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SMOOTH OPTIMIZATION METHODS FOR MINIMAX PROBLEMS*

R. A. POLYAK*

Abstract. The classical discrete minimax problem is considered. It is transformed into an equivalent
problem by a monotone transformation of the initial functions. It was found that the classical Lagrangian
of the equivalent problem has a number of important properties both in primal and dual spaces in convey
as well as in nonconvex cases.

In particular, the classical Lagrangian of the equivalent problem, being as smooth as the initial functions,
has the main advantages of augmented Lagrangians. This makes it possible to construct a2 multiplier method
for the minimax problem and a general method for the simultaneous solution of the primal and the dua|

problems.
These methods are based on the theory of methods of smooth optimization and preserve the main

advantages of the latter for nonsmooth minimax problems.

Key words. minimax problem, monotone transformation, multiplier method, smooth optimization, dual
problems
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1. Introduction. A growing interest in problems of nonsmooth optimization and,
in particular, in minimax problems is due to the special role these problems have in
modern optimization theory (see, for example, [11], [24], [25]). Of the large number
of papers that have appeared recently on this subject (see [10], [15], [16], [25], [26],
[35]) the research summarized in [35] plays an important role. In it methods of
generalized gradient and their variants are studied and developed. However, the rate
of convergence of these methods is not high. Even in the case of ellipsoid methods
([18], [23], [35]) that have polynom#gl complexity applied to linear minimax problems
(see [10] for a proof), the rate of convergence is estimated (see [35]) by the ratio
g.=1—(2n%)"" (n is the space dimension), i.e., ¢, 1 as n—> 0. In these methods the
properties of convexity and smoothness of functions that appear in the minimax
problem cannot essentially’be used for acceleration of convergence since the gradient
of F(x)=max {f;(x)|i =1, m} is not smooth, not to mention the absence of higher-order
smoothness even when fi(x), i =1, m are sufficiently smooth.

Therefore our goal is to construct methods for solving minimax problems that
will preserve the convergence rate of smooth optimization methods (assuming some
properties of smoothness and convexity of f;(x), i = 1, m) without substantially increas-
ing the number of computations needed at each step.

This is achieved by application of a monotone transformation to initial functions
and subsequent use of the classical Lagrangian of the equivalent problem.

In this paper it is established that the classical Lagrangian of the equivalent
problem shares all the advantages of augmented Lagrangians (see [7], [19], [29], [34)
in both convex and nonconvex cases. Moreover, it has the same order of smoothness
as fi(x).

It allows us to use all means of smooth optimization techniques for the solution
of minimax problems, including methods of Newtonian and quasi-Newtonian type:
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In addition, smoothness properties of the Lagrangian on the initial space give a
deeper insight into convexity and smoothness properties of the dual function that can
be used for construction of a method for simultaneous solution of the primal and the
dual problem. The rate of convergence of the dual problem is defined by the product
of the primal and dual spaces.

The main results of the paper were obtained in 1980 and 1981 and announced in
[30] and [31]. In 1983 we learned from [3] about the possibility of developing the
multiplier method for the minimax problem using the function

Q.(g(x), ) =c " log (T p; exp (cgi(x))).

However, our main results are not presented in [3], or in the subsequent papers [4]1-[6].
It seems impossible to obtain these results by a direct reformulation of the minimax
problem as a constrained optimization problem, and still'preserveAthe initial condition.
Besides, the corresponding class of augmented Lagrangians P,, as was mentioned
in ([3, p. 309]), had been insufficiently investigated. ,

The class of functions P, was first carefully studied in convex as well as nonconvex
cases in [33]). In particular, using a monotone transformation and ordinary Lagrangian
for the equivalent problem it was possible to essentially improve the barrier and the
center methods.

Some other approaches to solving discrete minimax problems based on the replace-
ment of F(x) by sequences of smooth functions are considered in [21, [8], [16], [32]).

2. Monotone transformation of the minimax problem. In this section we introduce
a monotone transformation of f(x), i=1, m and study properties of the classical
Lagrangian of the equivalent problem.

We suppose that fi(x) € C', i=T,m: R" > R" and consider the following problem:

(1) x* € Argmin {F(x)IxGR;}.
The existence of x* is guaranteed by, for example, the following condition:
(2) There exists c>0 such that Q ={x: F(x) = c} is compact.

. Let Y(t):R'>R'be a strictly convex and increasing function. Then functions
fi(x, k) = k7'W(kf(x)), where k > 0 define a minimax problem equivalent to the original
one, i.e.,

x* € Argmin {lrsngx fi(x, k)|xe R"}.

For k>0, consider on R XSmy, Sm={u:Yyu;=1,u,=0,i=1,m} the ordinary
Lagrangian function . :

A, 1, k) =k T w ¥ (kfi(x)).

Ilmappears that A(x, u, k) has a number of advantages over the Lagrangian L(x, u) =
Z,-g, u;g;(x) of the initial problem. For definiteness we shall take ¢(1) =exp t, so that

A(x,u k)=k™' § u; exp (kf;(x)).

1w€ observe that M(x, kY=Y exp (kfi(x)) was already considered by Motzkin in
952 [22).

-
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The results that follow will show that the relation between A(x, u, k) and M(x, k)
is the same as between augmented Lagrangians and penalty functions, despite the fact
that A(x, u, k) is an ordinary Lagrangian for an equivalent problem.

In what follows we suppose that there exists a Kuhn-Tucker point 2% = (x*, u*):

3) Li(z*) =L uffi(x*)=0, ul(F(x*)-f(x*))=0, i=1,m,

Let f(x)=(fi(x)," -, fu(X)), I*={i: F*=F(x*)=£fx*)}={1,---,r}, f(x)=
(fi(x), - ,f,({)) be a vector of active functions, let f'(x)=J(f(x)) be its Jacobi
matrix and let f'(x)=J(f(x)).Sete=(1,---,1)eR", é=(1,---,1)€ R". Sometimes
we shall use the condition

4 Rank (f'(x*),—&")=r, uf>0, i=1,r,

which together with the condition

(5 (Le(z¥)y, y)Z Ay, A>0 Vy: f'(x*)y=0

is a second-order sufficient condition in the minimax problems.
Set S(x*, &) ={x: [[x—x*| =¢}, S(u*, e)={uecS,: ju—u*|=e}, and S(z* €)=
S(x*, €) x S(u*, £). Sometimes we shall also use the condition
(6) W) —frM=Lix—y] V(x y)eS(x*, e)x S(x*, ¢).
We shall use the following version of the well-known theorem of Debreu [1].
ProrosiTioN 1. Let A=AT:R">R"; B:R">R’,
U=diagu;:R"> R’, u=(uy, " -,u)>0.
Bx=0=>(Ax,x)ZA|x}>, A>0.
Then for any y <A there exists a ko=, 0 such that for k= ko
%
8) ((A+kBTUB)x, x)Z y]x|? VxeR"
The proof is similar to that of Debreu’s Theorem.
The following theorem, describes the properties of A(x, u, k).
TuEOREM 1. Assume that conditions (3)-(5) are satisfied and f;e C*. Then there
exist € >0, ko> 0, and a convex neighborhood V(ko, €) of x* (dependent on k, and £)

such that for k = k, and for all u € S(u*, €) the following hold:
(1) There exists X = x,(u)eint V(ky, £) such that

AL(X, u, k)=0.

(M

(2) A(-,u, k) is strongly convex in V(k,, £) so that

£ = argmin A(x, y, k).
x=V(ko,e)

_(3) For%andi= i (u)= (i, -, dy): ;=u; exp (kfi(X)) - (T u; exp (kfj(f)))-',
i=1, m the following estimates hold:
9 IE-x*|sck u—u*l, Ja—u*|=ck™[u—u*],
where ¢ is independent of k.
(4) If fi(x),i=T,m are convex there exists %=argmin {A(x, u, k)|x¢€ R"} and
(2)-(3) are true for % and ii.
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Proof. For (x, u)e S(z*, £€) and x € R' we consider the functions

Ui(x, u, x) = {(‘)‘i exp (-] fi(x))(Z w; exp (%] "f(x))) ", : :g’

’

Ife>0is small enough, theg the definition is correct, because ¥ u; exp (Jn:l‘I L(x))>o0.
The functions U(x, u, x) = U(*), i > r are smooth on S(z*, £) x R' and U, (x,u,0)=
0, i>r. In fact, there is a 0>0: F*—~f(x*)>o0, i>r, u¥*=0, i=r. Choose an £ >0
. such that |fi(x)—fi(x*)| =5, |u,—u}| =8, for all (x, u)e S(z*,¢), 8§<o(2m)”'. Then

for x # 0 we have

T u; exp (] f(x))
= Zl Uy CXP(|%|_');(X))+. z | u; exp (|x]"'£(x))
i= j=r+ ]
Z(o-8)rexp (x| (F*-8))—8(m—r) exp (|x| "(F* -0 +5))
=27 (o~ 8)rexp (jx|'(F* - 8)). '
For i> r we have
0 <exp (1| ' £i(x))(X u; exp (x| " £(x))) ™"
=exp (|%] ' (F*~0+8))[27 (o~ 8)r exp (|| ' (F*~5))] "
=2(0—8)""r " exp (—|x|""(o - 28)).
Therefore there exists ¢ > 0 independent of x and such that (‘Ji(x, u, x)=cexp (—clx|™),
x#0, so U,(-) is continuous in S(z*, £) X (—¢, £), i > r. Further,
O4u() = =" G - E TC)f(x)),
Ui ()= (1= Ti(-)) exp (x| fi(x))(E w exp (x| (x)) ",
U (-) == 0(-) exp (1] (x))(E wlexp (x| '4(x)) ", j#i,
Oi(-) ==l O ) () = Ty )f(x)).
T;hereforez taking jnto account the estimate for 0;( -), we obtain for the full derivative
U = (Ui (#); UL(); UL(-) that'therg is a ¢>0 independen£ of x such that
) HUICON = clx|? exp (~¢c|x]). Therefore Ui(x, u,0) exists and Uj(x,u,0)=0, so
¥ Ui(x, 4, x) is continuous. Set p(x, u, x) =Z,".',,+. U,(-)f](x); then p(x, u, x) is smooth
on S(z*, €)X R and p(x, 4,0) =0, p'(x, 4, 0) =0. Let a#* = (u¥, - - -, u¥), and S(a*, &) =
{u=(uy, -+, u): lu—a*|=e}. On S(x* &) xS(a*, e)x(—¢, &) X S(u*, £) x (—¢, €)
we consider the map ®(x, &, 1, u, x): R"™"* ™25 R"™* defined by ®(x, i, 1, u,x)=
Qiey LI +p( 1), fi(x) - F*+t—xIndu;’, i=1,r, Tiey i+
Ll Ulxux)=1). Since fi(x*)=F* i=Tr, Yuf=1, ¥ u*fi(x*)=0,
p(x*, u*,0)=0, 3" . U(x* u* 0)=0 we have ®&(x*, a*,0, u* 0)=0. Then setting
Py =F', Li(z%) = L2, we get

L. /7o
' D= Qrax*, @, 0,u*,0)=| f* 0 &7
0 e o0

The matrix ®; is nonsingular. Indeed, set w=(y, v, 7), ye R", ve R", 7€ R. Then
®.aw =0 implies L%y +f'Tv=0, f'y+7¢=0, (& v) = 0. Taking the inner product of
the second equality with @* and taking into account the Kuhn-Tucker relations, we
obtain (Y7, uff/(x*), y)+7=0,s0 r=0. It implies 'y = 0. Taking the inner product
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at the first equality and y we obtain (L%.y, y) + (f'y,v)=0,s0y=0by(5)and f'Tp=¢
(v, €) = 0. The last equalities together with (4) give v =0. Since P’ w=0implies w =6
the matrix @', is nonsingular in a neighborhood of (x*, @*, 0, u*,0). Since f(x) e C?
the implicit function theorem (see [20]) suggests that in this neighborhood there exist;
a unique smooth vector function (x(u, x), U(u, x), t(u, x)):
O(x(u, %), U(u, x), t(u, x), u, x) =®(-)=0

such that

Yoo, d(x(u, %), u,%)f(x(u,x)) =0,

G(x(u, %), u, x) = u; exp (x| fi(x, u, 2))(T w exp (x| f(x(u, )N, i=Tm,

For x # 0 equality ®(-) =0is equivalent to Ai(x, u, k) =0, k = x " Differentiating
the map ®(-) with respect to u, we obtain O () xw()+PL(-)=0, where w(:)=
(x'(u, %), ul(u, x), ti(u, =), i.e, w(-)= ~®'ZH(-)PL(-). Since ®;, is a nonsingular
matrix and f(x) € C?, there are € >0 and ¢,>0, c,> 0 that are independent of x and
such that the matrix ®’;,(-) is nonsingular in S(u*, ¢) x(—¢, &) and @ (Il=c,
l®L(-)|| = c;x. Therefore there exists ¢ >0 not dependent on x and such that ||w(-)| =
cx. Since D(x*, @*, 0, u*, x) =0 for all x(|x| < £) we have x(u*, x) = x*, @(u*, x)=u*,
S0

I, ) = x* S exllu—u*l, B, %) - u*| = oxllu—u*].
Setting k=x"'>0; £=x(u)=x(u x); and d=id(u)=_(i(y x), fi(x, u, %), i=
r+1, m), we obtain the estimates (9).

Finally, the strong convexity of A(x, u, k) in x in the neighborhood of X = x(u, x)

follows from f;(x)€ C? and the relation

A" (% u, k)= u; exp (KA(ENSI(E) +k T u; exp (kf(D))T(X)fi(%)
= (X u; exp (LN L(£) + k T dfIT(R)fI(%)))

if we take into account Proposition £ and estimate (9) for k> 0 sufficiently large. Due
to strong convexity A(x, 4, k) in x, the necessary condition A'(%, u, k) =0 is sufficient
for £ to be a minimizer. Observe that we have not assumed that f;(x) are convex. If
so, the condition AL(X, u, k}=0, u=0, k>0, together with the positive definiteness of
matrix A”.(%, u, k), gives (4), and the proof of Theorem 1 is complete. 0

The local results (1)-(3) of Theorem 1 are valid under weaker conditions than
(4)-(5) despite the fact that these are the standard second-order sufficient condition
for the minimax problem. Consider an example.

Put 1*={1,2,3,4}; fi(x,, x) =/(-)=(x, = 1) +x} £(-) = (i + 1)’ +x3; fi(1)=
X2+ (%= 1) fa(+) = x2+ (x,+ 1) In this case condition (4) is not satisfied and the set
Y: f'(x*)y =0 consists of a single point y =0, which makes (5) meaningless. However,
(1)-(3) of Theorem 1 remain true if we take I, ={1,2} or I,={3, 4} as I*.

In the first case, conditions similar to (4), (5) are satisfied for z*=(x*; u*)=
(0;0;1:1.0;0), and in the second case they are satisfied for z*= (x*; u*)=
(0 0; 0; 0; 3; 7).

Moreover, the results of Theorem 1 remain true if we replace the convex functions
f(-) and f-) by the nonconvex functions fi(-)=—(x,~ )2+x f()=
—(x,+ 1)*+ x3. This shows that (1)-(3) of Theorem 1 hold not only without convexity
of fi(x), i=T, r, but with conditions similar to (4)-(5) satisfied for any minimal set
I<cI*

The set I < I'* is called minimal if

min{ L ufi(x*)|

iel

=0

X uffi(x*)

iel

Z u,»=l,u,-§0,i€1}=
iel
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min {
for all je L
It is easy to show that there is a one-to-one correspondence between minimal sets
and vertices of the Kuhn-Tucker polyhedron Q(x*)={ucsS,: Yoo, ufi(x*)=0}.
Moreover, for any minimal set , the vectors (f/(x*), —1) are linearly independent and
uf>0, ie I Thus, condition (4) is always satisfied for the minimal set. Therefore
(1)-(3) of Theorem 1 remain true if, instead of (4), (5), we assume that

(5" (L2, )z Allyll, A>0 Vy:fi(x*)y=0, icl,

where u* are vertices of the Kuhn-Tucker polyhdron, which correspond to I

and

L wfi(x*)

iel\j

Y u,-=1,u,-20,iel\j}>0
iel\j

3. Multiplier method. Theorem 1 allows us to realize the method of multipliers:

x%*! = argmin exp (—kF(x%))A(x, u®, k),
(10)

uSt = (7 = uf exp (KA(x**))(E uf exp (kf(x5*Y) 7, i =T, m).
Under the conditions of Theorem 1 we obtain the estimate )
(11) Ix5—x*=ck™, |uS—u*|=ck™

with ¢ >0 independent of k.
In order to realize the method (10), if fi(x) are convex it is enough to know
u’e S(u*, ¢); if f;(x) are nonconvex we must know z°¢ S(z*, ¢).
The next lemmas allow us to obtain z°e S(z*, ¢). The second difficulty, which we
‘must overcome in order to realize (10), is to change the infinite procedure of smooth
optimization to find x° to a finite one and preserve the estimates above.
Let w20, Ulxu k)= (w(xu k) = u exp (Kfi(x) - (T 4 exp (kf(x))™",
i=1,m).
ProposITION 2. If the conditions of Theorem 1 are satisfied, there exist k,> 0 and
¢>0 independent of k such that for dtl k= ko and z = (%, i)

lexp (~kF(x) AU, u, )| = pk UK u, k) ~ul,  d=U(% u, k)
ihe Jollowing estimate holds:
1% =x*I=c(1+p)k ™" |u—u*|,
li-u*|=c(l+u)k fu—u*|| VueS(u*, ). '

The proof is as in Theorem 5 of [29].

Proposition 2 allows us, in principle, to overcome the second difficulty. Indeed,
if-k>0 is large enough and f;(x) € C? then it is sufficient, beginning from some step
Ss_), to make only one step of the Newton or quasi-Newton method of smooth optimiz-
Mion (see [27], [28]) to obtain 7* = (%%4°) which satisfies (11). The next lemmas allow
Us to obtain z e S(z*, ¢).

4. Lemmas. Let fi(x)e C, X*={x: F(x)= F*}, d(x, x*)=min {llx —ylllye X*}.
It (2) is satisfied then F*>-00. Set N(x k)=(M(x k)% F*=
In inf, o« N(x, k); X¥={x|ln N(x, k) = F}}.
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LemMA 1. If (2) is satisfied then

(12) F*=F¥=k™'Inm+ F*
(13) X¥#@, if k>(C—F* 'Inm,
(14) lim lim {d(x, X*)|xe X}}=0.

Proof. We have
(15) exp (F(x))= N(x, k)=m"*exp (F(x)) Vx.

Let x*e X*. Then

exp (F¥ =xi€“£;. N(x, k)= N(x*, k)= m"* exp (F(x*)) =exp (k™' In m+ F*).
The latter implies F¥ < k™' In m+ F*. For ¢ >0 and x € {x: N(x, k) =inf, N(x, k) + ¢}
we have exp (F*) S exp (F(x)) = N(x, k) =inf, N(x, k) + & =exp (F¥)+e Since >0

is arbitrary, F* = F§. Therefore (12) is proved.
Set

O, ={x: F(x)=k™" In m+ F*},
Q. ={x: N(x, k)= m'* exp (F*)}.

The following inclusions hold: X*c< {, = Q, < (). Indeed, consider x*e X*. Then
N(x* k)=m"*exp (F*), ie, x*eQ,. If xeQ, then exp(F(x))=N(x k)=
m"* exp (F*). So F(x)=k™'lnm+F* ie, xeQ,. Finally, k>(C~F*)'Inm
implies that F(x)=k'Inm+F*=C for xeQ,. So O, <l in view of (2).

Let d(k) = max {d(x, X*)|x € ,}. It is obvious that d(k)-0 as k -> c. Therefore

Q, - X* in the Hausdorff metric. Thy inclusion X *< ), c Q, <) implies that Q. #20
and is bounded. Therefore the continuity of N(x, k) implies (13). Also X ¥ < (), implies
X¥c Q,. Therefore, taking into account that d(k)- 0, we obtain (14).

COROLLARY. Let

x(k)=argmin { M(x, k)|x’e R"},
u(k) = (u;(k) = exp (Kf;(x(K))(ET exp (Kfi(x(k)) ", i=T,m), z(k)=(x(k), u(k)).

If X* = x* and condition (4) holds, i.e., z* = (x*, u*) is unique, then limy_. z2(k)=2%
Since  M'(x(k), k) =T exp (kfi(x(k)f/(x(k))=0, we have T u,(Kk)f{(x(k))=0,
{x(k)}< Q, {u(k)}< S,,. Therefore, for all {z(k,)}: lim, .o z(k;) = Z, we have %, ifi(x)=
0, #,(F(X)~fi(X))=0; ie, #=z* Taking into account that z* is unique we ge!
lim, .o z(k) = z*. '

Remark. Lemma 1 and some facts stated in [32] allow us to attach global charactef
to the local results of Theorem 1 if we can obtain x(k) for sufficiently large k>0.

The estimate of distance between x(k)e X¥ and x* is related to uniquencss
conditions for z*=(x*, u*).

Lemma 2. Suppose fi(x) e C, i=T, m, and conditions (2)-(S) are satisfied. Then
there exist ko> 0 and ¢ > 0 which do not depend on k = k, and are such that for allkzko
we have the following:

(1) The estimates

(16) Ix(k)—x*|=ck™,  Ju(k)—u*|=ck™'

are true.
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(2) The function M(x, k) is strongly convex in x in a neighborhood of x(k).

Proof. It follows from Lemma 1 that x(k) exists if ko> (c— F*)"'1In m. Consider
the following functions in a neighborhood of x* and for x € R":

exp (w1000 (£ exp (o100 . 570,
0, x=0.

Vi(x, %)=

If i > r, then there is a ¢> 0 independent of x such that Vi(x, x) = c exp (—c|x|™") for
all (x, x) € S(x*, €) X(—¢, ). Therefore V;(x, x) is continuous in this neighborhood
(x*,0). We have | Vi(x, )l = [(Vi(), V(NI =lxl™ V(S = V(O (),
~(x)x]) T Vi) =X V) = c|x | exp(—c|x|™"). Setting V{(x,0)=0, i>r;
p(x, x)=Ym ., Vi(*)fi(x), we see that V(x,x) is smooth as well as p(x, »), and
p(x,0)=0, p'(x,0)=0, for all (x, x) € S(x*, ) X (—¢, €). Now consider the map
O(x, v, 4, %) =(T;_, vf1(x)+p(x, x); fi(x)-F*+t—xInuv;, i=1,r;, X, v+
Y Vilx, x)—1): R"*"**> R"*"*!. Taking into account the Kuhn-Tucker relations
and the equalities f;(x*)=F*, i=1,r, p(x* 0)=0, p'(x*,0)=0, we conclude that
&(x*, a*,0,0)=0 and ., =, so P, is a nonsingular matrix. Therefore the
implicit function theorem gives us the following: if £>0 is small enough, then
there is a unique smooth vector-function y(x)=(x(x), v(x), t(x))=y(-):
B(x(+), v(-), (), - )=®B(-)=0; thatis, ¥;_, Vi(-)fi(x(-))+p(x(+), -)=0, filx(-))—
Fr+i(-)=xIn V(-)=0, i=T,r and Ty, Vi{-)+EL 0y Vi(x(), ") =1, o(0)=a*,
1(0) = 0. Furthermore, from ®(-)=0 we get &2, (-)y'(-)+®.'(-)=0. Taking into
account that ®,, = @'z, fi(x) € C?, we obtain &5/ (- )| = c,; then |®.(-)| =c,, and
moreover ¢, and ¢, are independent of x. Therefore |[y'(-)]|=c for c=¢, - c;; that is,
Ix'()]| = ¢, lv'(x)|| = c. Using the inequalities and setting k = x~', we obtain (16).

Now we prove the strong convexity M(x, k) in a neighborhood of x(k).

Let U*=diaguf:R" > R’, U(k)=diagui(k):R™>R™ Then M(x, k)=
k(T exp (kf,(x))f7(x)+T exp (kfi(x)fI(x)f7(x))) so that

M (x(k), k)= M-, k)
= (kT exp (Ki(-)) - (T w(k)f7 () +k L u(fIT()f(C))
=k ¥ exp (Kfi(- L)+ KT ()UK ().

Using estimate (16), Proposition 1, and the fact that f € C?, we have, for k>0 large
‘emough, (ML(-, k)§ £)~kM(x*, K)(Lu(z*)+ K T(x*)U*F'(x*)¢ €)= 7€,
¥>0, for all £€ R"; therefore M(x, k) is strongly convex in a neighborhood of x(k).
Lemma 1 and 2 show that (10) can be realized with the estimate ||z* —z*|| = ck ™",
Marting, for example, from wW=(m™", .-+, m")eS, if obtaining x(k), u(k) is possible
for sufficiently large k> 0. Convexity fi(x), i=1, m is sufficient for this.
.. The rate of convergence can be improved by increasing k. But when k increases,
the function A(x, u, k) becomes ill-conditioned in x, which makes it more difficult to
sarch for the minimum of A(x, u, k). Therefore we cannot succeed in obtaining rapidly
-;j!,j"_)nvergent processes using only A(x, u, k). It appears that such processes can be
ﬂﬁﬁained by applying important properties of the problem dual to (1). We shall now
idy these properties.

~ 5. Dual problem. When proving Theorem 1 we found that there exists

x(u) =argmin A(x, u, k)

xeV*
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where

Ve {R" when all the functions f; are convex
V(ky, €) if not

if k is sufficiently large and (3)-(5) are satisfied. Therefore we have a function
¢i(u) = A(x, (u), u, k) defined on S(u* ). For ueS,\S(u* ) we set ¢ (u)=
inf, A(x, u, k). In the neighborhood S(u*, £), smoothness properties of ¢,(u) are
determined by the corresponding properties of f;(x), i =1, m. In particular,

@iu(u) = A; (xk(u) u, k)xi(u)+ AL(x(u), u, k)
= AL(xk(u), u, k)
= k7' (exp (kfi(xc(u))), - - -, exp (Kfn(x:(u)))),

since Al (x,(u), u, k) = 0. Furthermore, ¢f,.(u) = AL (x (u), u, k)xi(u) = A% )xi(+).

In order to determine xi(u) we shall differentiate A}(x,(u), u, k) = 0 with respect
to u. We obtain AL(-)xi(u)+ AL(-)=0. Therefore x,(u)=(A%(-))"'A%(') and
Chuu(u) = —AL( )AL(-)) ' A%(-). These formulas give the relation between smooth-
ness properties of ¢, (u) and corresponding properties of f;(x), i =1, m. In particular,
the continuity of f{(x) implies the continuity of ¢},,(u) and (6) implies that ¢f,.(u)
satisfies a Lipschitz condition. Consider the problem dual to (1):

17) u =argmax {@,(u)lueS,}.

The following theorem holds.

THEOREM 2. Let the conditions (3)-(5) be satisfied and fi(x)e C?, i=1, m:

(1) Then there exists ko> 0 such that for k= ko the solution of the dual problem
(17) exists and the strict form of sufficient gptimality condition is satisfied for (17).

(2) There exists € >0 such that for k %‘ko the function A(x, u, k) is strongly convex
in x € S(x*, €), concave in u, and has a unique saddle point on S(x*, £) x S,,, that is,

(18) A(x, u*, k)= A(x*, u* k)= g, (u*) = A(x*, u, k).

(3) If fi(x), i=T1,'m are convex, then (18) holds on R" x S,,, and if instead of (5)
we assume strong convexity one of f;(x), i € I* then conditions (1)-(3) hold for all k>0.

Proof. (1) Since A(x,u, k) is strongly convex in x, there exists x(u)=
argmin,cv+ A(x, u, k) and @i(u)=k"(exp (kfy(xc(u)), - - -, exp (kfn(x()))) fof
all ueS(u* ¢€). Moreover, x(u*)=x* o@L(u*)=k" '(exp kF*, . --,exp kF*;
exp kf,. (x*), - - -, exp kf,,(x*)). Consider the Lagrangian of (17):

L(u,A) =g (u)+Y A+ Ao(X u; —1).

Setting A =—k™'exp kF* and A} =k '(exp kF*—exp kf,(x*)), we obtain that the
Kuhn-Tucker relations for the problem (17) are satisfied at (x*, A*):

k™' exp (kfi(x*))+A¥+ A% =0, i=1,m,
ie.,
L (u*,A*)=0, A¥=0, uf=z0, A*u¥=0, Yu¥=1.

The function ¢,(u) is concave no matter whether f;(x) are convex or not, so ¢
is a solution of (17).
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Let e=(0,0,---,0,1,0,+-,0), e=(1,---,1)e R™. Since F*>fi(x*%), i=
r+1,m, then A¥>0, i=r+1, m. The gradients of active constraints in (17),
€41, ,€m e are linearly independent, i.e., for (17) the conditions of form (4) are
satisfied. We shall now show that the conditions of form (5) are also satisfied for (17).
They have the following form:

(19) (e, v)=0, i=r+l,m, (e,v)=0implies—(¢£.,,.(u*)v,v)éy|]v|l2, @n>0.

Since @l (u*)=~AnL(A%L)AL, at x=x* and u=u* we have (—eku(u®)v, v) =
(AL 'A%, v, A%, v). There (19) is equivalent to the condition

(e, 0)=0, i=r+1,m, (e v)=0implies[ALv|Zpulv], >0,

v,=0, i=r+1,m, Y v;=0 implies = ullvf-
i=1

% v exp (kGG

But the last condition is equivalent to the condition

zulv], wu>0,

Y v; =0 implies
i=1

T vfi(x*)
i=1

which is equivalent to (4), so the condition of type (5) for the dual problem (17) has
been proved.

Therefore, for (17), the second-order sufficient conditions in a strict form (see,
for example, [28, p. 47]) are satisfied if these conditions are satisfied for (1).

(2) The strong convexity of A(x, u, k) in x¢€ S(x*, ¢) for all ue S(u*, €) follows
from Theorem 1 and the fact that f(x) e C? if k is large enough.

In particular, A% (x* u* k) is a positive definite matrix, so together with
Al(x*, u*, k) =0 it gives the left inequality (18) and uniqueness of x*. Since A(x, u, k)
is a linear function of u, the function ¢,(u) is concave in u no matter whether or not
fi(x), i=1, m are convex and the uniqucness‘ of u* is a consequence of (4). The
right-hand side of (18) follows from A(x*, u, k)=k™" exp (kF*), for all u€ S,,.

(3) The left inequality in (18) follows from the convexity A(x, u* k) on x and
(3); the right one follows from A(x*, u, k)= k™' exp (kF*), for all u€ S,,. The unique-
ness of x* follows from the strong convexity of A(x, u*, k) on x, and the uniqueness
of u* follows from (4).

COROLLARY. The restriction of the cost function ¢, (u) to the manifold of active
constraints of the dual problem (17) is a strongly concave function, i.e., the restrictions
of ¢i(u) to the manifold{u=(u,, -, un)Z0:4,=0, i=r+l, m, Y u=1} are
strongly concave. ' '

We shall consider this problem in more detail: Set

?x(u) = min k™' ¥ u; exp (kfi(x)) = min A.(x, 4, k) Vue S(u*, ),
xe i=1 xe

S(u*, e)={u=(uy, -, u)20: Jlu—u*| =g u*=(uf, - -, uf)},
53={“=(“i,"’,“r)12“i=1}-

Let the matrix P: R - R" be the orthogonal projector into £ of the vectors u € S(u*, ¢)
and let @, (1) = @,( Pu) be the restriction of the function @ (u) to £. Then Ghuu(u)=
I_’ AL.() is the gradient of the restriction @, (u) to £. The Hessian of the restriction
#(u) to L is defined by

ﬁkl‘(“) = ﬁku( )= Péiuu(-)P= —PA7 (- )(Ar( ))—lA'r/xu( -)P.
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In order for —H,«(+) to be positive definite it is sufficient (see [21]) that the matrix
Ar«(+) be positive definite and A7, () be nonsingular on £. The first property was
proved in Theorem 1. Since @, (u) is considered in a small neighbourhood of u*, we
have u;>0, i =1, r. Furthermore,

AL(-)= (‘:‘. u; exp (kﬁ(xk(u))> T(u, k),

T(u, k)= (dur' fi(x(u)), - - -, du;" fl(x(u)))
so that for sufficiently large k we obtain T(u*, k)= (f{(x*),- - -, fi(x*))=Ff'T(x*).
Therefore the nonsingularity of the operator A;..(-) on £ is a consequence of con-
dition (4).
Remark 1. Let I be any minimal set, and let u* be a vertex of the Kuhn-Tucker
polyhedron corresponding to I:

iel

S;(u*, s)={u: Yu=Luz=0,iclu=0icl, ||u—u"‘||§e}.

Then the strong concavity property for ¢u(u)=min..y+s k™'Y, , u, exp (kf(x)) on_
S, (u*, ) still holds if we replace (5) by (5').

Remark 2. The results of Theorems 1 and 2 are not true for the classical Lagrangian
function L(x, u) corresponding to the original problem (1), since (4)-(5) do not ensure
in general that L(x, u) is convex in x and argmin,. v+ L(x) may not exist or may not
coincide with x*.

Finally, note that ¢,(u) is concave, and that if conditions (4)-(6) are satisfied,
then ¢, (u) is strongly concave on £ in a neighbourhood of u* with its Hessian satisfying
a Lipschitz condition. These properties are used to find an approximation for the
Lagrange multipliers. Consider this probkm in more detail.

As a result of one step of (10) for sufficiently large k we can obtain u e S(u*, ¢)
and isolate the set of active constraints I'*. After that, the search for u* is reduced to

the determination of u* = (uf, - - -, u¥)
(20) : u* =argmax {@,(u)|u e S(u*, e) N L).

Every method of smooth optimization of @;(u) on £ determines some relaxation
operator R:S(u* e)NL->S(u* £)NE, is., @ (Ru)>F(u) and R5u-u*, for
all ue S(u*,e)NL. In particular, the gradient method has its relaxation operator
defined by

(21) Ru=u+tPA,(-), >0,
and the relaxation operator corresponding to the Newton method is
(22) Ru=u+¢
where £ is the normal solution of the system

Hy(u)¢=—PAL(-).

The properties of these operators are determined by the properties of the corresP°"dm*g
methods of smooth optimization. The convergence rates of the approximation © uis
i € I'* and, consequently, x* are determined not only by the rate of convergence © ©
corresponding method of smooth optimization but also by the estimate from (9) becavse
the optimization of &,(u) on £ is always accompanied by a step of (10).
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Under the conditions of Theorem 1 the matrix H,(u) is continuous and has a neg-
ative spectrum. Therefore for the operator (22) we obtain a sequence {u**' = Ru®}5_,
such that |us*" — u*|| = gs|lu® ~ u*|}, gs - 0. If condition (6) is satisfied then there exists
A>0: Ju®*' = u*|| = A||u® — u*||”. The use of Newtonian and quasi-Newtonian methods
allows us to obtain relaxation operators with corresponding properties of convergence.
This makes it possible to formulate the following general method, which we shall
consider for the convex fi(x), i=T1, m:

Let u®=(m™",---,m™")e R™ and let k>0 be large enough. Assume that z°=
(x%, u®) has already been found. Then define z°*' = (x**"; u®*'):

=(x""
(23) x3*' = argmin {A,(x, Ru®, k)|xe R"},

r

bd | .
us*'X(u.-s”=ﬁ.-s eXP(kﬁ(xs“))(Z i eXP(kﬁ(xs*'))) ,i=ﬁ)

i=1

24) .
( where @° =(af,---,a’)=Ru’

Let operator R have one of the following properties:

(1% IRu—u*|=qlu~u*l, q<1,
(2°) I Ru —u*|| = q(u)|ju—u*|,q(u) >0 as u->u¥,
39 IRu—w*{[= Allu—u*”.

If fi(x), i=1, m is convex, (3)-(6) are satisfied, and k is large enough, then for the
sequences {z°}5., generated by method (23), (24), using relaxation operators with
properties (1°)-(3°) we obtain the following estimation:

(1%) 25 = z*[ = (cgk™")%;
S b4

(2*) "zs—z*"§(ck")s 1 g9s>0 as S>o0;
i=1

(3*) 25— ¥ =(cAk ™) 'g},  go<1.

The last estimates follow directly from the properties of operators R and the inequalities
c c
E Ers IRu®—ul,  Ju" —u*| =, | Ru®—u®|

which follow from Theorem 1.
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