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Abstract The application of the fast gradient method to the dual QP leads to the

Dual Fast Projected Gradient (DFPG) method. The DFPG converges with O
(

k−2
)

rate, where k > 0 is the number of steps. At each step, it requires O(nm) operations.

Therefore for a given ε > 0 an ε-approximation to the optimal dual function value

one achieves in O
(

nmε−
1
2

)

operations.

We present numerical results which strongly corroborate the theory. In particular,

we demonstrate high efficiency of the DFPG for large scale QP.

Keywords: Quadratic Programming . Dual Fast Gradient method . Dual Problem

. Convergence Rate . Complexity .

1 Introduction

The purpose of the paper is to introduce and analyze two Projected Gradient (PG)

methods for solving Quadratic Programming (QP) problems.

The PG method was introduced in the 60’s (see [4,6,3]). Its efficiency depends

on the projection operation. In many instances the PG has only theoretical value be-

cause the projection on the feasible set requires solving at each step a constrained

optimization problem as difficult as the initial one.

Both the Dual Projected Gradient (DPG) and the Dual Fast Projected Gradient

(DFPG) are free from this fundamental drawback.

They are designed for solving the dual QP with the feasible set Rm
+ , the projection

operation on which is very simple.

The origin of the DPG one can trace back to B. Pschenichny’s linearization

method [13] in the early 70’s. On the other hand the DPG is a Quadratic Prox type

method for the dual QP, which is important for the convergence analysis.
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The DPG requires O(mn) operations per step and converges with O(k−1) rate

where k is the number of steps.

Therefore the ε-approximation to the optimal dual function value one can find in

O(mnε−1) operations.

The origin of the DFPG one can trace back to Yu Nesterov’s gradient mapping

approach (see [8,9]) in the early 80’s. The DFPG is closely related to FISTA algo-

rithm developed and analyzed by A. Beck and M. Teboulle [1,2] (see also [5] and

references there in).

The DFPG requires the same O(mn) operations per step while the convergence

rate is O(k−2), therefore the ε-approximation to the optimal function value one can

find in O(mnε−
1
2 ) operations.

The DFPG not only improves both convergence rate and complexity of DPG, but

in a number of instances for large scale QP can be considered as an alternative for

interior point methods. Moreover, for very large QP using interior point methods can

be very difficult or even impossible, because they require solving large scale linear

systems at each step (see [11] and references there in). The DFPG requires at each

step a matrix by vector multiplication, which can be easily done in parallel. In this

respect, DFPG can be suitable for very large scale QP.

Using the dual QP for developing DPG and DFPG is critical, because application

of the PG methods to the primal QP leads to solving at each step a QP, which is

practically as difficult as the original problem.

Both DPG and DFPG can be used for solving dual problems originated from

general nonlinear optimization problem as long as the gradient of the dual function

exists, satisfies Lipschitz condition, and can be relatively easily computed.

Both methods have been numerically tested on a number of randomly generated

QP’s. The results obtained strongly corroborate the theory, and demonstrate the high

efficiency of the DFPG method for large scale QP.

2 Problem formulation and basic assumptions

We consider a symmetric negative definite matrix Q : Rn −→ R
nand a matrix A :

R
n −→ R

m. The QP consists of finding :

(P) p(x∗) = max

{

p(x) =
1

2
〈Qx,x〉+ 〈c,x〉 | x ∈ Ω

}

where c ∈ R
n and b ∈ R

m and the primal feasible set Ω = {x : Ax− b ≤ 0} has a

nonempty interior, i.e. int Ω 6=∅. We also assume that

x̂ = argmax{p(x) | x ∈ R
n}=−Q−1c /∈ Ω

Therefore, x∗ ∈ ∂Ω and there is a vector of Lagrange multipliers λ ∗ ∈R
m
+, such that:

∇xL (x∗,λ ∗) = Qx∗+ c−ATλ ∗ = 0

where L (x,λ ) = 1
2
〈Qx,x〉+ 〈c,x〉+ 〈λ ,b−Ax〉 is the Lagrangian for the primal QP

(P).
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Also, for λ ∗ ∈R
m
+and the residual vector r (x∗) = b−Ax∗ ≥ 0 the complementar-

ity condition, 〈λ ∗,r(λ ∗)〉= 0, holds true.

Let’s consider the dual problem

(D) d(λ ∗) = min
{

d(λ ) | λ ∈ R
m
+

}

where

d(λ ) = p(x(λ ))+ 〈λ ,b−Ax(λ )〉= max{L (x,λ ) | x ∈ R
n}

and

x(λ ) = Q−1(AT λ − c) (1)

Due to the uniqueness of the primal maximizer x(λ ), the dual function has a smooth

gradient. Keeping in mind ∇xL (x(λ ),λ ) = 0, we obtain

∇d(λ ) = ∇xL (x(λ ),λ )∇λ (x(λ ))+∇λ L (x(λ ),λ )

= ∇λ L (x(λ ),λ ) = r(x(λ )) = b−Ax(λ ) (2)

From (1) we have ∇λ x(λ ) =Q−1AT where ∇λ x(λ ) is the Jacobian of vector function

x(λ )T = (x1(λ ), ...,xn(λ )). Let’s consider the Hessian ∇2
λ λ d(λ ) of the dual function.

We obtain

∇2
λ λ d(λ ) = ∇λ (∇d(λ )) = ∇λ (r(x(λ ))) �∇λ (x(λ )) =−AQ−1AT = B

In view of negative definiteness of Q , the matrix B is nonnegative definite.

It is well known (see for example Lemma 1.2.2 in [9]) that for a twice differen-

tiable function d(λ ) the gradient ∇d(λ ) satisfies Lipschitz condition with constant L

if and only if
∥

∥∇2d(λ )
∥

∥≤ L

Let L ≥
√

maxeigval(B), then for any λ1,λ2 ∈ R
m
+ we have

‖∇d(λ1)−∇d(λ2)‖ ≤ L‖λ1 −λ2‖ (3)

3 Dual Projected Gradient Method

In this section we first consider the Dual Projected Gradient (DPG) method for solv-

ing the dual problem (D), then we establish rate of convergence as well as complexity

bound for the DPG method.

Due to the Slater condition the dual optimal set, Λ∗ = Argmin
{

d(λ ) | λ ∈ R
m
+

}

,
is bounded.

The optimality condition for λ ∗ ∈ Λ∗is given by the following inequality.

〈∇d(λ ∗),Λ −λ ∗〉 ≥ 0 ∀Λ ∈ R
m
+
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To formulate the DPG method, let’s consider the quadratic approximation of d(λ ).
Keeping in mind the Lipschitz condition (3) for the gradient ∇d(λ ) the quadratic ap-

proximation ψL : Rm
+ −→ R at the point λ ∈R

m
+ we define by the following formula.

ψL(Λ ,λ ) = d(λ )+ 〈Λ −λ ,∇d(λ )〉+ L

2
‖Λ −λ‖2

For a given λ ∈R
m
+, there exists a unique minimizer

λ L
+ ≡ λ L

+(λ ) = argmin
{

ψL(Λ ,λ ) | Λ ∈ R
m
+

}

(4)

Let’s fix λ ∈ R
m
+, then the optimality criteria for λ L

+ ∈ R
m
+ is given by the following

inequality.

∇Λ ψL(λ
L
+,λ ) = ∇d(λ )+L(λ L

+−λ )≥ 0 (5)

and the complementarity condition

〈

λ L
+,∇Λ ψL(λ

L
+,λ )

〉

= 0 (6)

The optimality conditions (5)-(6) yield the following closed form solution for the

problem (4)

λ L
+ =

[

λ −L−1∇d(λ )
]

+
(7)

where [a]+ = ([ai]+ , i = 1, ...,m) and

[ai]+ =

{

ai ai ≥ 0

0 ai < 0

In other words, λ L
+is the projection of (λ −L−1∇d(λ ))on R

m
+.

The solution (7) for the problem (4) leads to the following Dual Projected Gradi-

ent (DPG) method

λs+1 =
[

λs −L−1∇d(λs)
]

+
(8)

which is in fact a PG method for the dual QP.

On the other hand,

λ L
+ = argmin

{

〈Λ −λ ,∇d(λ )〉+ L

2
‖Λ −λ‖2 | Λ ∈R

m
+

}

(9)

therefore (8) has the flavor of a quadratic prox method.

Note that application of the PG [4,6] (see also [3]) method to the primal leads at

each step to finding

PΩ (xs − t∇p(xs)) = argmin{‖y− (xs+ t∇p(xs))‖ | y ∈ Ω}

which is a problem similar to the original QP.
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Let’s establish the convergence properties of the DPG method. Due to the Lips-

chitz condition (3) for a convex function d : Rm
+ −→ R the following bound holds.

d(Λ)− d(λ )−〈Λ −λ ,∇d(λ )〉 ≤ L

2
‖Λ −λ‖2

Therefore for any pair (Λ ,λ ) ∈ R
m
+×R

m
+ we have

d(Λ)≤ ψL(Λ ,λ ) = d(λ )+ 〈Λ −λ ,∇d(λ )〉+ L

2
‖Λ −λ‖2

The following lemma, which is similar to Lemma 2.3 in [2], is taking place.

Lemma 1 For any given λ ∈ R
m
+and L > 0 such that

d(λ L
+)≤ ψL(λ

L
+,λ ) (10)

the following inequality holds for any Λ ∈ R
m
+.

d(Λ)− d(λ L
+)≥

L

2

∥

∥λ L
+−λ

∥

∥

2
+L

〈

λ −Λ ,λ L
+−λ

〉

(11)

Proof From (10) and the convexity of d(Λ) we have

d(Λ)− d(λ L
+)≥ d(Λ)−ψ(λ L

+,λ )

= d(Λ)− d(λ )−
〈

λ L
+−λ ,∇d(λ )

〉

− L

2

∥

∥λ L
+−λ

∥

∥

2

≥ d(λ )+ 〈∇d(λ ),Λ −λ 〉− d(λ )−
〈

λ L
+−λ ,∇d(λ )

〉

− L

2

∥

∥λ L
+−λ

∥

∥

2

=
〈

∇d(λ ),Λ −λ L
+

〉

− L

2

∥

∥λ L
+−λ

∥

∥

2
+L

∥

∥λ L
+−λ

∥

∥

2 −L
∥

∥λ L
+−λ

∥

∥

2

=
L

2

∥

∥λ L
+−λ

∥

∥

2
+
〈

∇d(λ ),Λ −λ L
+

〉

−L
∥

∥λ L
+−λ

∥

∥

2

Let’s consider the optimality criteria for

λ L
+ = λ L

+(λ ) = argmin
{

ψL(Λ ,λ ) | Λ ∈ R
m
+

}

we obtain
〈

∇d(λ )+L(λ L
+−λ ),Λ −λ L

+

〉

≥ 0 ∀Λ ∈ R
m
+

i.e. we have

〈

∇d(λ ),Λ −λ L
+

〉

≥−L
〈

λ L
+−λ ,Λ −λ L

+

〉

∀Λ ∈ R
m
+

Therefore

d(Λ)− d(λ L
+)≥

L

2

∥

∥λ L
+−λ

∥

∥

2 −L
〈

λ L
+−λ ,Λ −λ L

+

〉

−L
〈

λ L
+−λ ,λ L

+−λ
〉

=
L

2

∥

∥λ L
+−λ

∥

∥

2
+L

〈

λ L
+−λ ,λ −Λ

〉

2
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The DPG method (8) one can view as a linearization method [13] where the quadratic

regularization term in (9) is used to normalize the gradient direction.

On the other hand DPG has the features of a quadratic prox method, which plays

an important role.

The following theorem establishes the convergence properties of the DPG method

(8).

Theorem 1 For the dual sequence {λs} generated by the DPG method (8) the fol-

lowing bound holds.

∆k = d(λk)− d(λ ∗)≤ L

2k
‖λ0 −λ ∗‖2

Proof Let’s use (10) with Λ = λ ∗,λ = λsand λ L
+ = λs+1. We obtain

2

L
(d(λ ∗)− d(λs+1))≥ ‖λs+1 −λs‖2 + 2〈λs −λ ∗,λs+1 −λs〉

= 〈λs+1,λs+1〉− 2〈λs+1,λs〉+ 〈λs,λs〉+ 2〈λs,λs+1〉
− 2〈λ ∗,λs+1〉− 2〈λs,λs〉+ 2〈λ ∗,λs〉+ 〈λ ∗,λ ∗〉− 〈λ ∗,λ ∗〉

= ‖λs+1 −λ ∗‖2 −‖λs −λ ∗‖2

Summing up the last inequality from s = 0 to s = k− 1 we obtain

2

L
(kd(λ ∗)−

k−1

∑
s=0

d(λs+1))≥ ‖λ ∗−λk‖2 −‖λ ∗−λ0‖2
(12)

Using (10) with Λ = λ = λs, λ L
+ = λs+1we obtain

2

L
(d(λs)− d(λs+1))≥ ‖λs+1 −λs‖2

or

sd(λs)− sd(λs+1)≥
L

2
s‖λs+1 −λs‖2

Therefore

sd(λs)− (s+ 1)d(λs+1)+ d(λs+1)≥
L

2
s‖λs+1 −λs‖2

summing up the last inequality from s = 0 to s = k− 1, we obtain

−kd(λk)+
k−1

∑
s=0

d(λs+1)≥
L

2

k−1

∑
s=0

s‖λs+1 −λs‖2

From (12) we have

kd(λ ∗)−
k−1

∑
s=0

d(λs+1)≥
L

2

[

‖λ ∗−λk‖2 −‖λ ∗−λ0‖2
]

By adding last two inequalities we obtain

k(d(λ ∗)− d(λk))≥
L

2

[

k−1

∑
s=0

s‖λs+1 −λs‖2 + ‖λ ∗−λk‖2 −‖λ ∗−λ0‖2

]
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i.e.

∆k = d(λk)− d(λ ∗)≤ L

2k
‖λ ∗−λ0‖2

(13)

It follows from from (13) that for a given accuracy ε > 0 it takes k = L‖λ ∗−λ0‖2

2ε steps

of the DPG method to get ∆k ≤ ε .

It follows from (9) that each step requires computing ∇d(λ ) = r(x(λ )) = b−
Ax(λ ) = b−AQ−1(AT λ − c) = −AQ−1Aλ +(b+AQ−1c). In other words, at each

step one updates the first term only which requires O(mn) operations, therefore the

complexity of the DPG method is given by the following formula.

Comp DPG = O(ε−1mnL‖λ ∗−λ0‖2)

In the following section we consider the Dual Fast Projected Gradient (DFPG) method,

which improves substantially both the convergence rate and complexity of the DPG.

4 Dual Fast Projected Gradient Method

The DFPG is based on Yu. Nesterov gradient mapping [8,9] and closely related to

the FISTA algorithm by A. Beck and M. Teboulle [2] (see also [1,5] and references

there in).

The DFPG generates an auxiliary sequence {λk}∞
k=0 and the main sequence {Λk}∞

k=0.

Vector λk one can view as a predictor while vector Λk is the corrector, i.e. the approx-

imation at the step k.

DFPG Method

1. Input:

– L - the upper bound for the Lipschitz constant of the gradient ∇d(λ )
– λ1 = λ0 ∈ R

m
++

– t1 = 1

2. Step k

(a) Find Λk = λ L
+(λk) = argmin

{

ψ(Λ ,λk) | Λ ∈ R
m
+

}

(b) tk+1 =
1+

√

1+4t2
k

2

(c) λk+1 = Λk +( tk−1
tk+1

)(Λk −Λk−1)

Each step of the DFPG method consists of two phases. The prediction phase (c)

generates the predictor λk+1 by extrapolating two previous approximations Λk−1 and

Λk. The correction phase (a) produces the new approximation

Λk+1 = argmin

{

〈Λ −λk+1,∇d(λk+1)〉+
L

2
‖Λ −λk+1‖2 | Λ ∈ R

m
+

}

(14)

From the optimality criteria for Λk+1 follows the closed form solution for the problem

(14)

Λk+1 = [λk+1 −
1

L
∇d(λk+1)]+ (15)
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It means that the correction phase of DFPG is just a projected gradient step for the

dual problem with step-length L−1.

First off all, it follows from (b) that tk ≥ 1
2
(k+ 1), ∀k ≥ 1. In fact, it is true for

k = 1. Assuming that tk ≥ 1
2
(k+ 1) from (b) we have

tk+1 =
1

2
(1+

√

1+ 4t2
k )≥

1

2
(1+

√

1+(k+ 1)2) =
1

2
(k+ 2)

Let ∆k = d(Λk)− d(λ ∗) , vk = tΛk +(tk − 1)Λk−1 −λ ∗.

Theorem 2 For the sequence {Λk}∞
k=1 generated by DFPG method (a)-(c), the fol-

lowing bound holds.

∆k+1 ≤
2L‖λ0 −λ ∗‖2

(k+ 2)2
(16)

Proof We first establish the following inequality.

2

L
(t2

k ∆k − t2
k+1∆k+1)≥ ‖vk+1‖2 −‖vk‖2

(17)

From the basic inequality (11) for Λ = λ ∗, λ = λk+1 and λ L
+ = Λk+1 follows

d(λ ∗)− d(Λk+1)≥
L

2
‖Λk+1 −λk+1‖2 +L〈λk+1 −λ ∗,Λk+1 −λk+1〉 (18)

By taking Λ = Λk, λ = λk+1 and λ L
+ = Λk+1 from (11) we obtain

d(Λk)− d(Λk+1)≥
L

2
‖Λk+1 −λk+1‖2 +L〈λk+1 −Λk,Λk+1 −λk+1〉 (19)

or

2

L
(△k −△k+1) =

2

L
[d(Λk)− d(λ ∗)− (d(Λk+1)− d(λ∗))]

≥ ‖Λk+1 −λk+1‖2 + 2〈λk+1 −Λk,Λk+1 −λk+1〉 (20)

From (18) we have

− 2

L
∆k+1 ≥ ‖Λk+1 −λk+1‖2 + 2〈λk+1 −λ ∗,Λk+1 −λk+1〉 (21)

After multiplying (20) by (tk+1 − 1)> 0 we obtain

2

L
(tk+1 − 1)∆k −

2

L
(tk+1 − 1)∆k+1 ≥

(tk+1 − 1)
[

‖Λk+1 −λk+1‖2 + 2〈λk+1 −Λk,Λk+1 −λk+1〉
]
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By adding the last inequality to (21) we have

2

L
[(tk+1 − 1)∆k − tk+1∆k+1]≥ tk+1 ‖Λk+1 −λk+1‖2

+ 2〈Λk+1 −λk+1,(tk+1 − 1)(λk+1 −Λk)+λk+1 −λ ∗〉
= tk+1 ‖Λk+1 −λk+1‖2

+ 2〈Λk+1 −λk+1, tk+1(λk+1 −Λk)+Λk −λ ∗〉
= tk+1 ‖Λk+1 −λk+1‖2

+ 2〈Λk+1 −λk+1, tk+1λk+1 − (tk+1 − 1)Λk −λ ∗〉
(22)

Note that from (b) of the DFPG method follows 2tk+1 − 1 =
√

1+ 4t2
k or

t2
k = t2

k+1 − tk+1 = tk+1(tk+1 − 1) (23)

Multiplying (22) by tk+1 and keeping in mind (23) we obtain

2

L

[

(tk+1 − 1)tk+1∆k − t2
k+1∆k+1

]

=
2

L

[

t2
k ∆k − t2

k+1∆k+1

]

≥ ‖tk+1(Λk+1 −λk+1)‖2
(24)

+ 2tk+1 〈Λk+1 −λk+1, tk+1λk+1 − (tk+1 − 1)Λk −λ ∗〉

Using the three vectors identity

‖b− a‖2 + 2〈b− a,a− c〉= ‖b− c‖2 −‖a− c‖2
(25)

with a = tk+1λk+1,b = tk+1Λk+1 and c = (tk+1 − 1)Λk +λ ∗ from (24) we obtain

2

L
(t2

k ∆k−t2
k+1∆k+1)≥

‖tk+1Λk+1 − (tk+1 − 1)Λk −λ ∗‖2 −‖tk+1λk+1 − (tk+1 − 1)Λk −λ ∗‖2

Using (c) of the DFPG method we obtain

tk+1λk+1 = tk+1Λk +(tk − 1)(Λk −Λk−1) (26)

Keeping in mind vk = tkΛk +(tk − 1)Λk−1 −λ ∗ from (25) and (26) follows

2

L
(t2

k ∆k − t2
k+1∆k+1)≥ ‖vk+1‖2 −‖tk+1Λk +(tk − 1)(Λk −Λk−1)− (tk+1 − 1)Λk −λ ∗‖2

= ‖vk+1‖2 −‖tkΛk − (tk − 1)Λk−1 −λ ∗‖
= ‖vk+1‖2 −‖vk‖2

i.e. (17) holds. It follows from (17) that

t2
k ∆k − t2

k+1∆k+1 ≥
L

2

[

‖vk+1‖2 −‖vk‖2
]
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Therefore,

t2
k+1∆k+1 +

L

2
‖vk+1‖2 ≤ t2

k ∆k +
L

2
‖vk‖2

≤ t2
k−1∆k−1 +

L

2
‖vk−1‖2

...

≤ t2
1 ∆1 +

L

2
‖v1‖2

(27)

Hence,

t2
k+1∆k+1 ≤ t2

1 ∆1 +
L

2
‖v1‖2 − L

2
‖vk+1‖2

≤ (d(Λ1)− d(λ ∗))+
L

2
‖Λ1 −λ ∗‖2

(28)

For Λ = λ ∗, λ L
+ = Λ1 and λ = λ0 it follows from (11) that

d(λ ∗)− d(Λ1)≥
L

2
‖Λ1 −λ0‖2 +L〈λ0 −λ ∗,Λ1 −λ0〉

=
L

2

[

‖Λ1 −λ ∗‖2 −‖λ0 −λ ∗‖2
]

Therefore,

d(Λ1)− d(λ ∗)≤ L

2

[

‖λ0 −λ ∗‖2 −‖Λ1 −λ ∗‖2
]

(29)

From (28) and (29) we have

t2
k+1∆k+1 ≤

L

2
‖λ0 −λ ∗‖2

Keeping in mind tk+1 ≥ 1
2
(k+ 2) we obtain (16). 2

We completed the proof of Theorem 2.

So the DFPG practically requires numerical effort similar to DPG method per

step, but has a much better convergence rate.

It follows from (16) that for a given accuracy ε > 0 it takes

k =

√
2L‖λ0 −λ ∗‖√

ε

steps of DFPG to get ∆k ≤ ε , therefore the overall complexity of the DFPG is

Comp DFPG = O(mn

√
L‖λ0 −λ ∗‖√

ε
)

The interior point methods have a better complexity bound, but for large scale

QP, they require solving a large linear system of equations at each step which can be

difficult to say the least.
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The main operation at each step of DFPG is matrix by vector multiplication which

can be done in parallel. In this regard, the DFPG is uniquely suitable for solving large

scale QP.

In the following section we describe numerical results obtained with both DPG

and DFPG.

5 Numerical results

Both the DPG and DFPG methods were developed and tested using MATLAB. We

also designed a random generator, which generates QP with an apriori given size and

solution vector. All matrices associated with the randomly generated QP are dense.

The randomly generated QP’s were solved by DPG and DFPG. The gap ∆s =
d(λs)−d(λ ∗)

d(λ ∗) defines the progress achieved in a given number of steps.

Figures (1) and (2) below show convergence of both DFPG and DPG methods

for two QP of different sizes. On the X-axis we show the number of steps and on the

Y-axis we show the gap ∆s.
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Fig. 1 DFPG (solid) vs. DPG (dashed) for n = 100, m = 50

As it can be seen from the graphs, DFPG out performs DPG in terms of number

of iterations to get the required accuracy (ε = 10−6).
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Fig. 2 DFPG (solid) vs. DPG (dashed) for n = 1000, m = 500

In order to compare the performances of these methods, QPs of varying size were

generated and solved by DFPG and DPG. Note that all problems generated had com-

pletely dense A matrices. The maximum number of iterations was set to 120,000

iterations and six digits of accuracy was used as the stopping criteria for both algo-

rithms. Both algorithms were tested on an ordinary MacBook Pro laptop. The results

obtained are presented in the following table.

Variables Constraints DFPG Method DPG Method

n m Iterations Time (sec) Iterations Time (sec)

100 50

329 0.02357 4337 0.30292

280 0.02038 9184 0.59667

271 0.01837 8582 0.56209

278 0.02176 2762 0.17936

200 100

534 0.06932 31477 3.46527

391 0.04623 24132 2.68583

402 0.04651 5447 0.60237

356 0.05333 7689 0.85084

400 200

424 0.11949 8734 2.20834

526 0.13622 13603 3.4149

813 0.20794 73766 18.56511

457 0.11871 13549 3.39471

800 400

681 0.60041 32783 27.77011

514 0.43933 76704 63.62423

758 0.65507 26355 22.27011

1037 0.87214 70217 58.25214

1600 800
726 4.73007 110836 715.59573

553 3.48822 94567 606.5642

3200 1600
698 17.65899 120000 3008.12890

1851 45.03016 120000 2924.31770
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As one can see, the DFPG has substantial advantages as compared to DPG in both

computation time and number of iterations. In order to show the performance of the

DFPG, another set of QP with sizes 1600× 3200÷ 4000×10000 was generated and

solved to six digits of accuracy. The results are presented in the following table.

Variables Constraints L Constant DFPG Method

n m L Iterations Time (sec)

3200 1600

5.72411 785 25.03843

3.97624 751 23.32618

2.78926 791 24.06845

5000 2000

7.73193 962 56.92800

2.54017 609 35.77332

3.35125 768 45.09735

6400 3200

99.81955 2542 301.94020

4.44271 815 96.38931

5.03076 782 92.15438

8000 4000

4.30588 878 160.35110

4.04671 898 164.83670

4.38200 895 163.06810

10000 4000

7.72731 1120 255.01110

9.09082 1287 293.89160

7.13478 1166 265.70370

Our results show that DFPG efficiently handles large-scale QP problems with

completely dense matrix A. It is important to note that the matrix algebra is the biggest

issue when the size of the problem grows. Implementation can be enhanced by taking

advantage of the problem structure and managing memory efficiently using parallel

processing.

6 Concluding Remarks

Both theoretical and numerical advances of the method are not due to improvement

in number of steps, which is impossible because the method in this regard is optimal

(see [6]), but due to low complexity per step.

The numerical results strongly corroborate the theory. A number of QPs of vary-

ing size were solved. The results presented in section 5 show that DFPG has the

potential to become an efficient tool in particular for large scale QP when IPM can’t

be efficient due to the necessity to solve a very large linear system at each step (see

[10]).

Both methods can be applied for solving a dual problem

d(λ ∗) = min{d(λ ) | λ ∈ R
m}

arising from a nonlinear optimization problem as long as d(λ ) is smooth and the

gradient ∇d(λ ) satisfies Lipschitz condition.

For the choice of L see the end of section 2. It follows from (1) that ‖x(λ )− x(λ ∗)‖≤
∥

∥Q−1AT
∥

∥‖λ −λ ∗‖. It follows from theorem 3 that the Housdorff distance between
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L∗ and ∂Lk converges to zero, where ∂Lk = {λ : d(λ ) = d(Λk)} therefore x(Λk)→
x(λ ∗).

Another issue is finding the ε-approximation for the primal solution. It is enough

to apply, for example, one step of MBF method [12] with an appropriate scaling pa-

rameter using the dual ε-approximation vector obtained by DFPG as the dual starting

point.

The formula (15) can be viewed as a decomposition method for the dual problem.

The components of Λk can be computed in parallel, which is important for very large

QP.

In our opinion, with appropriate parallelization the method can be uniquely suit-

able for solving large scale QP arising, in particular, in statistical as well as support

vector machine applications (see [7,16,15,14]).
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