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Projected Gradient Method for Non-Negative Least Square

Roman A. Polyak

Abstract. The projected gradient (PG) method was introduced for convex
optimization in the sixties. It has mainly theoretical value because even in case
of linear constraints it requires at each step solving a quadratic programming
(QP) problem. On the other hand, in case of simple constraints the PG method
can be very efficient.

In this paper, we apply the PG method to non-negative least squares
(NNLS). The NNLS is critical in a number of real world applications because
often the underlying parameters represent quantities that cannot be negative.
The NNLS problem plays a key role in statistical learning theory in general
and in Support Vector Machines (SVM) in particular.

In contrast to active set and interior point methods, which for a long
time were the main tools for solving NNLS, the PG does not require solving
at each step a linear system of equations. It rather requires matrix by vector
multiplication as the main operation per step. Therefore, the critical issue
is the convergence rate of the PG methods. The purpose of this paper is to
establish convergence rates and to estimate the complexity bounds for PG
methods under various assumptions on the input data.

1. Introduction

Let A : Rn → R
m (m >> n) be the LS matrix and b ∈ R

m be the right-hand
side. The non-negative least square (NNLS) problem consists in finding

f∗ = f(x∗) = min

{
f(x) =

1

2
‖Ax− b‖2|x ∈ R

n
+

}
,

where ‖a‖ = (a, a)
1
2 .

The NNLS is one of the main linear algebra problems, which has been studied
for a long time. The research on NNLS was summarized in the classical monograph
by C. Lawson and R. Hanson [10]. Since the 70s their active set method and its
modifications (see for example [3]-[4]) were the main tools for solving NNLS.

The active set approach requires at each step solving a standard LS sub-
problem, which is equivalent to solving a linear system of equations. Moreover,
the combinatorial nature of the active set methods does not allow establishing
meaningful bounds for the number of steps.

On the other hand, NNLS is a quadratic programming (QP) problem and can be
solved by interior point methods (IPMs) (see, for example, [2],[12]) in polynomial
time. In fact, it takes O(n3 ln ε−1) operations to find an ε > 0 approximation for f∗
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(see, for example, [15]). The IPMs also require solving a linear system of equations
at each step, which for very large scale NNLS can be difficult or even impossible.

In this note, we apply the PG methods [7], [11] (see also [5], [6]) for NNLS.
Instead of solving a linear system of equations , the PG at each step require matrix
by vector multiplication. What is even more important is the fact that the PG
methods have no combinatorial features, because the generated sequence is pro-
jected on the entire feasible set. It allows establishing both convergence rate and
complexity bounds under various assumptions on the input data.

Particular emphasis will be given to the fast projected gradient (FPG), which
is based on Yu. Nesterov’s gradient mapping theory [14] and closely related to the
Dual Fast Projected Gradient (DFPG) method for QP [16] (see also A. Beck and
M. Teboulle’s FISTA algorithm [1]).

The FPG requires O(λ
1
2 ‖x0 − x∗‖n2ε−

1
2 ) operations for finding f(xk) : Δk =

f(xk)− f∗ ≤ ε where λ = maxeigevalATA, ε > 0 is the required accuracy and x0

is the starting point. So, for large n, FPG has the potential to be an efficient alter-
native for IPMs. Moreover, matrix by vector multiplication is much cheaper than
solving the same size system of linear equations and it admits fast parallel compu-
tations, which can substantially speed up the process and improve the complexity
bound (see, for example, [9]).

The paper is organized as follows. In the next section, we recall some basic
results. In Sections 3 and 4 we consider the PG and FPG methods. In Section
5, we consider the PG method for full rank NNLS. In Section 6, we discuss an
opportunity of using FPG for solving SVM. We conclude this note by pointing out
a few topics for further research.

2. Problem formulation and some preliminary results

To cover a wider class of application, we consider the LS problem under box
constraints, i.e.,

(2.1) f∗ = f(x∗) = min

{
f(x) =

1

2
‖Ax− b‖2|x ∈ Ω‖

}
,

where c ∈ R
n
++ and

Ω = {x ∈ R
n : 0 ≤ xi ≤ ci, i = 1, .., n}.

The gradient
∇f(x) = AT (Ax− b) = Qx− q,

where Q = ATA : Rn → R and q = AT b ∈ R
n, satisfies the Lipschitz condition

‖∇f(x)−∇f(y)‖ ≤ ‖Q‖‖x− y‖.
Therefore for any L ≥ maxeigvalQ = λ, we obtain

(2.2) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖
for any x and y from R

n.
The Lipschitz constant L > 0 plays a key role in the PG theory; therefore,

finding a close to λ > 0 upper bound is an important part of the PG methods. One
can find the upper bound for λ > 0 by using the following power method.

For any 1 ≤ i ≤ n, we have

λ = lim
s→∞

ys+1
i

ysi
,
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where y0 ∈ R
n and ys = Asy0. In other words, one can find the upper bound L for

λ by using a few matrices by vector multiplication.
The optimality criteria, for any x∗ ∈ X∗ = argmin{f(x)|x ∈ Ω}, is given by

the following inequality:

(2.3) (∇f(x∗), X − x∗) ≥ 0, ∀X ∈ Ω.

For a given x ∈ R
n, let us consider the following quadratic approximation of f

ψL(x,X) = f(x) + (X − x,∇f(x)) +
L

2
‖X − x‖2.

There exists a unique minimizer

(2.4) xL
Ω ≡ xL

Ω(x) = argmin{ψL(x,X)|X ∈ Ω}.
The optimality criteria for xL

Ω is given by the following inequality:

(2.5) (∇XψL(x, x
L
Ω), X − xL

Ω) ≥ 0, ∀X ∈ Ω.

One obtains the solution xL
Ω in (2.4) by solving n one dimensional problems

(2.6) xL
i,Ω = argmin

{
∂f(x)

∂xi
(Xi − xi) +

L

2
(Xi − xi)

2|0 ≤ Xi ≤ ci

}
, i = 1, . . . , n.

Using the optimality criteria (2.5) for xL
i,Ω in (2.6), we obtain the following solution:

xL
i,Ω =

⎧⎪⎨
⎪⎩
0, if xi − 1

L
∂f(x)
∂xi

≤ 0

xi − 1
L

∂f(x)
∂xi

, if 0 < xi − 1
L

∂f(x)
∂xi

< ci

ci, if xi − 1
L

∂f(x)
∂xi

≥ ci.

Therefore, the problem (2.4) admits the closed form solution

(2.7) xL
Ω = PΩ(x− 1

L
∇f(x)),

where the projection of u ∈ R
n on Ω is defined as follows

PΩu = argmin{‖u− v‖|v ∈ Ω}.

3. Projected gradient method

Starting with x0 ∈ R
n and reiterating (2.7), we obtain the projected gradient

(PG) method

(3.1) xs+1 = PΩ(xs − L−1∇f(xs))

for solving NNLS (2.1).
Due to (2.4), the PG method (2.7) reminds us of the linearization method

introduced by B. Pschenichny [17] in the 70s. On the other hand, it has a flavor of
Quadratic Prox (see [8]), which will play an important role in our considerations.

Due to the Lipschitz condition (2.2), for any pair (X;x) ∈ R
n × R

n, we have

f(X)− f(x)− (X − x,∇f(x)) ≤ L

2
‖X − x‖2.

Therefore,

f(X) ≤ ψL(x,X) = f(x) + (X − x,∇f(x)) +
L

2
‖X − x‖2.

The following Lemma is similar to Lemma 1 in [16] (see also Lemma 2.3 in [1]).
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Lemma 1. For any given x ∈ R
n and L > 0 such that

(3.2) f(xL
Ω) ≤ ψL(x, x

L
Ω),

the following inequality holds for any X ∈ Ω

(3.3) f(X)− f(xL
Ω) ≥

L

2
‖xL

Ω − x‖2 + L(x−X, xL
Ω − x).

Proof. From (3.2) and convexity f(x), we have

f(X)− f(xL
Ω) ≥ f(X)− ψ(x, xL

Ω)

= f(X)− f(x)− (xL
Ω − x,∇f(x))− L

2
‖xL

Ω − x‖2

≥ f(x) + (∇f(x), X − x)− f(x)− (xL
Ω − x,∇f(x))− L

2
‖xL

Ω − x‖2

=
L

2
‖xL

Ω − x‖2 + (∇f(x), X − xL
Ω)− L‖xL

Ω − x‖2.(3.4)

From the optimality criteria (2.5) applied to (2.4), we obtain

(∇f(x) + L(xL
Ω − x), X − xL

Ω) ≥ 0, ∀X ∈ Ω,

or

(3.5) (∇f(x), X − xL
Ω) ≥ −L(xL

Ω − x,X − xL
Ω), ∀X ∈ Ω.

Therefore combining (3.4) and (3.5), we obtain

d(X)− d(xL
Ω) ≥

L

2
‖xL

Ω − x‖2 − L(xL
Ω − x,X − xL

Ω)− L(xL
Ω − x, xL

Ω − x)

=
L

2
‖xL

Ω − x‖2 + L(x−X, xL
Ω − x), ∀X ∈ Ω.

The most costly part of PG method (3.1) is computing the gradient ∇f(xs) =
Qxs − q, which requires matrix by vector multiplication. It takes at most O(n2)
operations.

The following theorem establishes the convergence of the PG method (3.1) and
estimate the convergence rate.

Theorem 1. The PG method ( 3.1) converges in value and

Δk = f(xk)− f∗ ≤ L

2k
‖x0 − x∗‖2.

Proof. Let us consider (3.3) with X = x∗, x = xs, and xL
Ω = xs+1. Then we

have

2

L
(f(x∗)− f(xs+1)) ≥ ‖xs+1 − xs‖2 + 2(xs − x∗, xs+1 − xs)

= (xs+1, xs+1)− 2(xs+1, xs) + (xs, xs) + 2(xs, xs+1)

− 2(x∗, xs+1)− 2(xs, xs) + 2(x∗, xs) + (x∗, x∗)− (x∗, x∗)

= ‖xs+1 − x∗‖2 − ‖xs − x∗‖2.
Summing up the last inequality from s = 0 to s = k − 1, we obtain

(3.6) kf(x∗)−
k−1∑
s=0

f(xs+1) ≥
L

2
[‖x∗ − xk‖2 − ‖x∗ − x0‖2].
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Using (3.3) with X = x = xs and xL
Ω = xs+1, we obtain

2

L
(f(xs)− f(xs+1)) ≥ ‖xs+1 − xs‖2,

or

s(f(xs)− f(xs+1)) ≥
L

2
s‖xs+1 − xs‖2,

i.e.,

sf(xs)− (s+ 1)f(xs+1) + f(xs+1) ≥
L

2
s‖xs+1 − xs‖2.

Summing up the last inequality from s=0 to s = k − 1, we obtain

(3.7) −kf(xk) +

k−1∑
s=0

f(xs+1) ≥
L

2

k−1∑
s=0

s‖xs+1 − xs‖2.

From (3.6) and (3.7) follows

k(f(x∗)− f(xk)) ≥
L

2

[
k−1∑
s=0

s‖xs+1 − xs‖2 + ‖x∗ − xk‖2 − ‖x∗ − x0‖2
]
,

or

(3.8) Δk = f(xk)− f(x∗) ≤ L

2k
‖x0 − x∗‖2.

It follows from (3.8) that for a given ε > 0, it takes k = O(L‖x0−x∗‖2ε−1) steps
to get Δk ≤ ε. Matrix by vector multiplication requires at most O(n2) operations;
therefore for the PG complexity bound, we obtain

(3.9) Comp(PG) = O(L‖x0 − x∗‖2n2ε−1).

It turns out that the PG complexity can be drastically improved practically without
increasing numerical effort per step.

In the following section, we consider the fast projected gradient (FPG) method
for NNLS. The FPG is based on Yu. Nesterov’s gradient mapping theory [15]
and closely related to DFPG [16] for QP and FISTA algorithm by A. Beck and
M. Teboulle [1].

4. Fast Projected Gradient

At each step, FPG generates a predictor vector xk and a corrector vector Xk.
The predictor xk is computed as an extrapolation of two successive correctors. One
obtains the corrector Xk as a result of one PG step with xk as a starting point.

FPG method

(1) Input: L > 0 the upper bound for the Lipschitz constant of the gradient
∇f .

0 < x0 = x1 < c

t1 = 1

(2) Step k
a) using the predictor xk we find the corrector

Xk = argmin{ψ(xk, X) = f(xk) + (X − xk,∇f(xk)) +
L

2
‖X − xk‖2|X ∈ Ω};
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b) update step length tk+1 =
1+

√
1+4t2k
2 ;

c) find new predictor

xk+1 = Xk +
tk − 1

tk+1
(Xk −Xk−1).

The corrector

Xk = PΩ(xk −
1

L
∇f(xk))

is the new approximation for x∗.

In other words, the corrector Xk one obtains as a result of one step of the PG
method for NNLS (2.1) with a starting point xk and step-length L−1. Although
FPG does not require much extra work as compared with PG (3.1), the FPG has
much better convergence rate.

Moreover, it is impossible to improve the FPG convergence rate in the class of
gradient methods (see [13], [14]). In other words, the FPG is optimal in the class
of gradient methods.

Let Δk = f(xk)− f∗; yk = tkXk + (tk − 1)Xk−1 − x∗.

The following inequality (see Lemma 2.3 in [1] and (17) in [16]) is critical for
the proof of FPG convergence rate.

Lemma 2. The following inequality holds:

(4.1) t2kΔk − t2k+1Δk+1 ≥ L

2
[‖yy+1‖ − ‖yk‖2].

For completeness we will sketch the proof in Appendix 1.

Theorem 2. For the sequence {Xk}k=1 generated by FPG (a)-(c), the follow-
ing bound holds:

(4.2) Δk ≤ 2L‖x0 − x∗‖2
(k + 2)2

.

Proof. First of all, from (b) follows tk ≥ 1
2 (k + 1), ∀k ≥ 1. It is obvious for

k = 1. Assuming tk ≥ 1
2 (k + 1) from (b), we obtain

tk+1 =
1

2
(1 +

√
1 + 4t2k) ≥

1

2
(1 +

√
1 + (k + 1)2) =

1

2
(k + 2).

From (4.1), we have

t2k+1Δk+1 +
L

2
‖yk+1‖2 ≤ t2kΔk +

L

2
‖yk‖2

≤ t2k−1Δk−1 +
L

2
‖yk−1‖2

.

.

≤ t21Δ1 +
L

2
‖y1‖2.

Keeping in mind t1 = 1 and y1 = X1 − x∗, we obtain

(4.3) t2k+1Δk+1 ≤ t21Δ1 +
L

2
‖y1‖2 ≤ Δ1 +

L

2
‖X1 − x∗‖2.
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Using again (3.3) with X = x∗, xL
Ω = X1 and x = x0, we obtain

f(x∗)−f(X1) ≥
L

2
‖X1−x0‖2+L(x0−x∗, X1−x0) =

L

2
[‖X1−x∗‖2−‖x0−x∗‖2].

Therefore

Δ1 = f(X1)− f(x∗) ≤ L

2
‖x0 − x∗‖2 − L

2
‖X1 − x∗‖2.

Adding the last inequality with (4.3), we obtain

t2k+1Δk+1 ≤ L

2
‖x0 − x∗‖2.

Keeping in mind tk+1 ≥ k+2 we obtain (4.2). It follows from (4.2) that for a given

ε > 0, it takes k = O(
√
L‖x0−x∗‖ε− 1

2 ) steps to get Δk ≤ ε. Again each FPG step
requires at most O(n2) operations; therefore for the FPG complexity, we obtain

(4.4) Comp(FPG) = O(
√
L‖x0 − x∗‖n2ε−

1
2 ).

It follows from (4.4) that for large n in a number of instances the FPG provides
an alternative for IPMs, for which the complexity bound is O(n3 ln ε−1). Moreover,
for large n solving at each step, a system of linear equations can drastically reduce
IPMs efficiency. On the other hand, the FPG complexity can be improved by using
fast and parallel computations for matrix by vector multiplication [9] .

In the following section, we show that if rankA = n, then the bound (4.4) can
be substantially improved.

5. Projected Gradient for full rank NNLS

If A is a full rank matrix, i.e., rankA = n, then f : Rn → R is strongly convex
and the gradient ∇f : Rn → R

n is a strongly monotone operator, i.e., there exists
l > 0:

(5.1) (∇f(x)−∇f(y), x− y) ≥ l‖x− y‖2, ∀x, y ∈ R
n;

and for Q : Rn → R
n, we have

(Qx, x) ≥ l‖x‖2, ∀x ∈ R
n.

We recall that the gradient ∇f satisfies Lipschitz condition (2.2).
The following inequality (see, for example, [15]) will be used later to prove the

Q-linear convergence rate of the PG method for full rank NNLS.

Lemma 3. For a strongly convex function with modulus convexity l > 0 and
Lipschitz continuous gradient ∇f with a constant L > l, the following inequality
holds:

(5.2) (∇f(x)−∇f(y), x− y) ≥ lL

l + L
‖x− y‖2 + 1

l + L
‖∇f(x)−∇f(y)‖2.

We will sketch the proof in Appendix 2.
Now we need two basic properties of the projection on a convex set Ω.
First, iff

x∗ = argmin{f(x)|x ∈ Ω},
then for any t > 0 we have

(5.3) PΩ(x
∗ − t∇f(x∗)) = x∗.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

174 ROMAN A. POLYAK

Second, the operator PΩ(x) is a continuous and nonexpansive, i.e., for any pair x
and y from R

n, we have

(5.4) ‖PΩx− PΩy‖ ≤ ‖x− y‖.
Obviously, f satisfies a Lipschitz condition on Ω, i.e., there is L0 > 0 such that

the following inequality

(5.5) |f(x)− f(y)| ≤ L0‖x− y‖
holds for any x and y from Ω. The projected gradient method is defined by the
formula

(5.6) xs+1 = PΩ(xs − t∇f(xs)).

The convergence rate and PG complexity establishes the following Theorem.

Theorem 3. If rankA = n, then

(1) for 0 < t < 2/(l + L) the following bound holds:

(5.7) ‖xs+1 − x∗‖2 ≤
(
1− t

2lL

l + L

)
‖xs − x∗‖2;

(2) for t = 2/(l + L) we have

(5.8) ‖xs+1 − x∗‖ ≤
(
1− κ

1 + κ

)
‖xs − x∗‖,

where 0 < κ = l/L < 1 is the condition number of the matrix Q = ATA;
(3) for t = 2/(l + L) the following bound holds:

(5.9) f(xk)− f(x∗) ≤ L0

(
1− κ

1 + κ

)k

‖x0 − x∗‖;

(4) let ε > 0 be the given accuracy, then the complexity of the PG method
( 5.6) is given by the following formula

(5.10) Comp(PG) = O(n2
κ

−1 ln ε−1).

Proof. First of all, we recall that

x∗ = PΩ(x
∗ − t∇f(x∗)), ∀t ≥ 0.

Therefore, in view of (5.4) for the PG method (5.6), we obtain

‖xs+1 − x∗‖2 = ‖PΩ(xs − t∇f(xs))− PΩ(x
∗ − t∇f(x∗))‖2(5.11)

≤ ‖xs − t∇f(xs)− x∗ + t∇f(x∗)‖2

= ‖xs − x∗‖2 − 2t(∇f(xs)−∇f(x∗), xs − x∗) + t2‖∇f(xs)−∇f(x∗)‖2.
Keeping in mind the Lipschitz condition (2.2) and strong monotonicity (5.1)

from (5.2) with x = xs and y = x∗, we have

(5.12) (∇f(xs)−∇f(x∗), xs−x∗) ≥ lL

l + L
‖xs−x∗‖2+ 1

l + L
‖∇f(xs)−∇f(x∗)‖2.

Therefore from (5.11) and (5.12) follows

‖xs+1−x∗‖ ≤ ‖xs−x∗‖2−2t
lL

l + L
‖xs−x∗‖2+t

(
t− 2

l + L

)
‖∇f(xs)−∇f(x∗)‖2;

hence for 0 < t < 2/(l + L) the bound (5.7) holds.
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For t = 2/(l + L) from (5.7) follows

‖xs+1 − x∗‖2 ≤
(
1− 4lL

(l + L)2

)
‖xs − x∗‖2,

or

‖xs+1 − x∗‖2 ≤ (
L− l

L+ l
)2‖xs − x∗‖2.

Therefore for κ = l/L the bound (5.8) holds.
Keeping in mind (5.5) from (5.8) follows (5.9). Therefore xk is an ε > 0

approximation of f∗ if

Δk = f(xk)− f∗(x) ≤ L0

(
1− κ

1 + κ

)k

‖x0 − x∗‖ ≤ ε.

Then

k ln
1− κ

1 + κ
≤ ln

ε

L0‖x0 − x∗‖ ,
or

k ≥
ln L0‖x0−x∗‖

ε

ln 1+κ

1−κ

=
ln L0‖x0−x∗‖

ε

ln(1 + 2κ
1−κ

)
.

Keeping in mind ln(1+x) ≤ x for the number of steps k > 0 which guarantee ε > 0
approximation for f(x∗), we obtain

k ≥ 1− κ

2κ
(ln[L0‖x0 − x∗‖] + ln ε−1).

Therefore for the PG complexity, we obtain the bound (5.10). In contrast to (4.4),
the bound (5.10) is not the worst case bound. It is rather a bound which is defined
by the condition number of Q. It shows that for the full rank NNLS in a number
of instances the FPG complexity can be substantially improved.

6. Projected Gradient Method for SVM

Constructing soft margin separating hyperplanes leads to NNLS type problem
(2.1) with one extra equality constraint. In other words, one has to solve the
following NNLS (see [18, p. 137])

(6.1) f(x∗) = min{f(x) = 1

2
‖Ax− b‖2|0 ≤ x ≤ c, (b, x) = 0}

where b = (b1, ..., bn) and bi ∈ {−1, 1} i = 1, .., n.
Let us remove the box constraints from the set of constraints in (6.1) and

consider the Lagrangian for the only equality constraint (b, x) = 0 left. We have

L(x, λ) = f(x)− λ(b, x)

The problem (6.1) can be solved by the FPG method applied to

(6.2) L(x∗, λ∗) = min{L(x, λ∗)|x ∈ Ω}
if the optimal multiplier λ∗, which corresponds to equality (b, x) = 0, is given.

Obviously it is not the case; however, the fact that (6.1) has only one extra
constraint on top of box constraints is very helpful.

To estimate λ∗, we will use the dual function

(6.3) d(λ) = min{L(x, λ)|x ∈ Ω}.
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The dual function d(λ) is concave and continuous in R. By computing the dual
function value in two nearby points, one can find accent direction for d(λ) at any
given point λ ∈ R

n. So the interval, which contains λ∗, can be shrunk by half in
two dual function evaluations. Therefore, for a given ε > 0, localization of λ∗ in
an ε > 0 interval will take O(ln ε−1) function evaluation. Therefore, one obtains
the overall complexity of FPG for QP (6.1) as a product of the bound (4.4) and
O(ln ε−1). Hence, for large n, the FPG can be considered as an alternative to IPMs
for SVM calculations. The key advantage of FPG, however, is the necessity to
perform at each step matrix by vector multiplication instead of solving the same
size linear system.

7. Concluding Remarks

The PG approach is fundamentally different from both active set methods and
IPMs. The active set methods deal with active constraint sets locally at the current
approximation. The combinatorial flavor of these methods is evident; it makes very
difficult the establishment of a meaningful upper bound for the number of steps.
At the same time, the active set methods require solving a LS sub-problem or a
linear system of equations at each step.

The IPMs eliminate the combinatorial nature of the NNLS by treating the
non-negative constraints with the log-banier function. The IPMs guarantee the
well-known complexity bound O(n3 ln ε−1), but they also require solving a linear
system of equation at each step, which for large scale NNLS can be very difficult.

The PG method eliminates both the combinational nature of the box con-
straints and the necessity of solving a linear system of equation at each step.

A few important issues are left for further research.
First of all, it would be important to incorporate the only equality constraint

(x, b) = 0 in the FPG method for solving (6.1) – in other words, to avoid the
necessity of solving (6.3) several times to locate λ∗.

Second, the main operation in all PG methods has to be done using parallel
computations.

Third, extensive numerical experiments with NNLS in general and with SVM
problems in particular are necessary to understand the real efficiency of the PG
methods for NNLS.

8. Appendix 1

From (3.3) with X = x∗, x = xk+1 and xL
Ω = Xk+1 follows

(8.1) − 2

L
Δk+1 ≥ ‖Xk+1 − xk+1‖2 + 2(xk+1 − x∗, Xk+1 − xk+1).

On the other hand, for X = Xk, x = xk+1 and xL
Ω = Xk+1 from (3.3), we have

(8.2)
2

L
(Δk −Δk+1) ≥ ‖Xk+1 − xk+1‖2 + 2(xk+1 −Xk, Xk+1 − xk+1).

After multiplying both sides of (8.2) by (tk+1 − 1) > 0 and adding to (8.1), we
obtain

(8.3)
2

L
[(tk+1 − 1)Δk − tk+1Δk+1] ≥

tk+1‖Xk+1 − xk+1‖2 + 2(Xk+1 − xk+1, tk+1xk+1 − (tk+1 − 1)Xk − x∗).
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From the step length update (b), we have

(8.4) t2k = tk+1(tk+1 − 1).

Therefore after multiplying both sides of (8.3) by tk+1 and keeping in mind (8.4)
from (8.3) follows

2

L
[t2kΔk − t2k+1Δk+1] ≥(8.5)

‖tk+1(Xk+1 − xk)‖2 + 2tk+1(Xk+1 − xk+1, tk+1xk+1 − (tk+1 − 1)Xk − x∗).

Let tk+1xk+1 = a, tk+1Xk+1 = b and (tk+1−1)Xk+x∗ = c, then using the standard
three vector identity

‖b− a‖2 + 2(b− a, a− c) = ‖b− c‖2 − ‖a− c‖2

from (8.4), we obtain

2

L
[t2kΔk − t2k+1Δk+1] ≥(8.6)

‖tk+1Xk+1 − (tk+1 − 1)Xk − x∗‖2 − ‖tk+1xk+1 − (tk+1 − 1)Xk − x∗‖2.
From (c) follows

(8.7) tk+1xk+1 = tk+1Xk + (tk − 1)(Xk −Xk+1).

Keeping in mind

yk = tkXk + (tk − 1)Xk−1 − x∗

from (8.6) and (8.7), we obtain (4.1).

9. Appendix 2

To prove the inequality (5.2), let us first consider the so-called co-coercitivity
property

(9.1) (∇f(x)−∇f(y), x− y) ≥ 1

L
‖∇f(x)−∇f(y)‖2,

which is true for any convex function f with Lipschitz continuous gradient ∇f .
First of all, we recall that from (2.2) and convexity f follows

(9.2) o ≤ f(y)− f(x)− (∇f(x), y − x) ≤ L

2
‖x− y‖2.

For a given x ∈ R
n, we consider ϕ : Rn → R defined by the formula

ϕ(y) = f(y)− (∇f(x), y).

The ϕ is convex and due to (2.2) the gradient

∇ϕ(y) = ∇f(y)−∇f(x)

satisfies the Lipschitz condition. Also ∇ϕ(x) = 0, therefore

(9.3) ϕ(x) ≤ ϕ(y − L−1∇ϕ(y)).

By applying (9.2) to ϕ(y − L−1∇ϕ(y)) and keeping in mind (9.3), we obtain

ϕ(x) ≤ ϕ(y)− 1

2L
‖∇ϕ(y)‖2

or

(9.4) f(y) ≥ f(x) + (∇f(x), y − x) +
1

2L
‖∇f(y)−∇f(x)‖2.
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By interchanging x and y in (9.4), we obtain

(9.5) f(x) ≥ f(y) + (∇f(y), x− y) +
1

2L
‖∇f(y)−∇f(x)‖2.

We obtain the co-coercitivity property (9.1) by adding (9.4) and (9.5). From strong
convexity f follows convexity ψ(x) = f(x)− l

2‖x‖2. Also

‖∇ψ(x)−∇ψ(y)‖ ≤ (L− l)‖x− y‖.
Application of the co-coercitivity property (9.1) to ψ(x) leads to the following
inequality:

(∇f(x)−∇f(y)− l(x− y), x− y) ≥ 1

L− l
‖∇f(x)−∇f(y)− l(x− y)‖2,

i.e.,

(∇f(x)−∇f(y), x− y) ≥ l‖x− y‖2

+
1

L− l
[‖∇f(x)−∇f(y)‖2 − 2l(∇f(x)−∇f(y), x− y) + l2‖x− y‖2]

=
Ll

L− l
‖x− y‖2 − 2l

L− l
(∇f(x)−∇f(y), x− y) +

1

L− l
‖∇f(x)−∇f(y)‖2

or

(9.6)
L+ l

L− l
(∇f(x)−∇f(y), x− y) ≥ Ll

L− l
‖x− y‖2 + 1

L− l
‖∇f(x)−∇f(y)‖.

Dividing both sides of (9.6) by L+l
L−l > 0, we obtain (5.2).
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