
assume that C = 2L, the complexity of the Newton MBF method remains polynomial.

Recalling that for a linear programming problem for example, an accuracy
of £=2"L with L=0(mn) is required to obtain an exact solution and under
the assumption that &€ < (C’mnllu*||)™', this potentially represents a significant
improvement over the classical barrier method where the complexity is given by

O(Wm et

7. Concluding remarks

The global convergence of the MBF methods for any positive barrier
parameter (see [15,26,27]) together with local properties P1—P5 not only contribute
to numerical stability and a substantial improvement of the convergence rate,
compared to classical interior point methods (see [7]), but also exhibit the “hot
start” phenomenon, which leads to a significant improvement of the complexity
bound. The reason for this is the fact that the MBF method converges linearly for
a fixed barrier parameter and the fact that the condition number of the MBF Hessian
is stable uniformly in u € U,. This implies that there comes a point where all the
iterates remain well defined in the primal as well as in the dual space.

This means that after each Lagrange multiplier update, the primal minimizer
is again in the area where ||p|ly converges to zero quadratically, while the new
vector of Lagrange multipliers remains in U,,, where the basic estimate (11) holds.
Therefore, the procedure of finding the current minimizer is not expensive (only
O(In In £7!) Newton steps per update), while the improvement of the primal and
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dual approximation is by a factor 0 < ¥ < 1 as soon as g < y/C. In this case, one
can improve the current approximation by a factor ¥in @(In In £7!) Newton steps.
Moreover, the number of Newton steps decreases after every Lagrange multiplier
update.

We would like to emphasize that, contrary to Interior Point methods that are
based on CBFs (see [11]), or Shifted Barrier Functions (see [8,10]), the area in
which || pll 4 converges to zero does not vanish when the primal approximation
approaches the solution. In other words, the “Kantorovich ball” (see [17]) in which
the quadratic convergence of || pl| 4 to zero occurs, is determined by B(x), which is
bounded away from zero uniformly in ¢, whenever u € U, i.e., there is a B* such
that B(x) > B° > 0. The size of the neighborhood of x where || p|| 4 falls below this
value, and continues to be below this value for all subsequent iterations, is
characterized in terms of the condition number of the QP problem, the size of the
problem and ||«*||.

To reach the “hot start”, one has to perform O(~/m In(C3mn||u*||)) Newton
steps, starting from any “warm start”, using the path-following trajectory for the
shifted barrier function with Newton’s method.

It might be that for certain problems, the “hot start” might never be reached.
The radius of the ball T, where the “hot start” begins, is a function of the condition
number C and the size of the problem (3ee (36)). In order to be in this situation,
we must have (C?mn)~' < 27L. Keeping in mind assumptions (1) and (2) (from the
beginning of section 5), we have L = O(m3) (m 2 n). Therefore, to miss the “hot
start” one must have a conditiop number satisfying:

C 2 290 (mn)~1/2,

So even for small problems, the condition number must be beyond imagination.
Practically, it is unlikely to have such a condition number for a problem with
m 2 100. But even if we miss the “hot start” because C 2 2L, the algorithm will
simply follow the shifted barrier trajectory until the end, with the classical com-
plexity.

We have to keep in mind that the MBF method, in contrast to interior point
methods based on the classical barrier functions, coverges for fixed positive u.
Practically (see [14]), most of the LP problems from the Netlib library were solved
to high accuracy with a fixed g = 10™* in less than 100 Newton steps and to reach
the “hot start”, very few Lagrange multiplier updates are needed.

Appendix A

A.1  FROBENIUS’ FORMULA

The following expression is valid if the appropriate matrix inverses exist (see
[6, p. 102]):



A. Melman, R. Polyak, The Newton modified barrier method 499

(M N]"_ (M — NS~1R)~1 —(M - NS~'R)~1Ns-1
R S —-STIRM = NS7'R)™!'  §~!' 4+ STIR(M - NS~'R)"'Ns~! )

A2 SOME LEMMAS ON THE NORMS OF SPECIAL MATRICES
For A e R™", BeR"™, x €R", y € R” with:
(1) IBTyll= mellyll (mo >0) Vy € R", which implies
” (BBT)"" <1/m2,
(2) (Ax, x) 2 [yl|xl|® Vx such that Bx =0,

the following three lemmas hold (see [21]):

LEMMA A.l
. 1 _ 2llAllllBIP 2 I
—2> T+ =
u m¢ ( lo 2”A“)
then
-1
(A + lBTB) <2
K )
LEMMA A.2
1/2
If 1 2llAlllBl 1+ | All?
u mg lg ’
then
-1 2 \1/2
(A+ lBTB) BT| < 2uII3B|| 1+ ”A2” .
H my I
LEMMA A3
If 1/2
1 - 2llAltllBll 14 | Al
n o mg lg ’
then

1 1 !
I, - —B(A+ ——BTB) BT
7 7

3 2
mg Iy

1/2
2 2
< 2ulAlLLBI [1+ LAl ) _
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A.3. ESTIMATION OF THE CONDITION NUMBER C

In order to find an upper bound on C, we will estimate ¢, which was defined
in section 3. We start by writing down <I>,]1 using Frobenius’ formula (see the first
section of this appendix):

F! -Lp-14
¢;1=1*T1 1 ”1*11-’
Luralr- —E(I, ~LUTATF- A,)

where F = Q + %A,U: A]. ®;'R, is therefore given by:

» wFla, F~lAp_,[diag(o; + w717,
Dy Ry =, 177* 4T p-1 1 77* 4T -1 . “1ym
L(1 -LUraTF'a,) LUiATF 1A, (diago; + )17,

To estimate IIdJI",lRuII,,, we shall use the fact that for a matrix, composed of other
matrices A, B, C and D:

M N
R S
and that for a matrix A € R(?+);

. Al s sllAll.

In order to compute an upper bound for the 2-norm of each of the four
matrices in @, 'R”, we shall use three lemmas from [20], which are restated in this
appendix as lemmas A.1, A.2 and A.3. The result will be that for x4 “small enough”,
the upper bound on each matrix will be independent of 4.

We rewrite AU’ AT as (U2 AT)T (/> AT). With

< maX{ZHMIL.+IlNllm,IlRII“+||SII.,°},

- 1
| Ayl 2 mollyll and |I(ATA,)"| < —
implying 0
1
G*mg ’

WU 4,911 2 V8" mollyll and [(ATUSA, )Y <

the aforementioned lemmas can easily be applied to our four submatrices. We look
at each of these separately.

(1) For the first one, we have

‘—IL‘F‘IA, = %(Q_’_ %(U:I/ZA,T)T(U:I/ZAI))_I(U:l/zA,T)TU:_l/z.
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Taking norms yields:

(Q+ %(U‘I/ZAT) (U'I/ZAT))_I(U*I/ZAT)T .

*-1/2
Lot ] < 122
u

From lemmas A.1 and A.2, we have that for

«1/2 +1/2 1/2
» O I A, 2 o). (1182
max + = + , |1+ , (41
R m Jom L 200 ) @

the following estimate holds:

. T, -t T
‘(Q ((U 1/2AT) (U 1 2AT)) (U 1/2Ar) < o

«1/2 1/2
20; A,Tu(1 ngnz)’

12

This, together with A.3, gives

tl/2 ¢1/2 1/2
20U Ay, (1 IIQIIZJ/

-o-3/2l 3 12

pt
U 6™ "m3

Finally,

lo .-
EF 14,1 € oy,

where we have defined

12

- 2IIA,T||J?( ||Q|F)‘/2
0*2m3 '

(2) We now look at the second submatrix:

| F~' Ay, [diag(a; + py ' 17 I S ITF7 | A [diag(o; + )7 17,
Lemma A.1 yields:

11 Ay, [ding(a; + )" 1%, ]l < %nr*n(o T,
and therefore:
”F_]Am—r[diag(o.i + #)-l];"+1” S a29
where

2
a = —"”Am-r"-

O'lo
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(3) The third submatrix gives:

1 1,7
E(I, - —IIU,A,TF lA,)

< 15,

»x1/2
U# (I B %(U*WAT) (U:I/ZAT)T)U:--I/Z

*1/2

x=1/2

i,

u
For u satisfying (41), lemma A.3 gives:

1 172, 7\T . w2 \T
1, ﬂ(U ATY Fl(u; AT

*1/2 12 2 1/2
T PE A (N

(V6 mo)’ b2

This, together with (42), yields:

1 1 -
“ﬁ(’,'— EU:A,-TF IA,] <Qs,
with
. 3/2 1/2
_ loll uATu2 ol )
a3 = ,, 372 1+ 2 .
6 0" "mj lo

bl

(4) Finally, we consider the fourth submatrix:

1
S UTATF™ A, [diag(o, + )7 17

| (P
EU,A,TF"

N

Ap_ (o +p)!

1

—A,TF'I’ Ap_ -1
u

IA

IA

1 _ T -
E((F 1)TA,) m—rl U lo™1

—l-F“A,
u

IA

m-rl 1UF 57!

IA

*
Ellan-lla

< a4a1 )
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with

p*
0y = — | Am—rll.
4 o_”mr”

Since ¢y < 2|I<I);1Rﬂ||,,, we have obtained that

co < 2\/; max{a; + 03,03 + 0104}. (43)

A.4. AN INEQUALITY FOR In(x + 1)

We want to estimate |In(1 + x)| for |x| <1/8. From inequalities 4.1.33 in

[1], we have
X

1+x

<SIn(l+x)<x (x>-1)

Therefore, since |x| <1/8:

lIn(l + x)| < max4 1, —— L | x|
1-|x|

< max{vl,%-}lxl.

This means that .
|In(1 + x)| < &[x|. (44)

st

A.5. A LEMMA ABOUT CONVEX FUNCTIONS

LEMMA A4

For a twice continuously differentiable function y(x), defined on an open
convex set F C R", such that

Vx € F:||V2y(x)| < A,
and with
'i = arg minx W(X),

the following inequality holds:
IVy)ll < Allx - 2.

Proof
Expanding Vy/(x) in a Taylor series around X, we obtain, with X a point on
the segment between x and x:

IV (x) - VeI < IV @Il x - 21l
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Since Vy(x) = 0, we have

IV <IV2p ) x - 2]l
SAllx -zl a

A.6. PROOFS OF LEMMAS IN SECTIONS 4 AND 5

LEMMA A.5 (lemma 4.1)

ks

Let {|u® - u*||.. < @ for some @ > 0 and let y< 1 be the rate of convergence,
associated with > 0, as in the basic convergence result (11).

Furthermore, we recall that the constraint functions satisfy the following
Lipschitz condition: ” '

Vx,y €Qy, Vi:ln(x)-n<lx-yl.
Then the following inequalities hold:

(1) For the active constraints (i €1):

S
uf” 2 exp (— (11 _:; ) ywﬂﬁjufo) .
&

(2) For the passive constraints (i €J):

_ aS
ui(s) Zexp(-— %’)exp(— (l Y ) }'w«/;)utgm’

1-vy M
with g; = r;(x*).

Proof

According to the update formula for the Lagrange multipliers, we have for
the active constraints (i €):

0 0
w0 = uu,.( ) - . ﬂ“g( )
oG+ G -G+

0 0
® ul®

TRy =G+ u XD -2+ p

0 0
puf” puf®

2 >
Nllx® x|l + . yVnlle® —utll., + p
-1
(=)
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Continuing to update in this way, we obtain

-1 -1 -1
u® > (1 +7° w;z/;) (1+y"‘ 9#—‘/;) (1+y'wT‘/'—’) u©

Now, since 1 + x < e* and therefore /1 + x)~! > ¢~*, we have:

u® 2 exp (-— ya;:/'_l A+y+y? +"-+7”1)Ju.§°3-

Summing the geometric series in ¥ completes the first part of the proof.
(2) In the same way as before, we can write for the passive constraints (i €J): -

0) 0)

u(l) = #u ﬂu
i r(x(l))+u WD)y - rn(x*)+n(x*)+ 1

0 0
'u() #()

Ir(x(l))—r,(x N+r(x®)+pu IIx(l) -x*l+0;, +pu

h Y -1

#"“” M PO/ 7Y/
0) - i

'y«/_llu —u*ll, +o0; +p K K

Continuing to update in this way, *we obtain

u® 2 exp(- % - #(IWHZ +---+7“‘)Ju§°)-

Again, summing the geometric series completes the proof. O

LEMMA A.6 (lemma 5.1)

If x€intQ, and ||d|lg< B;(x), then x+d €int Q,. Moreover, if ||dlly
< B,(x)/2, then

a1l

|¢(x+d,u,ﬂ)—4x(d,u,ﬂ)|< 36( )

Ry(x) = min {25 (;(x) + wlj € 7, }
Bi(x) = min {8, Ry (x)}

SRR )
Ri(x) + n/(RY(x))\O

where
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Proof

The proof of the lemma will be along the lines of the proof of lemma 2.1
in [13]. Expanding ¢(x + d, u, i) in a Taylor series about x, we can write:

Ok + dyuy 1) = $Cx,u, 1) + dT (Vo 6(0) + L dT (V2p(eDd + St (45)
k=3

where the first three terms of the RHS constitute the quadratic aipproximation
q,(d, u, ) to ¢(x + d, u, u) at x and t, is the kth order term in the Tgylor expansion:

1 % %)
b = k! il;ik ax,-l,...,ax,-k dil .“dik.

In this particular case, we find by direct calculation that

Setting

we now compute a bound on |#| by computing a bound on

. 1 m E
'EzuiXi :
i=1

iu,-x{‘ <6y [(%)Z/kxf]k/2+ PR HEL DD ((_zg_)xiz)kﬂ_,. > uixk

ielJy iel, iely,

k/2 k/2 -
i a’od i
<6 Z(%)x?] +n1,zxfso[—£-—+z(%)x3] m 32t

iely iel, ielJy

1z .
k ieJ,,

For the last step we used the fact that

dT d m
ldll% = —f— + S uz?.

i=1

Now, if ||d|l gy < Ry, then
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|l = a,-Td < Il < lld g
Tl n@Ap| T )+ T Ay (i) + p
and therefore 14l
H
Xil S <1
| 2:l R ()

This means that

k/2 k2

n dl? lldll?
vk <6 21 + Hi |

> ux! ( 5 ) " R0

We are now ready to compute an upper bound on the magnitude of the
difference between ¢(x + d, u, i) and its quadratic approximation. From (45), this
difference is given by X,.,%, so we compute:

< i i—{guix{‘}

o(ldlz V(. ldlg n(ldlag (. ldlg
53(—479——) (l'l' —\/—6— +...)+— Rl(x) 1+El(—x)-+...

<(e-l/2) Ndi, [n) IPAE
"L 3 ) 1-(ldllg/Ne L\3R}x)) 1-(lldlly/Ri(x))

Since this upper bound is definitely finite as long as || d|| z < B;(x), we conclude that
x +d lies in the interior of the extended feasible set £2,,.
Moreover, if ||d|l < +/0/2 and ||d|| g < Ry (x)/2, then:

21 1 n 3
< 3(@ + Rf(x)) 3

211 n/Ri (x) 3 3
SS(JE+ R()]” ||—35()||d|| -

PR
k=3

LEMMA A.7 (lemma 5.2)

If
Il < Bo() = min{ B2, S},

lx - 2@ wlly <3lpla-

then
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Proof

Take an arbitrary h such that ||kllg = 3|l plly. We then consider the values
of ¢ on the ellipsoid: {x +p + Al ||hlly = 2||p||11} We have

lp+hly <3plly.

Since & (x) £ /0/2 and | plly < &,(x)/5, || plly satisfies the conditions of
lemma 5.1. Using this lemma and the fact that p = arg min,q,(y, u, i), we have

o(x+p+hup)>q,(p+hup) - ———llp+hl}

35()

>qx(p’uvﬂ)+%’”h"%1_ (7) 36( )”P”3

> 4 (pu )+ 31 o1l - Mfﬁ Sl Iy
9 125 3
>qx(psua”') + (8”1,”}1 24§l(x))”p”H

45 125 )
>‘1*""“"‘)+(sg,(x) s 171

> g (p,u, 1) + —— Il pll}.

125 (%)
The previous lemma yields:

1 3

¢(x + p,u, 1) S qx(pyu, ) + 3 () Il p Il

For ¢(x + p + h, u, ), this means

5 1), s
0+ p+hon)> 8+ P+ £ (33 - 3Pl
>¢(x+P,u,l»l)+ Egl(_x)”p“;]

This means that the value of ¢ is less in the center x + p of the ellipsoid than on
the boundary and since ¢ is strictly convex, its minimum has to be in the interior
of the ellipsoid. In other words:

lx - 2@, g <llh+pllyg <3lply. O
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LEMMA A.8 (lemma 5.3)
If

HMM>ﬂAn=nM{ﬁ§15§”}

then the reduction A¢ in the MBF after a linesearch along the Newton direction p
satisfies _

Ap > L B2 (x).

Proof
Let £ be a steplength such that || ]|y < B,(x). Then from lemma 5.1, we have

¢(x+€p,u,ﬂ)$qx(lp,u,/,t)+ €3I|p||3,

1
36 (x)

and from the definition of q,({p, u, 1), we obtain

3,013
Cllplly

_ poTe _ 192, Tg,_ 1
¢(x)—¢(x+£Lp,u,u)2—Lp g—5{°p Hp 38, ()

Z3
2 el pli3- L2l pl - oIl

Taking for £ the value B,(x)/|l plly gives

. 2
o(x) — ¢(x + Lp,u, 1) 2 By ()l pllg - ﬂ22(x) _ B(x)

36 (x)
2 1 B 13 »
2P, (")(l 2 351(x)) 2 30 P 0
LEMMA A9 (lemma 5.4)
If
lx-yls B2 @5, (46)
o
then
( a ) 1 < 1 <( a ) 1
a+l) rn(x)+p " n(M+u " \a-1) rx)+p
Proof

1 < 1 < 1
rM+u T X -lr@ -rMl+r T () -llx-yll+u

< 1 s(“) L
ri(x)+#—7,17(ri(x)+#) a-1) n(x)+u
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On the other hand, we have

N 1 S 1
rMN+u X+ -r@+p T @) +Hlx-yll+p

> 1 2( a ) 1
) +p+tr+p  \a+l) () +p

This completes the proof. . O

LEMMA A.10 (lemma 5.5)

If . .
Ix-ylis 22 @, “n
then

T T
(a+ 1) dTH(x)d < dTH(y)d < (a 1) dTH(x)d. (48)

Proof
Using the previous lemma, we cyn write

T m T 2
d'Qd +2u‘ (a; d)

dTH(y)d = j ———
) () + )2

dTQd a L (af d)? a o r
<52+ (3 ) 24 G 17 (3%7) 7hoa

On the other hand, we have

d’od i (a] d)?
B ST +w?
d"Qd ( a )2 & (ald) ( )
2 + ; L > T
K a+1 2“ G+ pr - \a+1) ¢ HDE
This completes the proof. O

d"H(y)d =

LEMMA A.11 (lemma 5.6)

For x,x+p €int Q, with | pll £ B(x)/@ (a> 1), the following inequality

holds:
o’ n )npn%,-

||V¢<x+p)n<[ S
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Proof
We have by expanding in a Taylor series that

99(x + p) _ 3¢(x) f az¢(x) L1 f )
ox; ox; ax,ax] *32 o ax,ax]

i=1

where ¥ =x+{p (0<{<1).
From the definition of p, this means

- %)

9x+p)|_1
| ’ - e~ 0x,0x,0x; PsPt

ax]'

We now compute a bound on the expression on the RHS:

1 3%p(x + {p) , ] o (a] p)?

2 stz’l( ax,ox0x; TP ; (ri(x +¢p) + p)’ (@),
i (a] p)? (a;); ‘
= (r.gx+Cp)+#)2 n(x+C{p)+u

Because |(a;);| < lla;ll =1 and ||x + {p — x|| < || pll and because of the assumption

on || p|l, we can use lemmas 5.4 and 5.5. This gives
*

m (an)Z
§ (ri(x +{p) + p)?

(a;); l
i(x+{p)+u

i (a] p)? ( a )
S (r(x+Ep) + w)? (@ =1 (r(x) + )

a u (a] p)?
: (a -1)B(x) Z:l"' (r;(x + ¢ p) + p)?
e 7 a7
S @ DB P HE+EPPS g P HWP.

We therefore have

3
‘a¢(X+P)\S ‘11)33( )“P”2

Squaring the LHS and summing over j gives:
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2 2
9¢(x + p) a? 4
ox; ‘ Sn((a—l)’B(x)) Il

)
j=1
Taking the square root on both sides completes the proof. O

LEMMA A.12 (lemma 5.8)

If
B A
Iplly s 20En
then
) (“a 1)B<x)<B(x)S( p )B(x),
a \? Af 2
@ (a+1) = = ( 1)
® (&) rwsr@s (g DR,
3
)] (g+}) ‘:l(x)<§l(x)< (a ) & (x).
Proof *
We start by noting that
= € — 4
lx-xll=pl mllplln (49)

(1) Because of (49), the first part of the proof follows immediately from lemma
5.4 and the definition of B(x).

(2) Again, because of (49), the assumption in the statement of the lemma means
that B )

Ix -2l s 22

a

Lemma 5.5 then gives

(a n 1) dTH(x)d < dTH(%)d < (a ) dT H(x)d,

1

and therefore

( a )2 dTH(x)d _ dTH(Z)d _ ( a )2 dTH(x)d
a+l lld|? s Nal* ~\a-1 Ndi? -
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Recalling that Ay = minyd”Hd/||d||? (and the analog for Ag), the proof of
the second part follows.

(3) From lemma 5.4 and from the definition of R;(x), we have that
(a

(‘%1) min{n(2) + 1) S minn(2) + 4 < (

Hlawewsn@ps (L) aw+m,

2oL min(n ) + ),

a-1) (g )" a+1)(Ag)"
o)) e (53)

With lemma 5.5, the proof of part (3) follows immediately.

(4) For the proof of part (4), we start with part (3):

(e RwsRe )<(‘”i) R},

(a+1) e > n«/_ (a;l) Ve

a-1) R(x) " R®X) R (x)’
(a+1)3 /0 o1l > "0 ‘1> ( ) n/6 ‘1
a-1) (B(x) R} (%) a+l) (Rx )

Taking the reciprocal of all three expressions, multiplying through by /@
and recalling the definition of &;(x) completes the proof. |

LEMMA A.13 (lemma 5.10)

Let (x, u) €S, and let the rate of convergence of the algorithm be given by
¥ =1/2n).
Then

(1) for the active constraints (i €]):

Luf <u <3y

ko, 3u
2 <r(x)+p< 2

and
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(2) for the passive constraints (i € J):

r(x)+u>0+ %
Proof
(1) From theorem 4.2 with ¥ = 1/(2+/n), we have that u < 8". Therefore, for any
u such that

. § 6"
u-—u < —= £ ——,
el < 2
the following inequalities hold:

* *

Ul - —= <u; <uj + —.
i 24; i < U 2«/;

For the active constraints, this means

wh,

Luf <up<3uf (€D
We now turn to the second set of inequalities. Since

r(x)+p=r(x)-r(x*)+4u,
we can write

p-Ine) - G S r @ + A< 41 - £,
p-llx=-x*llsn@x+psp+ix-x.
The proof then follows because ||x — x*|| < /2.
(2) For the proof of the second part, we write
)+ p=nrx) -G+ +p
20+ p-|rx)-n(")l
2o+u-llx-x.

Again, the proof follows from the asumption that ||x — x*|| < u/2. O

LEMMA A.14 (lemma 5.11)

For (x, u) €S, the smallest and largest eigenvalues of the Hessian of o(x, u, i)
at x for fixed u and u are bounded as follows:

22 <Ay s6a + Hm=D
oT 2n (0 + £)?

ZA* <Ay S6AT + HmoD
? " 2Vn(c + £)?
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Proof

We use the previous lemma to obtain the following inequalities, valid for i €
and for any d:
e @d)? _ (a]d) (aTﬂl)2

G T e

3
i'ui

/'\
(ST
=
v

and therefore
T 2 T N2 T 12
2, ‘21) <y 49D - < 6u} (g ‘21) .
u (r(x)+ ) u

With the help of these inequalities, and recalling that

'1”'"‘1" d"Hd and AH="mIs|1x1dTHd

we have for the lower bounds:

. |dTod & (afd) . |d"d (af )
”{,n"lgl{ m +,.=2;"‘ (r,-(x)+;t)2} > u'?u"il{ u +2“ (n(x) + )2
»

S

T r T N2
Z%min{M+Zu,-'(aid) }

=t # S

[

The exact same procedure goes through for the largest eigenvalue, if we take
max instead of min in the above expressions.
Similarly, we have for the upper bounds:

. JdTod & (a]d)?
||T||u=11{ 7 +,~§1u' (r.-(x)+lt)2}

T r ald)? m T 12
<mi{de 65 ut d) v 3 (ad)}

lali=1 = 2 (0 + p/2)?

T r T 12
S6min{—d Qd+2u,-‘(a"(21)}+ pm = 1) -
lali=ty S n 24n(o + u/2)
In the last step, we have used the facts that |afd| <||a;ll|ld|| < 1 and that,
since (x, u) €8y, u; < p/(2\n).
Again the same can be done for the largest eigenvalue, with max replacing
min and this completes the proof. O
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Appendix B: Notation

fx) = 3xTox-q"xlx€Q}

rx) = afx-b;, a; €R", b ER

Q = {x|r,x)20,i=1,...,m}

Q, = {xlrn(x) 2=k, i=1,...,m}

Q, = {x|r(x)2-u, i=1,...,m}

I ={1,.,r}={i:ri(x") =0}, r<n<m
J = {r+1,..m}={i:r(x*)>0}

A ER™ — matrix with columns a,,...,a,

A,_, ER®™" — matrix with columns a,,,...,a,
uT = (ull"” um) € RT’ U= [diag(ui)]:!;l

uly) = (Upyerer )y Uim_p)= (Ups1seees )

6 = min{u}|i €1}

c = min{r;(x*)| i €J} %

p' = max{u;|i €I}

D(-) = Dl(')®Dz(°)®---PDm(')

Di(:) = Dy’ ko, 8, ) = {(u;, k) ER?|u; 2 &, |uy—uf| < 8k, k2ko), i €1
Di(-) = Dyu", kg, 6,8 ={(u;, k) ER*|0Su; <6k, k2ky}, i€U
Uj = {u;:u; ~6k<u;<uj+ 0k}, i€l

Ui = {u;:0<u; S 8k}, ieJ

U, =Ul®U2®..9U"

o = max{(r;x") +k DY Ni=r+1,..,m)

B = | D¢ Rells co= | DZ'RN

C = max{o~), ¢}, y=Ck'=Cp, u=k!

pCx, u, 1) = = (V2 0Cx, u, )™V, $(x, u, 1)

xll g = VxTHx

I, = {ilu;2 p/2)

Ju = {ilu; < p/2)

A = the number of elements in J,

6 = min{w;|i €1,}
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p = max{u;}

n = |Jyl max{uli€J,}

U = max{uli €J,}

Ay = mineigval H(x, u, 1), Ay = maxeigval H(x, u, j)
qx(d’ u, #) = ¢(x9 u, ,u) + gTd + %dTHd

Ry(x) = min{«/,lH (i +plje J,,}

By = min{0, R (x)}

Bo(x) = mm{Rl(I) 51(1)}

By(x, & @)= mm{Rl(‘) b 1 BB (go1)3 LCaErs }
] ’ a

x A

Bx) = By(x,6,18) = mm{élg ) 1 B";’J‘/;_”}

* . * A
B = rmn{%,f ,ﬁ%}

Vo
o) = %[L]
R](X) + Rlz(x)ﬁ
B(x) = min{r,-(x)+u|i=1,...',m}
P = p(x, u, jt)
X =x+p
q = p(x,u, ) -
51 = {(x, )| max{llx ~ x*ll, Vnllu - u*ll..} < §)
A = mineigval H(x", u"*, yt), A* = maxeigval H(x", u*, y)
-1
£ _ 1 ( A2, 2men )
10\ Je" 47" (o4

s = {ew s max{llz - # sl - il < 2]

T = {(x,u) smax{|lx — x*||., llu - u*fl.} < ETmm{u,‘/._

d
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