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Abstract. We introduce the regularized Newton method (rnm) for unconstrained convex op-
timization. For any convex function, with a bounded optimal set, the rnm generates a sequence
that converges to the optimal set from any starting point. Moreover the rnm requires neither
strong convexity nor smoothness properties in the entire space. If the function is strongly con-
vex and smooth enough in the neighborhood of the solution then the rnm sequence converges
to the unique solution with asymptotic quadratic rate. We characterized the neighborhood of
the solution where the quadratic rate occurs.

1. Introduction.

There are several ways to modify the Newton method for unconstrained mini-
mization to achieve global convergence.

For twice continuous differentiable and strongly convex function, the Newton
direction is a descent direction. The local “quality” of the Newton direction at
each point can be estimated by the condition number of the Hessian at the point.

If the condition number is bounded from above uniformly in x ∈ Rn then
by introducing a step-size, it is possible to guarantee the global convergence of
the so-called damped Newton method. By adjusting the step-size of the damped
Newton method, using for example the Armijo rule, the asymptotic quadratic
rate of convergence can be achieved.

To guarantee the global convergence of the Newton method in case when the
function is not strongly convex, the Levenberg-Marquardt regularization of the
Hessian is used (see [3], [4]).

In [5], Yu. Nesterov and A. Nemirovski introduced the class of self-concordant
functions. These are three time differentiable convex function with the second
and third derivatives satisfying a particular condition at each point.

The choice of the step-size is based on the value of the so-called Newton’s
decrement. It guarantees global convergence allowing estimation of the complex-
ity, i.e. finding the upper bound for the number of iterations required to achieve
the desired accuracy. To compute the Newton’s decrement at each iteration, one
has to invert the Hessian.
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Recently, Yu. Nesterov and B. Polyak proposed in [6] an interesting cubic
regularization of the Newton method. At each iteration, it requires solving an
unconstrained minimization problem with the same quadratic term as in the
Newton method, but regularized via a cubic term.

Usually the convergence results for the Newton method include assumptions
on a starting point which has to be in the neighborhood of the solution. In
contrast, S. Smale [11] established convergence based on the assumptions on
data at the point. The assumptions, however, include the existence and the
boundness of the derivatives of any order at the point.

All mentioned modifications of the Newton method, as well as the classical
Newton method (see L. Kantorovich [2]), require the existence and the continuity
of the Hessian and its inverse.

Our main motivation is to develop a Newton type method for finding a
minimum of a convex function that requires neither strong convexity nor even
smoothness properties on the entire space.

We introduce and analyze the regularized Newton method (rnm) which can
be applied for finding a minimum of any convex function f : Rn → R from any
starting point x ∈ Rn. The regularization of the convex function at each point
with the norm of the gradient (subgradient) as the regularization parameter is
the main idea behind the rnm.

The following regularized at the point x function:

F (x, y) = f(y) +
1
2
||∇f(x)||||y − x||2

is our main tool.
Such regularization allows developing a Newton-type method, which gener-

ates a sequence that converges to the minx∈Rn f(x) for any convex function from
any starting point x ∈ Rn.

Moreover, the rnm retains the main property of the Newton method – the
asymptotic quadratic rate of convergence for functions that satisfy the standard
for the Newton method assumptions on f : Rn → R in the neighborhood of
the solution. The size of the neighborhood of the solution where the quadratic
convergence occurs is characterized through the convexity constant of f(x) and
the Lipschitz constant of its Hessian ∇2f(x) as well as a parameter 0 < r < 1,
which defines the quadratic rate.

The paper is organized as follows. The regularized convex function and the
regularized Newton direction (rnd) are introduced in Section 2. The “quality”
of the rnd as well as the “quality” of classical Newton direction (cnd) are quan-
tified. We use these characteristics to show that regularization improves the
condition number of the Hessian ∇2f(x), ∀x ∈ Rn, x 6= x∗. The local quadratic
convergence of the rnm sequence is proven in Section 3. The damped regularized
Newton methods are introduced in Section 4. The global convergence and the
convergence rate of the damped regularized Newton methods are established in
Section 5.
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2. Regularization of a convex function at the point.

Let f : Rn → R be a convex function. We assume that the optimal set

X∗ = Arg min{f(x)|x ∈ Rn} (1)

is not empty and bounded.
In this section, we introduce the regularized convex function at the point

and define the regularized Newton direction (rnd) for any convex function. We
show that the regularized Newton direction exists at each x /∈ X∗ no matter
the function is strongly convex and smooth or not. Moreover, the regularization
improves the condition number of the Hessian ∇2f(x) uniformly in x ∈ Rn,
x 6= x∗.

We assume at the beginning that f ∈ C2. The Euclidean norm ‖ x ‖= (x, x)
1
2

is used throughout the paper. The regularized, at the point x ∈ Rn, function
f(x) we define by the following formula

F (x, y) = f(y) +
1
2
‖ ∇f(x) ‖‖ y − x ‖2 . (2)

For any x /∈ X∗ we have ||∇f(x)|| > 0, therefore for any convex function
f(x) the regularized function F (x, y) is strongly convex in y ∈ Rn. Therefore
for any x ∈ Rn there exists a unique minimizer

y(x) = arg min{F (x, y)|y ∈ Rn}.
The following properties of the function F (x, y) are direct consequences of (2).
1◦. F (x, y)|y=x = f(x),
2◦. ∇yF (x, y)|y=x = ∇f(x),
3◦. ∇2

yyF (x, y)|y=x = ∇2f(x) + ||∇f(x)||I = H(x), where I is the identity
matrix in Rn.

For any x /∈ X∗, the inverse H−1(x) exists whether the function f(x) is
strongly convex or not. Therefore the regularized Newton step

x̂ := x− (H(x))−1∇f(x) (3)

can be performed from any starting point x /∈ X∗ for any smooth but not
necessarily strongly convex function f(x). Moreover, we will see later that for
any convex function f(x) , even the smoothness is not necessary to perform the
regularized Newton step.

We start by showing that the regularization (2) improves the condition num-
ber of the Hessian ∇2f(x), ∀x ∈ Rn, x 6= x∗. We assume at this point that for
any given x ∈ Rn there exist 0 < m(x) < M(x) < ∞ such that

m(x)||y||2 ≤ (∇2f(x)y, y) ≤ M(x)||y||2, ∀y ∈ Rn. (4)

Along with the regularized Newton step (3), we consider the classical Newton
step

x̂ := x− (∇2f(x))−1∇f(x). (5)
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Let’s quantify the “quality” of the regularized Newton direction r(x), defined by
the system

H(x)r(x) = −∇f(x) (6)

and compare it with the correspondent characteristic of the cnd

n(x) = −(∇2f(x))−1∇f(x). (7)

At any point x ∈ Rn, the local “quality” of a given descent direction d ∈ Rn is
characterized by the following number

0 ≤ q(d) = − (∇f(x), d)
||∇f(x)||||d|| ≤ 1.

It is well-known that the steepest descent direction d(x) = −∇f(x) ‖ f(x) ‖=
arg max{q(d)| ‖ d ‖≤ 1} is the best local descent direction and q(d(x)) = 1.

For the rnd r(x) we have

q(r(x)) = − (∇f(x), r(x))
||∇f(x)||||r(x)|| .

From (6), we obtain

(H(x)r(x), r(x)) = −(∇f(x), r(x)).

Keeping in mind 3◦ and the left inequality in (4), we obtain

−(∇f(x), r(x)) ≥ (m(x) + ||∇f(x)||)||r(x)||2.
Therefore, for any x /∈ X∗ we have

1 ≥ q(r(x)) ≥ (m(x) + ||∇f(x)||)||r(x)||||∇f(x)||−1 > 0. (8)

In other words, for any x /∈ X∗, the rnd r(x) is a descent direction for f(x)
no matter the function f(x) is strongly convex or not. Whereas the cnd n(x)
exists and it is a descent direction only for a strongly convex function. The local
“quality” of the cnd n(x) can be characterized by

q(n(x)) = − (∇f(x), n(x))
||∇f(x)||||n(x)|| .

The following theorem establishes the lower bounds for q(r(x)) and q(n(x)) and
shows that the regularization (2) improves the condition number of the Hessian
∇2f(x) for all x ∈ Rn, x 6= x∗.

Theorem 1. Let f ∈ C2 be a convex function that satisfy (4), then the following
bounds hold

1.

1 ≥ q(r(x)) ≥ (m(x) + ||∇f(x)||)(M(x) + ||∇f ||)−1 = (cond H(x))−1 > 0,

∀x 6∈ X∗.
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2.

1 ≥ q(n(x)) ≥ m(x)(M(x))−1 = (cond ∇2f(x))−1 > 0, ∀x ∈ Rn : m(x) > 0.

3.

cond ∇2f(x)− cond H(x) = ||∇f(x)||(cond ∇2f(x)− 1)(m(x) + ||∇f(x)||)−1 > 0,

∀x 6∈ X∗, cond ∇2f(x) 6= 1

[Proof]:

1. From (6), we obtain

||∇f(x)|| ≤ ||H(x)||||r(x)||. (9)

Using the right inequality (4) and 3◦, we have

||H(x)|| ≤ M(x) + ||∇f(x)||, (10)

From (9) and (10) we obtain

||∇f(x)|| ≤ (M(x) + ||∇f(x)||)||r(x)||.

Combining the last inequality with (8) we have

q(r(x)) ≥ (m(x) + ||∇f(x)||)(M(x) + ||∇f(x)||)−1 = (cond H(x))−1.

2. Now let’s consider the Newton direction n(x). From (7), we have

∇f(x) = −∇2f(x)n(x), (11)

therefore,

−(∇f(x), n(x)) = (∇2f(x)n(x), n(x)).

Hence, using the left inequality of (4), we have

q(n(x)) = − (∇f(x), n(x))
||∇f(x)||||n(x)|| ≥ m(x)||n(x)||||∇f(x)||−1. (12)

From (11) and the right inequality in (4), we obtain

||∇f(x)|| ≤ ||∇2f(x)||||n(x)|| ≤ M(x)||n(x)||. (13)

Combining (12) and (13) we have

q(n(x)) ≥ m(x)
M(x)

= (cond ∇2f(x))−1.
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3. Using the formulas for the condition numbers of ∇2f(x) and H(x) we obtain

cond ∇2f(x) − cond H(x)
= M(x)m(x)−1 − (M(x) + ||∇f(x)||)(m(x) + ||∇f(x)||)−1

= ||∇f(x)||(cond ∇2f(x)− 1)(m(x) + ||∇f(x)||)−1

> 0, ∀x 6∈ X∗, cond ∇2f(x) 6= 1

ut
It follows from Theorem 1 that the regularization (2) improves the condition

number of the Hessian for any strongly convex function f(x) uniformly in x ∈
Rn, x 6= x∗, cond ∇2f(x) 6= 1. It also makes possible to perform rnm when the
original function is not strongly convex. Moreover, we will see later that the
rnd exists even if f(x) is not smooth. At the same time, the rnm retains the
quadratic rate of convergence in the neighborhood of the solution.

We discuss this issue in the next section.

3. Local Regularized Newton method.

In this section, the regularized Newton method (rnm) is considered for smooth
and strongly convex functions. It is shown that rnm generates a sequence that
converges to the solution with quadratic rate from any starting point x ∈
S(x∗, ρ) = {x : ||x− x∗|| ≤ ρ}.

We estimate ρ > 0 through the convexity constant of the function f(x) and
the Lipschitz constant of its Hessian ∇2f(x), as well as the parameter 0 < r < 1,
which characterize the quadratic convergence rate.

One step of the rnm consists of finding the approximation x̂ by the following
formula

x̂ := x− (∇2f(x) + ||∇f(x)||I)−1∇f(x). (14)

Along with rnm we consider a step of the classical Newton method (cnm)

x̂ := x− (∇2f(x))−1∇f(x). (15)

We assume that in the neighborhood S(x∗, ρ0) the Hessian ∇2f(x) satisfies the
following standard for the cnm conditions

||∇2f(x)−∇2f(y)|| ≤ L||x− y|| (16)
m(y, y) ≤ (∇2f(x)y, y) ≤ M(y, y) (17)

and 0 < m < M < ∞.
The following inequalities are direct consequence of the conditions (16) and

(17) (see [9])

||∇f(x +4x)−∇f(x)|| ≤ M ||4x|| (18)

||∇f(x +4x)−∇f(x)−∇2f(x)4x|| ≤ 1
2
L||4x||2. (19)
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In fact, in view of f(x) ∈ C2, we have

∇f(x +4x) = ∇f(x) +
∫ 1

0

∇2f(x + τ4x)4xdτ (20)

Using (20), we obtain

∇f(x +4x) = ∇f(x) +∇2f(x)4x +
∫ 1

0

(∇2f(x + τ4x)−∇2f(x)
)4xdτ.

Keeping in mind (16) we have

||∇f(x +4x)−∇f(x)−∇2f(x)4x|| ≤ L||4x||2
∫ 1

0

τdτ =
1
2
L||4x||2.

The next theorem establishes the quadratic rate of convergence of the rnm.

Theorem 2. If conditions (16) and (17) are satisfied, then for any given

0 < r = (m + 0.5L)m−2||∇f(x0)|| < 1, x0 ∈ S(x∗, ρ0)

and
0 < ρ = m(m + 0.5L)−1r ≤ ρ0 (21)

the sequence {xs}∞s=0 generated by the rnm (14) belongs to S(x∗, ρ) and the
following bound holds

||xs − x∗|| ≤ 2m

L + 2m
r2s

, s ≥ 1 (22)

[Proof]: We consider the rnm step (14). Let4x = −(∇2f(x)+||∇f(x)||I)−1∇f(x),
then using (19) we obtain

||∇f(x̂)−∇f(x)−∇2f(x)4x|| ≤ 0.5L||4x||2

≤ 0.5L|| (∇2f(x) + ||∇f(x)||I)−2 || ||∇f(x)||2. (23)

For the vector u = ∇f(x) +∇2f(x)4x, we have

||u|| = ||∇f(x) +∇2f(x)4x||
= ||∇f(x)−∇2f(x)(∇2f(x) + ||∇f(x)||I)−1∇f(x)||
= || (I −∇2f(x)(∇2f(x) + ||∇f(x)||I)−1

)∇f(x)||
≤ ||I −∇2f(x)(∇2f(x) + ||∇f(x)||I)−1|| ||∇f(x)||.

Then

||I −∇2f(x)(∇2f(x) + ||∇f(x)||I)−1||
= ||(∇2f(x) + ||∇f(x)||I −∇2f(x))|| ||(∇2f(x) + ||∇f(x)||I)−1||.

From (17) we obtain ||(∇2f(x)+ ||∇f(x)||I)−1|| ≤ (m+ ||∇f(x)||)−1 and there-
fore

||u|| ≤ (m + ||∇f(x)||)−1||∇f(x)||2. (24)
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From (23) for the vector v = ∇f(x̂)− u, we have

||v|| = ||∇f(x̂)− u|| ≤ 0.5L||4x||2. (25)

Keeping in mind (24), (25) and

||4x|| ≤ ||(∇2f(x) + ||∇f(x)||)−1|| ||∇f(x)||
≤ (m + ||∇f(x)||)−1||∇f(x)||

we obtain

||∇f(x̂)|| = ||u + v||
≤ ||u||+ ||v||
≤ (

(m + ||∇f(x)||)−1 + 0.5L(m + ||∇f(x)||)−2
) ||∇f(x)||2

≤ (m−1 + 0.5Lm−2)||∇f(x)||2.

Therefore for the rnm sequence {xs} generated by (14) we have

||∇f(xs+1)|| ≤ m + 0.5L

m2
||∇f(xs)||2

or
m + 0.5L

m2
||∇f(xs+1)|| ≤

(
m + 0.5L

m2
||∇f(xs)||

)2

. (26)

Let r = m+0.5L
m2 ||∇f(x0)|| < 1, then from (26) we obtain

||∇f(xs)|| ≤ m2

m + 0.5L
r2s

. (27)

It follows from left inequality (17) that

||∇f(x0)|| ≥ m||x0 − x∗||. (28)

Also from ||∇f(x0)|| = m2

m+0.5Lr and (28) we have

||x0 − x∗|| ≤ m−1||∇f(x0)|| = mr

m + 0.5L
= ρ < ρ0

i.e. x0 ∈ S(x∗, ρ)
Again using the left inequality (17) and (27), we obtain

||xs − x∗|| ≤ m

m + 0.5L
r2s

.

i.e. xs ∈ S(x∗, ρ), s ≥ 1 and the rnm sequence {xs}∞s=0 converges to x∗ with
quadratic rate. ut
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4. Global Regularized Newton methods.

To guarantee the global convergence of the cnm, the Newton direction n(x) is
used with a step length t > 0, i.e.

x̂ := x− t(∇2f(x))−1∇f(x) = x + tn(x). (29)

The step length t is often chosen from the Armijo inequality

f(x + tn(x)) ≤ f(x) + ct(∇f(x), n(x)) (30)

with 0 < c < 0.5 (see [9]).
To guarantee the global convergence of the cnm with step length (30) one

has to assume that m(x) ≥ m > 0 and 0 < cond ∇2f(x) < ∞ for all x ∈ Rn.
It can be guaranteed by assuming that (16)–(17) takes place for all x ∈ Rn. In
other words the function f(x) has to be strongly convex and smooth enough on
Rn.

In this section we consider two regularized Newton methods with step length.
The first

x := x− t(∇2f(x) + ||∇f(x)||I)−1∇f(x) (31)

is designed for convex functions f ∈ C2, which are not strongly convex on Rn.
For such class of convex functions the cnm cannot be applied (m(x) = 0) or it is
impossible to guarantee convergence from any starting point. For example, for
f(x) = (1 + x2)

1
2 the cnm diverges for any starting point x /∈ (−1, 1).

The second rnm is designed for convex functions, which are neither strongly
convex nor even differentiable in the entire Rn. For both rnm we establish con-
vergence from any starting point and in case when the conditions (16)–(17) are
satisfied then both rnm converge with asymptotic quadratic rate.

We start with f ∈ C2. From boundness of X∗ follows that for any given x0 ∈
Rn the closed convex set Ω = {x : f(x) ≤ f(x0)} is bounded. Therefore, there
are 0 < L0 = max{||∇2f(x)|| | x ∈ Ω} and 0 < M0 = max{||∇f(x)|| | x ∈ Ω}.
Also for any pair (x; y) ∈ Ω ×Ω we have

||∇f(x)−∇f(y)|| ≤ L0||x− y|| (32)

Let Y be a closed bounded set, x /∈ Y and d(x, Y ) = ||x− y(x)|| = min{||x−
y|| | y ∈ Y } is the distance from x and Y .

The following theorem holds.

Theorem 3. If f ∈ C2 then the rnm (31) with step length t = t(x) = (m(x) +
||∇f(x)||)L−1

0 generates a sequence {xs}∞s=0 that

1. lim
s→∞

||∇f(xs)|| = 0; 2. lim
s→∞

f(xs) = f(x∗); 3. lim
s→∞

d(xs, X∗) = 0.
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[Proof]: Let’s consider the rnm (31)

x̂ := x + tr(x),

where r(x) = −(∇2f(x) + ||∇f(x)||I)−1∇f(x).
We remind that for a pair of vectors (x; y) ∈ Rn ×Rn we have

f(x + y) = f(x) +
∫ 1

0

(∇f(x + τy), y) dτ (33)

Using (33) we obtain

f(x̂) = f(x) + t(∇f(x), r(x)) + t

∫ 1

0

(∇f(x + τtr(x))−∇f(x), r(x)) dτ

≤ f(x) + t(∇f(x), r(x)) + t

∫ 1

0

||∇f(x + τtr(x))−∇f(x)|| · ||r(x)||dτ

Using (6) and (32) we obtain

f(x̂) ≤ f(x)− t
((∇2f(x) + ||∇f(x)||I)

r(x), r(x)
)

+ 0.5t2L0||r(x)||2
≤ f(x)− [

t(m(x) + ||∇f(x)||)− 0.5t2L0

] ||r(x)||2

Therefore for t = t(x) = (m(x) + ||∇f(x)||)L−1
0 , we have

f(x̂) ≤ f(x)− 0.5L−1
0 (m(x) + ||∇f(x)||)2||r(x)||2 (34)

From r(x) = (∇2f(x) + ||∇f(x)||I)−1∇f(x), we obtain

||∇f(x)|| ≤ (||∇2f(x)||+ ||∇f(x)||)||r(x)||
or

||r(x)|| ≥ ||∇f(x)||
||∇2f(x)||+ ||∇f(x)|| ≥

||∇f(x)||
L0 + ||∇f(x)||

Combining the last inequality with (34) and keeping in mind m(x) ≥ 0 and
||∇f(x)|| ≤ M0 we obtain

f(x̂) ≤ f(x)− 0.5L−1
0

(
m(x) + ||∇f(x)||
L0 + ||∇f(x)||

)2

||∇f(x)||2

≤ f(x)− 0.5L−1
0 (L0 + M0)−2||∇f(x)||4

Therefore the rnm (31) with step length

t = t(x) = (m(x) + ||∇f(x)||)L−1
0 (35)

generates a sequence {xs}∞s=0 that

f(xs+1) ≤ f(xs)− 0.5L−1
0 (L0 + M0)−2||∇f(xs)||4 (36)
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By summing up (36) we obtain

0.5L−1
0 (L0 + M0)−2

∞∑
s=0

||∇f(xs)||4 ≤ f(x0)− f(x∗)

Therefore
lim

s→∞
||∇f(xs)|| = 0 (37)

The sequence {xs}∞s=0 ⊂ Ω is bounded. Let {xsi}∞i=1 ⊂ {xs}∞s=0 be a con-
verging subsequence that lims→∞ xsi = x̄. From (37) we have ∇f(x̄) = 0 and
x̄ = x∗ ∈ X∗. Also {f(xs)}∞s=0 is monotone decreasing. Therefore

lim
s→∞

f(xs) = f(x∗), and lim
s→∞

d(xs, X∗) = 0 .

ut
The choice of the step length t = t(x) requires knowledge of L0 > 0 or its

upper bound. Sometimes such upper bound can be found a priori. If it is not the
case one can start with some L0 > 0 and adjust its value if necessary during the
solution process. It can be done similar to the way the correspondent parameter
is adjusted in the second global regularized Newton method (grnm) which we
describe later.

Now we can formulate the first grnm for convex f ∈ C2, assuming that
L0 > 0 is available.

First Global Regularized Newton Method
Initialization: Given accuracy ε > 0, large enough L > 0 and a starting
point x0 ∈ Rn

Set x̂ := x0.
step 1: x := x̂, if ||∇f(x)|| ≤ ε, then stop and output x∗ := x.
step 2: Find r(x) from (6), set t := 1, and find x̂ from (31).
step 3: If f(x̂) ≥ f(x), then go to step 5.
step 4: If ||∇f(x̂)|| ≤ ||∇f(x)||1.5, then go to step 1.
step 5: Set t := t(x). Find x̂ from (31) and go to step 1.

If the function f ∈ C2 is convex but not strongly convex in Rn, then the
global convergence of the first grnm follows directly from Theorem 3.

If in the neighborhood S(x∗, ρ) conditions (16)–(17) are satisfied, then the
global convergence of the first grnm with asymptotic quadratic rate is a direct
consequence of Theorem 2 and 3.

Let us estimate the number of steps of the regularized Newton method re-
quired to get an approximation with a given accuracy ε ¿ ρ0 from any starting
point x0 ∈ Rn. It follows from (36) that

0.5L−1
0 (L0 + M0)−2

N0∑
s=0

‖∇f(xs)‖4 ≤ f(x0)− f(x∗) .
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Let ∥∥∇f∗N0

∥∥ = min
0≤s≤N0

‖∇f(xs)‖ ,

then,
N0

∥∥∇f∗N0

∥∥4 ≤ 2L0(L0 + M0)2(f(x0)− f(x∗))

and
∥∥∇f∗N0

∥∥ ≤ 4

√(
2L0(L0 + M0)2(f(x0)− f(x∗))

N0

)
.

It follows from Theorem 2 that the quadratic convergence (22) is taking place
from any x ∈ S(x∗, ρ0), i.e.,

x : ‖∇f(x)‖ ≤ m2r

m + 0.5L
.

Therefore, if

4

√
2L0(L0 + M0)2(f(x0)− f(x∗))

N0
≤ m2r

m + 0.5L

then xN0 ∈ S(x∗, ρ0) and for a given ε ¿ ρ0 to get an approximation x :
‖x− x∗‖ ≤ ε requires O(ln ln ε−1) Newton steps, if xN0 is taken as the starting
point. Therefore, the total number of steps is

N = N0 + O(ln ln ε−1) , (38)

where N0 = 2(m + 0.5L)4m−8r−2(L0 + M0)2L0(f(x0)− f(x∗)).
We would like to point out that the number of Newton steps N is independent

of the size of the problem.

Example 1. We consider f(x) = (1+x2)1/2, then f ′(x) = x(1+x2)−(1/2), f ′′(x) =
(1 + x2)−(3/2) and minx∈R f(x) = f(0) = 1.

The Newton iteration is given by the following formula:

x̂ = x− (f ′′(x))−1f ′(x) = −x3 .

Therefore, the Newton method converges only from x ∈ (−1, 1).
Now, we consider the first grnm (31) with t = t(x) = (m(x) + ‖∇f(x)‖)L−1

0 .
We have L0 = supx∈R f ′′(x) = 1, m(x) = f ′′(x), ‖∇f(x)‖ = |f ′(x)| = |x|(1 +
x2)−(1/2). Therefore, the first grnm iteration is given by the following formula:

x̂ = x− x√
1 + x2

.

The first grnm generates a sequence {xs}∞s=0, which converges to x∗ from any
starting point x0 ∈ R with asymptotic quadratic rate. For the starting point
x0 = 10 and ε = 10−10, we have the following sequence: {10; 9.005; 8.011; 7.019;
6.029; 5.042; 4.061; 3.090; 2.139; 1.233; 0.456; 0.041; 3.490 · 10−5; 2.125 · 10−14}.
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Now we consider the second grnm for a convex function f : Rn → R, which
satisfies (16)–(17) in the neighborhood S(x∗, ρ) of the solution, but generally
speaking neither strongly convex nor even smooth on the entire Rn.

First, we introduce the modification of the rnm (31).
We assume m(x) = 0 and M(x) = ∞ for any given x ∈ Rn where the Hessian

∇2f(x) does not exist. For a given x ∈ Rn, we consider the following matrix

A(x) =
{∇2f(x), 0 < m(x) ≤ M(x) < ∞;

On,n, otherwise. (39)

The rnm with step length t > 0 is defined by formula

x̂ := x− t(A(x) + ||∇f(x)||I)−1∇f(x) = x + tr(x) (40)

We will show that the rnm (40) with a special choice of t > 0 generates a
sequence {xs}∞s=0 that converges to the solution from any starting point for any
given convex function f : Rn → R.

At the same time, if (16) and (17) are satisfied in the neighborhood S(x∗, ρ),
then the rnm (40) converges from any starting point x ∈ Rn with asymptotic
quadratic rate.

Meanwhile, let us make a few observations about the rnm (40). If the Hessian
∇2f(x) does not exist or ∇2f(x) exists, but m(x) = 0, then we cannot find the
Newton direction n(x) from (7). On the other hand, from (39) and (40), we
obtain

x̂ := x− t∇f(x)(||∇f(x)||)−1. (41)

if ∇f(x) exists.
In other words, the rnm (41) turns into the gradient method

x̂ := x− t(x)∇f(x) (42)

with step length t(x) = t||∇f(x)||−1. If the gradient ∇f(x) satisfies the Lipschitz
condition

||∇f(x)−∇f(y)|| ≤ L||x− y|| (43)

then the gradient method (42) with 0 < t(x) < 2L−1 generates monotone de-
creasing in value sequence {xs}, i.e. f(xs) ≥ f(xs+1) and lims→∞∇f(xs) = 0 if
f(x) ≥ f(x∗) > −∞ (see [7]).

If along with (43) the gradient ∇f(x) is strongly monotone

(∇f(x)−∇f(y), x− y) ≥ m||x− y||2, m > 0 (44)

then for 0 < t(x) < 2L−1, the method (42) generates a sequence {xs}, which
converges to the unique solution with geometric rate. In particular, for t(x) =
L−1 the following bound holds

||xs − x∗||2 ≤ 2m−1qs(f(x◦)− f(x∗)) (45)

where q = 1−mL−1 (see [9], pp. 25).
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Now, let’s assume that f : Rn → R is just convex but not differentiable at
x ∈ Rn, then obviously we cannot find the cnd n(x) from (7) and the classical
Newton method cannot be applied at x ∈ Rn. On the other hand, for any convex
function f : Rn → R and any x ∈ Rn, there exists a subgradient g(x):

f(y)− f(x) ≥ (g(x), y − x), ∀y ∈ Rn.

By setting ∇f(x) := g(x) and keeping in mind (39) and (40), we obtain

x̂ := x− tg(x)(||g(x)||)−1, (46)

i.e. the rnm (40) turns into the subgradient method.
The properties of the sequence {xs} generated by the subgradient method

xs+1 = xs − tg(xs)||g(xs)||−1 (47)

was first established by N. Shor in the early Sixties (see [10] pp 38–39 and
references therein).

Let Xs = {x : f(x) = f(xs)}, then for a given ε > 0 and any x∗ ∈ X∗ there
is large enough s0 > 0 that the following bound holds (see [10], Theorem 30)

min
x∈Xs0

||x− x∗|| ≤ t(1 + ε)
2

.

It means that for any given small enough ε > 0 there is such a small t = t(ε)
and a large number s0 that the xs0 ∈ {x : f(xs0) ≤ minx∈X∗ f(x) + ε}. If (17)
holds then x∗ is unique and xs0 ∈ S(x∗, ρ0) for any ε > 0 small enough.

Let {ts}∞s=0 be a positive sequence such that

a) lim
s→∞

ts = 0 b)
∑

s

ts = ∞. (48)

If f(x) is not differentiable, then again the sequence {xs}∞s=0 generated by the
rnm (32) turns into the subgradient sequence

xs+1 = xs − tsg(xs)||g(xs)||−1. (49)

The convergence of the sequence {xs}∞s=0 generated by (49) was established in
the Sixties (see [1], [8], [10] and references therein).

Theorem 4. [10] Let f : Rn → R is convex, the optimal set X∗ is bounded
and not empty, then the subgradient method (49) with step length (48) generates
such a sequence {xs}∞s=0 that either there is s0 such that xs0 ∈ X∗ or

a) lim
s→∞

f(xs) = f(x∗), and b) lim
s→∞

d(xs, X∗) = 0.
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There are two main issues with the subgradient method (41).
First, the sequence {xs}∞s=0, generally speaking, is not monotone in value,

i.e. for some iterations we can have f(xi+1) > f(xi).
Second, the subgradient method (49) cannot converge fast because the dis-

tance from the current approximation to the solution cannot be less than ts > 0,
and ts according to (48b) converges to zero slow.

Both drawbacks of the subgradient method (49) are less critical, however, for
the second grnm, because the method is designed for functions with properties
(16) and (17) in the neighborhood of the solution. Therefore the rnm behaves
as a gradient (subgradient) method only outside S(x∗, ρ). After reaching the
neighborhood S(x∗, ρ) the rnm generates a sequence which due to Theorem 2
converges to the unique minimizer with quadratic rate.

In the rest of the paper, we will be concerned with convex function f : Rn →
R for which conditions (16) and (17) are satisfied in the neighborhood S(x∗, ρ0),
but not necessarily on the entire space Rn.

We remind that if f : Rn → R is convex and X∗ is bounded, then for any
given x0 ∈ Rn the level set Ω = {x : f(x) ≤ f(x0)} is bounded.

If the gradient∇f(x) does not exist at x ∈ Ω\S(x∗, ρ0) then we set∇f(x) :=
g(x).

Note that from the assumption (17) follows the existence of a small enough
0 < κ < 1 that

||∇f(x)|| > κ, ∀x ∈ Ω \ S(x∗, ρ0). (50)

In fact, assuming that (50) is not true, we can find a sequence {κl}∞l=0 :
liml→∞ κl = 0 and a sequence {xl}∞l=0 ∈ Ω \ S(x∗, ρ0) that

||∇f(xl)|| ≤ κl (51)

The existence of a limit point of {xl}∞l=0 follows from the boundness of Ω. With-
out restricting the generality we can assume that x̄ = liml→∞ xl. Then taking
to the limit (51) we obtain

||∇f(x̄)|| = 0, x̄ /∈ S(x∗, ρ0)

which is impossible due to the left inequality in (17). Therefore there is 0 < κ < 1
that (50) is true, i.e. if ||∇f(x)|| ≤ κ then x ∈ S(x∗, ρ0).

We are ready to describe the second grnm.
The second grnm does require neither the existence of ∇2f(x) nor even the

existence of ∇f(x) for all x ∈ Rn.
We remind that if ∇2f(x) does not exists or m(x) = 0 then it follows from

(39) and (40) that the regularized Newton direction r(x) = −∇f(x)||∇f(x)||−1

is just the normalized gradient if ∇f(x) exists or the normalized subgradient
r(x) = −g(x)||g(x)||−1 if ∇f(x) does not exist.

There are three critical parameters: 0 < κ < 1, 0 < m0 ≤ m(x) and M(x) ≤
M0 < ∞, which controls the second grnm. They are usually unknown a priori.
Sometimes it is possible to find 0 < m ≤ m0 and ∞ > M ≥ M0, then we set
m0 := m and M0 := M . If such 0 < m < M < ∞ cannot be found a priori, then
the second grnm starts with some 0 < κ < 1, m0 > 0 and M0 > 0 and employs
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a mechanism which adjusts all three parameters to their appropriate level in the
process of solution.

Second Global Regularized Newton Method
Initialization: Given accuracy ε > 0, sequence {ts}∞s=0, which satisfies
(48), small enough 0 < κ < 1, 0 < m < 1, large enough M > 1, and a
starting point x0 ∈ Rn.
Set ϕ := f(x0), s := 0, l := 0, ϕ̂ := ϕ, x̂ := x0,m0 := m,M0 := M,κ0 :=
m0κ.
step 1: x := x̂, if ||∇f(x)|| ≤ ε, then stop and output x∗ := x.
step 2: If ||∇f(x)|| ≤ κ0 and m(x) ≥ m0, M(x) ≤ M0, then go to step

7
step 3: Set A(x) := 0n,n. If∇f(x) does not exist, then set∇f(x) := g(x)
step 4: t := ts, s := s + 1 and find x̂ from (40).
step 5: If f(x̂) < ϕ̂, then ϕ̂ := f(x̂) go to step 1.
step 6: Set x := x̂, go to step 3.
step 7: Find r(x) from (6), set t := 1 and find x̂ from (40)
step 8: If ‖ ∇f(x̂) ‖>‖ ∇f(x) ‖1.5, then set t := 0.5m0M

−1
0 and find x̂

from (40), l := l + 1,m0 := ml−0.1,M0 := Ml0.1.
step 9: ϕ̂ := f(x̂) and go to step 1.

Theorem 5. Let f : Rn → R be a convex function and the condition (16) and
(17) are satisfied, then there exists s0 that for

0 < r = (m + 0.5L)m−2||∇f(xs0)|| < 1

and

0 < ρ = m(m + 0.5L)−1r < ρ0

the sequence {xs0+s}∞s=0 ⊂ S(x∗, ρ) and the following bound

||xs0+s − x∗|| ≤ m

m + 0.5L
r2s+1 (52)

holds for any s ≥ 0.

[Proof]: We have to show that after finite number of grnm steps we find
xs0 ∈ S(x∗, ρ0). If r(xs) = −∇f(xs)||∇f(xs)||−1 or r(xs) = −g(xs)||g(xs)||−1 is
systematically used in (40) for several steps then the existence xs0 ∈ S(x∗, ρ0)
is a direct consequence of Theorem 4.

Now let’s consider the case when after one or few gradient (subgradient)
steps the approximation xl 6∈ S(x∗, ρ0) and the step 8 is used.

Note that such step can happen only after the strong monotonicity of the
record function value is restored, i.e ϕl < ϕl−1.

Let’s estimate the lower bound for the f(x) reduction at such a step.
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We remind that step 8 with starting point x = xl is used when ∇2f(xl)
exists, m(xl) ≥ m0, M(xl) ≤ M0 and ||∇f(xl+1)|| > ||∇f(xl)||1.5

From (6), we obtain

H(xl)r(xl) = −∇f(xl)

Therefore

(∇f(xl), r(xl)) = −(H(xl)r(xl), r(xl))
= −(∇2f(xl)r(xl), r(xl))− ||∇f(xl)||||r(xl)||2
≤ −m0||r(xl)||2 (53)

For a twice differentiable at the point xl function we have (see [9], pp. 7)

|f(xl + tr(xl))− (f(xl) + t(∇f(xl), r(xl)) +
1
2
t2(∇2f(xl)r(xl), r(xl))| ≤ o(||tr(xl)||2)

Keeping in mind the conditions from step 2 and (6), we obtain

||r(xl)|| ≤ ||(H(xl))−1||||∇f(xl)|| ≤ m−1
0 κ0 ≤ κ

Therefore for 0 < t ≤ 1 and small enough κ > 0 we obtain o(||tr(xl)||2) =
αl||tr(xl)||2 and αl → 0.

Using (53) and bounds for m(xl) and M(xl) we obtain

f(xl + tr(xl)) ≤ f(xl) + t(∇f(xl), r(x)) +
t2

2
(∇2f(xl)r(xl), r(xl))|+ o(t2||r(xl)||2)

≤ f(xl)− tm0||r(xl)||2 + t2M0||r(xl)||2
= f(xl)− t(m0 − tM0)||r(xl)||2

Hence, for t = 0.5m0M
−1
0 we have

f(xl+1) = f(xl + tr(xl)) ≤ f(xl)− 0.25m2
0M

−1
0 ||r(xl)||2

= f(xl)− σl−0.3||r(xl)||2 (54)

where σ = 0.25m2M
−1

.
Summing up (54) from l = 0 to l = ∞, we obtain

σ

∞∑

l=0

l−0.3||r(xl)||2 < f(x0)− f(x∗).

Therefore there is l = s0 such that ||r(xs0)|| ≤ l−0.35.
From (9) and ||∇f(xs0)|| ≤ κ0 = m0κ,m0 = ms−0.1

0 ,M0 = Ms0.1
0 , we obtain

||∇f(xs0)|| ≤ ||H(xs0)||||r(xs0)||
≤ (||∇2f(xs0)||+ ||∇f(xs0)||)||r(xs0)||
≤ (M0 + κ0)||r(xs0)||
≤ 2Ms−0.25

0
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Hence, for a given small enough 0 < κ < 1, there is l = s0 > 0 that

||∇f(xs0)|| ≤ 2Ms−0.25
0 ≤ κ (55)

It follows from (50) and (55) that xs0 ∈ S(x∗, ρ0).
The bound (52) is a direct consequence of Theorem 2. ut

Example 2.

f1(x) =





−3x− 2, −∞ < x ≤ −1;
1
2

(
x2 + x4

)
, −1 ≤ x ≤ 1;

3x− 2, 1 ≤ x < ∞ .

f2(x) = max
{

16
3

x− 8,−16
3

x− 8
}

f(x) = max {f1(x), f2(x)}

Using initialization ε = 10−15, ts = s−1, κ = 0.1, m = 0.9, M = 7 and
starting point x0 = 3.0, the second grmn generates the following sequence: {3.0;
2.0; 1.5; 1.17; 0.92; 0.63; 0.40; 0.21; 0.064; 0.0063; 6.6× 10−5; 1.2× 10−8; 8.3×
10−16; · · ·}.

5. Concluding remarks.

The most costly operation of the grnm is solving the system (6) to find r(x). The
Cholesky factorization of H(x) is an efficient tool for solving the system (6). It
is worth to mention that by using Cholesky factorization along with r(x) , one
finds m(x) and M(x) practically with very little extra numerical computation.

It follows from Theorem 2 that the sooner the approximation ends up in
S(x∗, ρ), the better it is.

The size S(x∗, ρ) depends on m > 0, L and 0 < r < 1. For a smaller r it
takes longer to get into S(x∗, ρ), but when the approximation is in S(x∗, ρ) the
convergence is faster.

The grnms substantially enlarge the class of convex functions for which New-
ton method can be applied. Moreover, the grnms retain the most important
property of the Newton method - its quadratic rate of convergence in the neigh-
borhood of the solution.

We believe, however, that there is room for improvement on both theoretical
and numerical sides. On the theoretical side, finding the optimal step length
for the first grnm might help to improve the complexity bound (38). On the
numerical side, we have to conduct extensive numerical experiments to better
understand the numerical efficiency of grnms.
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