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Abstract - We describe some numerical results obtained by logarithmic Modified Barrier
Function (MBF) methods for Linear Programming (LP) problems. _

MBF methods consist of sequential unconstrained minimization of MBF followed by Lag-
range multipliers update, while the positive barrier parameter can be fixed or one can change it from
step to step.

The numerical results obtained are consistent with the MBF theory.

All LP problems have been solved with high accuracy under a fixed barrier parameter. We
steadily observed the "hot start” phenomenon, which means that from some point on the approxi-
mation for MBF minimizer remains in the Newton's area after each Lagrange multipliers update.

Therefore few and from some point only one Newton step is enough for the Lagrange’
muitipliers update. Every Lagrange multipliers update shrinks, in case of nondegenerate primal-dual
LP, the primal-dual gap by a factor 0 <y < 1, that depends on input data and the size of the problem
and can be made as small as one wants by choosing a large enough but fixed barrier parameter.

The resuits obtained show that MBF methods are numerically stable and the total number
of Newton steps requires to shrink the primal-dual gap and the constraints violation to 10-'° - 10
are practically independent on the size of the problem.

Keywords: Lincar Programming, Primal and Dual Problems, Modified Barrier Functions, Newton
Method.
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1. Introduction

Interior Point Methods (IPMs), which are based on Classical Barrier Functions (CBFs) have
the best known complexity bound for LP problems (see Gonzaga 1988, Todd 1988, Goldfarb and
Hiao, 1991, Renegar and Shub, 1992, Nesterov and Nemirovsky, 1994 and bibliography in it). The
primal-dual predictor-corrector version of the IPM (see Mechrotra 1992 ) is very efficient numeri-
cally (see Lustig, Marsten and Shanno, 1992, 1994; Forrest and Tomlin, 1992).

However, along with the very important self-concordant properties (see Nesterov and Nemi-
rovsky, 1994), which guarantee the polynomial complexity of path-following methods, the CBFs
have well known drawbacks (see Fiacco and McCormick, 1968). To eliminate some of these
drdwback, the Modified Barrier Functions (MBFs) were introduced and their theory has been
developed for both LP and NLP (see Polyak, 1992a).

Based on the MBF theory two methods - Primal and Dual MBF methods - for solving LP
problems have been developed (see Polyak,’ 1992b). These methods consist in sequential
unconstrained minimization of the Primal or Dual MBF functions followed by Lagrange multipliers
update, while the barrier parameter can be fixed or one can change it from step to step.

The distinctive feature of the MBF methods is their convergence duc to the Lagrange
multipliers update rather than to the barrier parameter update as it takes place in the Interior Point
Methods (see Powell 1995, Jensen and Polyak, 1994, Polyak and Teboulle, 1995). It contributes to
both the rate of convergence and numerical stability.

The numerical realization of the MBF methods for LP leads to Primal and Dual Newton
MBF.

One uses Newton method to find an approximation for the MBF minimizer followed by the
Lagrange multipliers update.

This paper describes the numerical experience with the Primal and Dual Newton MBF
methods for solving LP problems with a ﬁxe‘d barrier parameter. The numerical results obtained are
very much in the spirit of the MBF theory. They show the fundamental difference between CBF's
and MBFs and methods that are based on these functions.

First, MBFs are defined on an extended feasible set and along with the barrier parameter

they have an additional tool -the vector of Lagrange multipliers to control the numerical process.
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Therefore, unlike the Classical Barmrier IPMs, the Modified Barrier methods converge for any fixed
. positive barrier parameter. Morcover the objective function tends to optimality and any constraint
violations tend to zero at R-linear rate whether the primal and Dual LP degenerate or not (see Powell
1995).

Second, in MBF methods the constraints violation does not compromise the convergence.
It shrinks to zero not due to infinite barrier parameter increase, as it occurs in the Shifted Barrier
methods, but due to the Lagrange multipliers update. It contributes to the numerical stability and
allows 10 obtain results with high level of accuracy under the fixed barrier parameter.

Third, in all problems, which have been solved, we observed the “hot start” phenomenon
which has been theoretically predicted only for non-degenerate LP problems (see Polyak , 1992a
, 1992b).

Fourth, there is a substantial difference between the Primal and Dual MBF methods in terms
of numerical performance. The dual MBF performs much better and we will try to explain this
observation.

Fifth, the numerical results obtained show that the dual MBF method is numerically stable
and the total number of Newton steps required to reduce the primal-dual gap and constraints
violation to the order of 1019 - 10" is practically independent of the size of the problem.

In the following section we introduce the problems and make the basic assumptions. In
Sections 3 and 4 we describe the Primal MBF method and its numerical realization - the Primal
Newton MBF method. Irf sections 5 and 6 we describe the Dual MBF and its numerical realization -
the Dual Newton MBF rhethod. .

In Section 7 we discuss the numerical aspects of the Primal and Dual Newton MBF methods.
We present our numerical results in Section 8 and compare those results to other IPM results in

Section 9. We conclude the paper with some remarks.

2. Problem Formulation
Let 4= (B, N) be an m x n matrix (» > m), where B is an m x m matrix and NV is an

m x (n-m) matrix. Also leta e R"and b € R™ We consider the following dual pair of LP problems:




x " =argmin { (a,x) | Ax = b, x20"} : - 2.1)

v ' =argmax { (b,v) | v4 sa} (2.2)

We also define the primal feasible set P = {x: 4x =4, x > 0" } and the primal optimal set
P° ={x€P:(ax)=(ax")}, as well as the dual feasible set D ={v:v4 <2} and the dual
optimal set D~ ={ve€D:(b,v) =(b,v " )}. The vector u = a - v4 represents the residuals of the
dual problem. So if uz 0"then v e D.

The primal and dual LP problems are non-degenerate if rank (4) = rank (B) = m and the

following complementary slackness condition holds in the strict form, i.e.

xj'>£) = uj'=(a-v'A)j=0 Viji=1,..,m a)
and ' (2.3}
xj‘=0 = uj'=(a-v’A)j>0 Vji=m+l, . .n b)

Under the assumptions (2.3) both the primal (2.1) and the dual (2.2) LP problems have unique
solutions. By splitting the vectors a = (a,;a,) and u = (u,; »,)on basic and nonbasic parts we can

rewrite the conditions (2.3) as follows:

By o8 ThEO™, wg =0y i, ) =0 a)
and (2.4)
uﬁ.=a3—v'3=0’", ua;=alv—v'BN>0" b)

3. The Primal MBF Method
The primal LP problem (2.1) is equivalent to

x " =argmin { (a,3) | Ax =b, £ 'In(kx, +1)20,i=1,..,n} (3.1)
forany £> 0.
Let Q={x:Ax=b},X,c={x=(x‘,...,xu):xiz"k",z’=1,...,n},R’i-‘—{x:xizo,iﬂ,...,n},
R - {:%,>0,i=1,.yn}, and Int = - Tor £ 5 0.
Let us remove the system Ax = b from the list of constraints, then the primal MBF

P(x,u.k): 0 xR" x R! - R'is defined by the following formula
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P(x,u.k)=(a,x) k" 2 uIn(kx, +1) (3.2)

=1

Let U =diag(u),. U, =diag(x,)._.,. A(xk)=diag(kx,+1),_,
Before we describe the Primal MBF method we would like to recall the basic MBF properiie4
at the primal-dual solution (see Polyak, 1992b).
Due to (2.3) for any &> 0 we have
Pl. P(x ,u",k)=(a,x)=(b,u")
P2 UP(x"u'k)=a-u’
P3. VY _P(xu .k)=k Uy
In view of P2 and (2.4) we have
U P(x"u"k)=v 4
for any £>0.
Due to P3 and (2.4b) the restriction of P(x,z ",k) to the linear manifold Q ={x:4x -5 =07} is
a strongly convex function, therefore
x* =argmin {P(x,u k) /x€Q}
is unique forany k> 0.
Morcover due to V_P (x,u,k) =k U diag ((kx, +1)7),, the function P (x,u,k) is strongly
convex inx € X, forany z€R._ and k>0.. |

Therefore forany =z €R". and k> 0 there exists a unique minimizer
£ =% (u,k) =argmin { P(x,u.k) /x€EQ} (3.3)

It turne out that the minimizer x (u, k) can be used to improve the current approximation
of the dual vector u € R” . while the barrier parameter can be fixed.

We will describe the Primal MBF method with a fixed barrier parameter.
The primal MBF method generates a sequence of triples (x°, #°, v°) where x* is an approximation
for x*, u* is an approximation for »*, and v is an approximation for v*.

At the initial phace we set ®®=¢=(1.1, ... 1) € R", choose a sufficiently large fixed k>0
and findx¥ ¢ On X,

Letusassumethat x°€QNX,, u’€R’. and v'eR™ have been found already. The next

approximation (x*!, #™*!, v*"!) we find by solving the problem



! = argmin {P(x,u%k)/x€ 0} G.4)
and updating the Lagrange multipliers
#* = AV bt (3.5)

As a byproduct of solving the problem (3.4) we obtain the approximation v*' for the dual
solution v*. The vector v ©' is a Lagrange multipliers vector, which corresponds to the

system Ax = b in problem (3.4). In other words, we have
VP u'k)=a-AT(x"k)u’ =a s i (3.6)

The components of the vector of Lagrange multipliers #* corresponding to the constraints
k'In(kx, +1) 20, i =1, ..,n are always positive. They define the residuals for the dual problem.
Therefore v* is always a dual feasible vector, while the primal approximation x* might be infeasible
up to the end of the process. -

The fundamental difference between the MBF method (3.4) - (3.5) and Intenior Point
meﬁhods which are based on CBFs, is that the convergence of the sequence {x°, «*, v*} is due to the
Lagrange multipliers (dual residuals) update, while the barrier parameter is fixed. In Interior Point
methods the convergence is due to the barrier parameter update no matter whether the [PM is a
"pure" primal or a primal-dual.

If P* and D* are bounded it follows from [PT95] that (¢, v*) converges to (u*, v*), while
the primal sequence converges to x* in ergodic sense and both primal and dual sequences converge
to the optimal solutions in value.

The strongest so far result about MBF method convergence for LP without nondegeneracy
assumption was obtained by M. Powell (see Powell 1995) under the assumption that D is bounded.
We will discuss it later, bacause his result relates to the Dual MBF method.

If the dual LP pair (1) and (2) is non-degenerate, i.e. x* and v* are unique, then there exists
a condition number ¢ = cond P(4, a, b) > 0 for the primal problems such that

max { [x* "' =x ], lu®t-u], Ive "t =v il sck T ut-u"] (3.7

where (x| =lxl_=max]|x]|.
1sisn



The condition number ¢ > 0 depends on the input data and the size of the problem, but it is
independent on k 2 k, if k> 0 is sufficiently large (see [Polyak 1992b]).

Therefore for any 0 <y < 1 one can find k, > ¢ such that the estimation
max { Jx“-x"[, fu"-u"l, [vi-v']}s¥ (3.8)

holds for any & = £,.

Due to (3.7) we can improve the rate of convergence by increasing the barrier parameter, but
it might create numerical problems. Therefore we conducted our numerical experiments under the
fixed barrier parameter.

It turns out that when k > 0 is fixed but reasonably large we can guarantee not only the
estimation (3.8) with a reasonable small 0 < y < 1, but what is even more important after each
Lagrange multipliers update the approximation for the current minimizer remains in the Newton area
for the problem type (3.4) when # is replaced by ™"

Therefore only few, and from some point only one Newton step is required for the Lagrange
multipliers update.

Strictly speaking every step of the Primal MBF requires an infinite procedure to solve the
problem (3 .4)-'Therefore we have to change it to a finite one without compromising the convergence.

We describe such procedure in the next section.

4. The Primal Newton MBF Method
The numerical realization of the primal MBF method (3.4), (3.5) leads to finding an approximation
3% for x*"! and updating u° by using x° ' instead of x "' in(3.5). To find the approximation
7' we use Newton method. Newton method for solving (3.4) has been described in (Polyak
*1992b). We would like briefly remind that to find the Newton direction €, we have to determine v
(x, u, k) by solving the following normal system of equations:
(A4 0%x, ) U ATV =4 A(x,k) (U " A(x,k)a-e) 4.1

Then we calculate the Newton direction £ = §(x,1,k):

E =(xUY " A (x,k) (4 Tv(x,u k) —a + A7 (x,k)u) (4.2)
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Once £_ is determined, we update x by
x:=x+t§ (4.3)
The stepsize ¢ one can find by solving
r=argmin { P(x +TE_,u,k) |x+T§ €X,} (4.4)
or by using Goldstein-Armmijo criterion
P(x +v&_,u,k) - P(x,u,k) < -;—(V:P(x,u,k), £) (4.3)

Starting with £ = 1, we check (4.5). If (4.5) is satisfied and x + ¢ §_ e X, thenwe update xasin (4.3).
If (4.5) is not satisfied or x +r&_€X,,then we setf == t/2 and check (4.5) again. We repeat this
process until (4.5) is satisfiedand x +¢§_€ X, .

We continue to take Newton steps until we get a solution x which satisfies:
IV_P(x.u.0)E | =la-A'G.B)u-v(x,uk)dlse (4.6)
where £> 0 is small enough. Then we update the Lagrange multipliers
u=A"(x,E)u (4.7)

while the barrier parameter £> 0 is fixed. |

Now we are ready to describe the Primal Newton MBF method. We start with
xeQnX,, u®=e=(1,.,1)eR" and alarge enough k> 0. We also consider a monotonically
decreasing sequence { € >0},., such that lim &, =0.
Let’s assume that approximation ( x°,u";,v*) has been found already. To find the next approximation
we use the following process:

ks Start with »° and use Newton’s method (4.1) - (4.3) to minimize P(x.u’.k) until x*7'
satisfies:

ta-ATGETL R -v(xT el b4 se ' (4.8)
Z Update the Lagrange multipliers (dual residuals) using the following formula:

2 =ATGT Y (4.9)



By finding the triple(x "', 2""",v*™") such that Ja -2""' -v*" 4 | <€, wecomplete the Primal
Newton MBF step.

To describe the stoppmg criterion we introduce the “merit” function
v(#) =v(x,v) = max { max { -x,}, max {(v4 - a)}, Z fva-a)]l=1} (410
1 <isn
It is clear that v(w) 2 0 also v(w) =0 <= w =w ". Infact, v(w)=0 = -x, <0 or
x, 20, =1 m, v ~al, oo a -2 AED and (@ -vA)x =0,i=1,.,n iexandv are
" primal and dual feasible and the complemmentary conditions are satisfied, so w = w*. The second part
of the statement, i.e. w = w* = v (w) = 0 follows from the definition (4.10) and LP duality.

If w(w®) is small enough, then x* and v’ are “almost™ primal-dual feasible and the
complementary conditions are “almost” satisfied.

We take € > 0 small enough (€ > 0 is defined by the desired accuracy) and terminate the
process when the couple (x . u ) satisfy v(x s u Y <E.

In our numerical experience ¢ is between 107'° to 10™**, therefore for the numerical resuits
obtained the primal-dual gap as well as the constraints violation are of the order of 10™° + 10" for
all problems (see Table 1 and Table 2), while the barrier parameter is fixed between 10° to 107.

Numerical results obtained with the Primal Newton MBF were not very encouraging and we
will explain the reasons later. Therefore in our numerical experiments we focused on the Dual
Newton MBF. We will describe first the Dual MBF in the next section.

S The Dual MBF Method

This method is based on the dual MBF, which is a Classical Lagrangian for a problem that
is equivalent to the dual LP (2.2). Let’s consider it with more details. First, we transform the
inequality constraints of the dual problem (2.2) to obtain the equivalent problem.
The dual feasible set is given by:

D={via-dTvz0}={viu(v)=(a-47v),20,i=1,.,n} (5.1)
={k'In(ku,(v)+1)20,i=1,.,n}

Thus, the problem



v " =argmax {(b,v) | k 'In(ku(v)+1)20,i=1,.,n} (5.2)

is equivalent to (2.2) for any k> 0. Let x = (x,, ... , X,,) be the vector of Lagrange multipliers which
corresponds to the constraints of the dual problem (5.2). We consider an extended dual feasible set
D,={v:u/(v)2 -k~',i=1,..,n}.Again, assuming that In t = - = for ¢ < 0, we define the Dual

MBF as a Classical Lagrange for problem (5.2) which is equivalent to problem (2.2)

D(v,x,k) =(b,v)+k™'Y, x In(ku, (v)+1) (5.3)

t=1
Let X =diag(x,);.,, A(v,k) =diag(kx,(v) + 1);,, are diagonal matrices with entries
x; and (ku (v) +1),i=1,..,n. _
Before we describe the Dual MBF method, let’s consider the local Dual MBF properties at
the dual-primal solution.
First, note that the Dual MBF D (v, x, k) as well as its gradient
V.D(v,x,k)=b-AA™ (v,k)x
and Hessian
Vi D(V,x,k) = ~kAA(v,k)x4”
exist at the dual-primal solution v*, x* for any £ > 0.

Moreover, the following Dual MBF properties are taking place.

Dl. D(v .x",k)=(b,v")=(a,x")
D2. VD(v'.x"k)=b-4x =0
D3. V., D(v',x",k)=-kAX AT =-kBX BT

Due to (2.4b) the Dual MBF is strongly concave at the dual-primal solution.
Now we describe the Dual MBF method.

The Dual MBF method generates a sequence of couples (v *,x *), where v °is an approximation
for the dual solution v* and x* is an approximation for x*. -

We start with x* =e = (1, ... ,1) € R”, pick a fixed and large enough k> Qand v’ € D, . The
Dual MBF method consists of finding the dual-primal sequence {v *,x *}_,using the following

formulas:
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v*™ =argmax {D(v.x*,k)|veR"} (5.4)
£t oAbyl gy (5.5)

Vector v*"! is an unconstrained maximizer of D (v, X%, k) .

UD(viix*k)=b-AA (x* k)x =b-dx"" =0
Vector v*! exists for any x* and any k& > 0, because x * e R, and D(v,x *,k) is strongly concave.
Moreover if x* e R”_. then due to (5.5) vector x*' e R”.. and 4 x* = b, therefore x* is always
primal feasible, while the dual approximation v* might be infeasible up to the end of the process.

The Dual MBF method converges to the dual solution for any & > 0 if D is bounded (see
Powell 95). Moreover, M. Powell proved that the sequence {v °},_, converges o the Chebushev
center on the dual optimal face D* whether both the primal and dual LP degenerate or not, and the
objective function converges to the optimal value and the constraints violation tend to ze'm with R-
linear rate.

Note that convergence {x*} to x* € D* under the only assumption that D* is bounded is a
consequence of results obtained in (see Polyak and Teboulle, 1995).

Ifthe dual pair LP problems (2.1)-(2.2) is non-degenerate i.e. both the primal and the dual
LP problem have unique solutions, then there exists a condition number ¢ = cond D (4,4,b) for the
Dual LP problem such that the sequence {v *,x *},., converges linearly to the dual and primal

solutions and the following estimation is satisfied:
max { [v:"' -v ] [xT -x Ty cckT xf -2 (5.6)

~ The condition number ¢ = cond D (4,a,b) depends on the input data and the size of the -
problem but it is independent of k > k,, as long as k, >0 is sufficiently large. Thus, forany 0 <y <
1 one can find &, > ¢ such that
max {Jve-v°], lx"-x"]} <y’
for any k 2 k, (see Polyak 1992b).
The Dual MBF method requires solving an unconstrained optimization problem (5.4) at each
step. To make the Dual MBF practical, we have to change the infinite procedure of finding the dual

maximizer v* for a finite one without compromizing the convergence. In the next section we describe
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such method.

6. The Dual Newton MBF Method
We will use Newton’s method to find an approximation v°™' for v*'! and update x* by (5.3)
usingv®"! instead of v*"!. To find the Newton direction §, we have to solve the following normal

system of equations
kA AN (v, ) XATE = (b -4 A7 (v,k)x) (6.1)
Once &, is found we update v by:
vi=v+rE, (6.2)

The step size f one can find by maximizing D(v +tE,,x.k) on t>0:v +1§ €V _ or by using

Goldstein-Armijo criterion:
D(v +1E,.2.k) = D(V,x.6) 2 £ (V,D(v.x.k). ) (6.3)

Starting with 7 = 1, we check (6.3). If (6.3) is satisfied and v + i, € V,, then we update v as in (6.2).
If (6.3) is not satisfied or v +¢f & ¥, then we set 12 = ¢/2 and check (6.3) again. We repeat this
process until (6.3) is satisfied and v + (£, € ¥,. We continue to perform Newton’s steps until we get

a golution v which satisfies:
1V, D(v,2,k) | =} b +4A7 (v, k) x 1 <€ (6.4)
where £ > 0 is small enough. Then we update the Lagrange multipliers
x = A (v, k)= (6.3)

Now we are ready to describe the Dual Newton MBF method (see the flowchart, Fig. 2) .
Let's consider a monotonically decreasing sequence { € >0 }_., such that lim & =0.We start with
VeV, X*=e=(1,..,]) € R"and a large enough £> 0. o
Let's assume that the approximation (v*,x*)has been found already. To find the next appro-
5l Tl

ximation (v’ ,57 )we use the following process:

1. Start with v°and use Newton’s method (6.1) - (6.3) to maximize D (v,x*,k) until v°"'

12



satisfies:
IV, D )l =1b -4AT (v | <&, (6.6)
2. Update the Lagrange multipliers (primal variables) by:
7 = AN et (6.7)

We are using the same stopping criterion as in the Primal Newton MBF but with a different “merit”

function. Let p(w) =pu(v,x) =max { | b-Ax |, max { ~u (v)}, Z | u,(v)|x } Itiseasytosee

1sisn 1.1

that p(v, x) > 0. Also u(v, x) =0 &= v=v*, x = x*because if u(v, x) = 0, then x and v are primal
and dual feasible and complementary slackness conditions are satisfied. It is also clear that p(v*, x*)
= 0 we terminate the process at the point (v*,x°): p(v’,x*) < €, where a small enough € > 0 is
defined by the desired accuracy. In our numerical experiments € = 107 = 10",

The main purpose of our numerical experiments was to observe in practice the “hot start™
phenomenon, which has been predicted for primal and dual nondegenerate LP in (see Pol}:ak
1992b). We will briefly remind the notion of “hot start”, using the dual LP (2.2) and the Dual
Newton MBF method. For exact definition of the “hot start” and related to this notion complexity
issues (see Melman and Polyak, 1995).

We remind that one step of Dual Newton MBF requires solving approximately the system
V,D(v,x*,k)=b-AA(v,k)x =0 f6-8)

in v and updating x° by (6.7) using the approximate solution v*"'.

We recall that vector v is “well” defined for the system (6.8) if starting from v the Newton
method can be realized and the correspondent sequence converges to the solution quadratically (see
Smale 1986).

Due to the convergence x° to x "under the fixed barrier parameter, the condition number of
the Dual MBF Hessian V2, D(v,x",k) is stable when x approaches x* and so is the Newton area,
where v is “well” defined for the system (6.8).

We call an approximation v* a “hot start” if v* is “well” defined for the system

V. D(v,x%k) =0

13



implies v*''is well defined for the system
V,D(v.x*'k)=0

From the “hot start” on to find a Dual MBF maximizer {or a minimizer in v of -D(v, x°, k})
with accuracy € > 0 one has to perform 0 (In In £') Newton steps. So only 0 (In In £'') Newton steps
are required for the Lagrange multipliers update, which in case of nondegenerate dual pair LP
shrinks the distance to the primal dual solution by a factor 0 < y = ck' < | and the new
approximation v° will stay again in the Newton area for the following system V, D (v,x *™' k) =0
. (see Fig.1). |

Moreover, after each Lagrange multipliers update we have a reduction in the number of
Newton steps up to the point when only one Newton step is enough to find an approximation for the
MBF maximizer.

In case of Dual Newton MBF method the “hot start” depends on the condition number
C =cond D (4. a b) of the dﬁal problem (see Polyak 1992b, Melman and Polyak, 1995).

The “hot start” phenomenon has been steadily observed for all LP problems. It is worse to
mention that this phenomenon has been observed when MBF type methods were applied for solving
nonlinear optimization problems (see Ben-Tal, Yuzelovich and Zubylevsky, 1992, Breinfeld and
Shanno, 1994).

Before commenting on the numerical results, we would like to discuss some numerical

difficulties which we faced.

7. Numerical Aspects of the Newton MBF Methods

The crucial part of the primal Newton MBF is the Newton step. To find the Newton direction
one has to solve system (4.1). By taking € =4 A(x.k)U "'?, one can rewrite the left hand side of
(4.1) as C CTv. Thus if C is a full rank matrix (i.e. rank C = m), then there exists a very well
developed technique for solving such systems (see Forrest and Tomlin, 1992, Lustig, Marsten and
Shanno, 1002, 1994). In our case, in spite of the fact that matrix 4 is a full rank matrix (i.e. rank
A = m) the matrix C C 7 might be nearly rank deficient even in the case when the dual pair 1s
nondegenerate. In other words, even in the case where the set of columns of matrix 4 defining the

primal optimal face has a full rank, system (4.1) might be very unstable. In fact, when the process
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approaches the solution, the diagonal elements Af(x, u)ul.-l that correspond to x;* > 0 become,
unbounded because u, —u, =(p -v 4),=0.

Even for a moderate k> 0. x, > 0 and »' > 0 the diagonal elements of A*(x,k)U ~' may
become very large and the system becomes numerically unstable. For example with k= 10, x, = 10°,
u,= 10" we have A,.z (x.k)u 1—1 = 10%°. At the same time other diagonal elements may be substantially
smaller. Therefore, after scaling the matrix 4 by A(x,k)U /2 the normal system

cCTv=C(UA(x,k)a~U"e) may be practically rank deficient.

When the problem is primal degenerate, this effect exagerates because the number of positive
x* and the number of zero,u* is r < m. Moreover in such case it is someﬁmes difficult to
distinguish between the diagonal elements A?(x,k)u, ", which correspond to x,> 0 and those for
which u* =x*=0 because for the last one A?(x,k)u, — u, —.

Due to these difficulties, we faced some severe numerical problems when the process
approaches the solution. In particular, we have difficulties in finding the Newton direction which
is in the null space {{ : 4 = 0}.

The numerisal problems can start at the point when the relative duality gap
V(x.v) = ﬁi—;‘-ﬁf}—’lt}— is quite large, i.c. V (x, v) = 10--10. For some problems these numerical
difficulties made it impossible to decrease the gap. It is also very hard for some problems to drive
down the infeasibilities because of the fact that normally the infeasibilities decrease substantially
only when the gap is small enough.

Our implementation of the dual MBF approach is much more successful and allows us to
obtain much better numerical results than those of the primal MBF approach. The main difference
between the primal and dual approaches lies in the normal system of equations for finding the
Newton direction. The normal system of equation (6.1) remains more stable than the system (4. D
when the process approaches the solution.

Let us consider system (6.1) at the primal-dual solution. If the dual pair of LP s nondege-
nerate, then taking mnto account ’

m n-n

IR.H ﬂm_n—m

AZ(v k) = !
R el Vo
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and

m Xr; po-rTm

n—m On"m,m On—m,n*m

we obtain

AA UV )X AT =BXx, BT,

In the nondegererate case B and X;* are full rank matrices. So B X;*B is a full rank

matrix too and system (6.1) is stable in the neighborhood of (v¥, x*).
- System (6.1) cah be made stable even in case when the vector x* = (x,*, ..., x,*) has only

r < m non-zero components, i.c. the dual solution v* is not unique. In such case the matnx
AA(v,k)X4 T becomes practically rank deficient when the process approaches the solution.

To find one of the optimal dual solutions we can fix (m - r) dual variables and simultancously
take special care of (m - r) redundant primal equality constraints. Then the dual pair of LP problems
becomes nondegenerate and at the same time the number of primal linear independent constraints
and basic dual variables is » < m. Thig motivates the following procedure. When both the diagonal
elements of A;*(v,k)zx, and the corresponding right hand side (b -4 A™ (v,k)x), of system (6.1)
are close to zero, we consider the equations (4x), = g, as redundant for the current iteration.

Thus by setting for example { =0 for each redundant row i, we obtain from (6.1) 2
nondegenerate normal system of equation.s from which we determine the rest of the components for
the Newton direction J, - | '

In the next sections we discuss some numerical results.

8. Numerical Results
In this section we analyze the numerical results obtained by using the Dual Newton MBF

method. In our implementation we used the computational kernels developed for OSL (see Forrest,

Tomlin, 1992).
We start with a good approximation for the dual solution and an approximation for the primal
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which is normally far from the primal solution. Usually we took the unit vector for the initial
Lagrange multipliers (primal approximation).

Then we find an approximation for the Dual Modified Barrier Function maximizer. Such an
approximation isin 0 (k) neighborhood of the dual solution. Using this approximation, we update
the Lagrange multipliers.

The agproximaticn for the dual MBF maximizer and the updated Lagrange multipliers (the
approximation for the primal vector) serve as initial approximation for the MBF procedure. In other
words, we consider such a pair as the initial "hot start".

Tables 1-2 show the resuits between the initial "hot start” and the solution. Tables 3-5 show
the dynamics of the primal and dual objective functions, the gap and the infeasibility from the initial
"hot start" to the point where the process has been terminated.

In Tables 1 and 2 we present numerical results of the Dual Newton MBF methﬁd for over
80 LP problems from NETLIB and other applications. The problem ranges between m x n =10 x
1land m xn =22513 x 99185.

The dual-primal approximatjon (x, v) we characterize by the relative duality gap V (x.v) and
the dual infeasibility / (v) =max {r %, (v) | =1, ..., n}. It is clear that max (Vx> vo), I(v*)} =
u(w* k) =0. _

Note that in the Prin.1a1 or Ielual MBF methods the current primal or dual vector might be
infeasible up to the end of the procciss, therefore the well-known inequality (a, x) = (b, v), which is
true for any primal-dual feasible couple is not necessarily true for a current primal-dual vector,
produced by MBF methods.

We terminate the solution process when both V (x, v) and [ (v) are sufficiently small, in
particular, between 10° and 107,

In Table 1 we list the size of each problem, the fixed penalty parameter £, the number of
Lagrange multiplier updatés, the final objective function value, the relative gap and the infeasibility
upon termination.

In Table 2 we concentrate on the steps between the first Lagrange multipliers update and the
final solution.

The gap after the first Lagrange multipliers update is shown in the second column. In the
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third column we indicate the number of Newton steps required for the first update. In the fourth
. column we show the final gap. The fifth column indicates the total number of Newton steps. Then
the nexi column shows the factor by which the gap has been shrinked between the first update - “hot
start” and the final solution. Then we show the number of Newton MBF steps required to achieve
such an improvement. Finally “beta” is the factor by which the gap is shrinked per one Newton step.

From Tables 1 and 2 we observe the following:

1) We terminated the process for almost each problem when the gap and infeasibility are
between 107" and 107,

- 2) The number of Newton steps required to achieve the mentioned level of accuracy grows
slowly with the problem size.

3) The number of Lagrange multipliers update as well as the dynamics of the number of
Newton steps between two sequential updates is empirically better than the theory prédicts. In
particular the number of Lagrange multiplier updates is less than 10 for almost each problem in the
sct. The exception is 80 bau 3b - 18 updates and four other problems, for which we have not more
that 12 updates.

The number of Newton steps between two Lagrange multipliers updates, beginning at the
"hot start”, is estimated as 0(In n). The observed number of Newton steps between two successive
Lagrange muitipliers update decreases from step to step until one Newton step is sufficient to find
the MBF maximizer with a reasonable level of accuracy.

4) All resuits are obtained by the Dual Newton MBF method with a fixed penalty parameter
k in the range 10° - 10 7. Since the MBF method enlarges the feasible set to D, the potential
infeacibility is on the order of k! =10% - 107 The Lagrange multipliers, however, drive the
solution 1o the original feasible set. Therefore, we are able to obtain an approximation that is
practically feasible.

5) The results in Table 2 show that we consistently obtain the approximations x and v for
primal and dual solutions with gap 10 - 1075 starting with a gap of 10 "' - 10 (after the first
Lagrange multiplier update). In other words for almost all problems that are solved, the last 9 - 10
digits of accuracy for the primal-dual gap and the constraints violation are obtained by fewer than
50 Newton steps and between 5 and 7 Lagrange multiplier updates. More specifically the dual MBF

18



method on average decreases the objective functions gap by factor of § = 0.472244 per Newton step
(see Table 2).

6) For every LP we observe the so called "hot start" phenomenon.

The "hot start" begins when both the primal and dual variables are "well defined". The dual
approximation is "well defined" in terms of S. Smale's Theorem (see Smale 1986), i.e. the dual
variables are in the Newton area for the system V, D(v, x, k) = 0, when the primal vector x and the
penalty parameter £ > 0 are fixed. The primal approximation is "well defined" in terms of the basic
MBF Theorem (see Polyak 1992). From this point on it takes only 0(In In £~ ) Newton steps to find
an approximation for the dual MBF maximizer with accuracy € > 0. in other words if & > 0 is small
enough and %2k, =0(y 'cond D(4,p,q)) then it takes few Newton steps to find an
approximation for dual MBF maximizer and to update the Lagrange multipliers. That leads to the
ﬁnprovemcnt of the current approximation by a factor 0 <y <1 (see Fig. 1).

Moreover, both the dual maximizer and the new primal approximation are "well defined"
again. Therefore it takes again O(ln In &' ) Newton steps to improve the current primal-dual gap by
a factor of 0 < y < 1. Assuming that the elements of the matrix 4 as well as the elements of the
vectors g and & can be represented by / < n bits we have £ =27 < 2°¢") where L is the input length
ofthe LP, so O(In In £”' ) = 0( In n ). In fact, as we mentioned already the number of Newton steps
decreases after each Lagrange multiplier update.

Theoretically the "hot start” depends on the condition number cond D(4. p, ¢) of the dual
LP problems and the condition number is bounded if the primal and dual LP are nondegenerate (see
Polyak 1992b). In practice we observe the "hot start" phenomenon for all problems that were solved.

In Tables (3-6) we show results for four LP problems with more details.

The problem “ISRAEL” is quite difficult in spite of its modest size (m x n= 176 x 142). The
"hot start" is observed after 18 Newton steps. After the first update the gap and the infeasibility is
10, the final gap is 10™"° and the infeasibility is 7.10™"*. The average improvement per Newton step
isbva fa_ctor B=03.

Problem p30 is quite large (m x 7 = 30090 x 57000) but sparse. The "hot start" was observed
after 11 Newton steps. The gap after the first update is 107 and the infeasibility is 10*. The final gap
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is 10-4, Although we use k= 10%, which means that the potential infeasibility might be up to 10 ~,
the actual final infeasibility is 4.10.

Problem Fit2D whose size is m x n=25 = 10500 is solved with a fixed penalty parameter
k=10% In 25 Newton steps the gap was reduced from 107 to 10" and the infeasibility from 10~ to
4.10°°, )

We observe the "hot start" phenomenon after the first update which happened after 10
Newton steps. The number of Newton steps decreases after each update and we are finally able 1o
update the Lagrange multipliers after each Newton step. Actually in the last 4 Newton steps the
Lagrange multipliers were updated 4 times. As a result, the infeasibility is brought from 10 to
10-'°. On average the gap is improved at every Newton step by a factor f = 0.51. V

The same general behavior we observed for the LP problem “GREENBEA” with a size m x
n = 2392 = 5405. This problem is solved with £ = 10*. The “hot start" is observed after the first
update, which happened after 18 Newton steps. In the next 36 Newton steps the gap is reduced from
10 to 10" and the infeasibility from 10710 5.10 "**.The average improvement per one Newton step
is by a factor § = 0.63.

As we mentioned above, although we enlarge the dual feasible set, which potentially might
lead to dual infeasibility, the Lagrange multipliers drive the solution to the original dual feasible
region. In case of Dual MBF the Lagrange multipliers are just the primal vector, which is always
primal feasible.

All examples show that the MBF trajectory is quite different from the CBF trajectory.

The dual variables converge to the solution, not from int Q, but from outside the feasible set.
The convergence is guaranteed not by infinitely increasing the penalty parameters as in the Classical
Barrier Method, but due to the Lagrange multipliers updating while the penalty parameter remain
fixed.

9. Comparisor To Other Interior Point Methads

The difference between the MBF and CBF approaches is based on the fundamental
differences between the MBF and CBF properties. This matter is discussed in detail in (Polyak
1992a, 1992b, Jensen, Polyak 1994, Powell 1995). The difference between the MBF and CBF
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properties leads to the differences in the trajectories of corresponding methods. We already
mentioned that the only parameter that controls the numerical process in the CBF approach (Fiacco,
McCormick 1968) is the penalty parameter. In the MBF methods, along with the penalty parameter,
the vector of Lagrange multipliers plays an important role. Moreover, when the barrier parameter
15 fixed the vector of Lagrange multipliers became the only driver which controls the process.

The CBF method has an arithmetic rate of convergence under the infinite increase of the
barrier parameter, whereas under the same strategy for the penalty parameter and Lagrange
multipliers update the MBF method has a super linear rate of convergence for any nondegenerate
dual pair LP. ’

When the barrier parameter is fixed, the CBF does not converge to the solution at all while
the MBF method has a linear rate of convergence if k> 0 is large enough. Moreover for any given
ratio 0 <y <1 one can find a fixed parameter £ > k, that the estimate (3.8) or (5.6) hold true.

In this section we will compare our results with those that were obtained by the CBF
approaches. For all problems that are solved (see Tables 1 and 2) the accuracy and feasibility
obtained by the MBF is at least as good as those obtained by CBF.

For some problems the MBF results are much better than the CBF results in both accuracy
and primal-dual feasibility. Let us consider some examples. For the problem "GREENBEA" we
obtained only one digit of accuracy for the objective function by using CBF with the barrier
parameter k up to 10" while the MBF approach gave 11 digits of accuracy with a fixed k=107 .
Moreover, the primal infeasibility | 4x - g |, is 407.6 for the CBF and 107" for the MBF. The level
of primal infeasibility is attained in spite of the fact that the MBF solves the dual problem and does
not enforce the primal feasibility. We are able to attain such a level of accuracy because of the
formula for the primal update and the fact that we nearly optimize the Dual MBF.

One can see from Table 7 that even by increasing the CBF parameter significantly (for
example, in case of "ISRAEL" up to k= 10?' or in case of "KI" up to k= 10" ) one cannot drive the
infeasibility down. Moreover, when we increase k the primal infeasibility for both problems
increases indicating that the process is unstable. At the same time the dual MBF method with a fixed

barrier parameter k = 107 is able to reduce the dual infeasibility for the problem "K/" from 10*to
10" and primal infeasibility to 107.
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For most problems the number of Newton steps per one digit of accuracy for the MBF
method is at least as good as the same index for the CBF and often much better. For example, it took
41 Newton steps for the CBF method instead of 20 Newton steps for the dual MBF to get the same
accuracy for the problem "grow 22"

In the following we will briefly compare the dual MBF method with the results obtained by
a primal-dual PC code (see Lustig, Marsten, Shanno, 1992, 1994, Forrest, Tomlin 1992) which is
recognized as the best interior point method for linear programming.

From the theoretical point of view the Primal-Dual PC method (see Mehrotra 1992) is
different from the Projected Newton CBF (see Gill et. al. 1986) in spite of the fact that both methods
are based on CBF. For all of the problems that were solved the total number of Newton steps, the
number of Newton steps per digit of accuracy as well as the factor of the gap improvement per one
Newton step by Dual Newton MBF, is competitive with corresponding indices for the Pﬁmal—Dual
PC method. In general the accuracy achieved for every problem that was solved by Dual Newton
MBEF, the final gap as well as primal and dual feasibility, are not worse than those obtained by
primal-dual PC.

Moreover, for few problems (see Table 8) the results obtained by Dual Newton MBF are
better in both the objective function accuracy and primal and dual feasibility.

10. Concluding Remarks

L The purposc of this work was to check the behavior of the MBF methods for LP in practice.
The preliminary numerical results obtained by the Dual Newton MBF are very much in the spirit of
the MBF theory. In some cases the observed behavior of the Dual Newton MBF is even better than
was predicted by the theory.

2 Although sometimes the theoretical analysis requires nondegeneracy for both primal and dual
LP, the numerical results show that the behavior of the Dual Newton MBF method are typical for
all LP problelﬁs which have been solved.

s In particular, the "hot start” phenomenon was observed for all LP problems independently
of their degeneracy, which was the main purpose of this work.

4. The numerical results show that a code based on the MBF approach has the potential of
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being competitive with the best available interior point codes for LP problems.

5 Although the MBF methods converge with a fixed barrier parameter, it is in no way our
recommendation. A reasonable increase of the barrier parameter from step to step can improve the
convergence without compromising the numerical stability. However, the increase of the barrier
parameter shrinks the domain, where MBF is defined, therefore the current approximation may not
belong to the new domain.

Therefore to find a version of the MBF insensitive to the barrier parameter increase is an
important issue.

Some encouraging results in this direction have been reported recently (see Ben-Tal.
Yuzefovich, Ziﬁulevsky, 1992, Breitfeld, Shanno, 1994, Nash, Polyak, Sofer, 1994) where different
versions of Truncated MBF method have been successfully applied for solving large scale nonlinear
programming problems.

6. The primal-dual approach might be another direction for improving efficiency of the MBF
type methods.
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Name Rows Columns [K | Updates Objective Gap | Infeas.
25fva7 821 1571 | 4 6 5501.8458882 | .1E-i1 AE-13
80baulb| 2262 9799 | 4 18 987224.192409 | .1E-12 | .1E-09
aadt 30 6461 | 4 6 000000000 | .IE-09 | .1E-18
afiro 27 3214 10 -464.75314286 | .IE-11 AE-15
agg 488 163 | 7 4 -35991767.286576 | .1E-14 .IE-14
{ bandm 305 472 } 7 12 -158.6280184 | .1E-10 | -.1E-12
barahonp 515 2487 | 4 5 241.0000000 | .1E-10 | .IE-12 |
bigmip | 3421 5153 | 4 12 000000000 | .IG-13 | -1E-13
blend 74 g3 {4 5 -30.81214985 { .1E-10 AE-11
bm23u 20 27 {4 6 20.57092176 { .1E-10 .1E-19
bm24u 21 8|4 6 24.57092176 | .1E-10 | .lE-19
.bm25p 28 30{4 5 30.62167731 | .1E-10 1E-15
bm25u 20 30 {4 3 29.03261538 | .1E-10 J1E-13
bnl2 2324 3489 7 9 1811.236540 | .1E-10 1E-11
boise 371 4468 | 7 8 -31505.12016714 | .1E-I3 1E-12
brandy 220 249 | 4 6 1518.50989649 | .1E-12 AE-11
-bronco 2 214 7 .000000000 | .1E-17 | .1E-19
ci00150y 1237 1087 | 7 6 577007.1644758 | .1E-13 AE-14
c901005| 994 894 | 7 3 389113.7695186 | .1E-13 | .1E-10
chevd4 4647 5771 | 4 8 -66798.758854 | .{E-11 | .1E-11
choix 780 51014 9 .000000000 | .1E-14| .1E-12
czprob 929 3523 15 4 2185196.698856 | .1E-13 AE-13
d2q06c | 2171 5167 | 7 7 122784.21081 | .IE-11 | .IE-12Z
example 10 i1} 4 6 270.8463057 | .1E-10 | .1E-19
fit2d 25 10500 | 4 8 -68464.29329383 | _1E-13 AE-09
ford3 196 970 { 6 12 -741717.7392 | .1E-10 | .1E-11
ganges 1309 1681 | 7 6 -109585.7361292 | .1E-13 1E-11
greenbeq 2392 5405 | 7 8 -72555248.1298 | .IE-I2 | .1E-l1
growls 300 645 1 4 5 4106870941.29357536 | .1E-17 JdE-11
grow22 440 946 | 4 3 |-106834336.4825629 | .1E-17 AE-11-
grow7 140 301 {4 4. -47787811.8147 § .1E-12 | .1E-I12
ipct 1107 1547 | & 6 -82871600.249 | .1E-11} .IE-13
ipcd 458 1410 | 6 4 81360152.642 | .1E-11 | .1E-19
ipc6 1521 2831 16 9 -14897.8070 | .IE-09 | .IE-12
ipc? 1157 4051 | ¢ 4 -15273.909(5 | .1E-10 | .1E-13
israel 174 . 142 | 4 51 -896644.82186305 | .1E-14 | .IE-12
jay 75 12114 4§ 4 352795498.027 | .1E-12{ .IC-10
jay2 54 16 | 4 a 352796092.106 { .1E-12 | .1E-09
12y3 54 122 {4 4 352796092.106 { .1E-12 | .1E-10

Table | - Exccution statistics for the dual modified barrier method:




Name Rows [Columns |K | Updates Objective Gap | Infeas.
ki 5203 | 18994 | 7 2 13112737844 | .IE-11| .l1E-12
k4 12469 | 52481 | 7 5 376647161.252 { .1E-12{ .l1E-12
k& 22513 | 99785 | 7 3 719891964.95 | .1E-11 | .1E-12
lps 3459 | 12811 | 4 4 26579676.43693 | .1E-13 | .1E-09
Iseu 28 89 | 4 7 834.68235294 { .IE-11 | .1E-13
lseusos 28 106 | 4 1 834.68235294 | .1E-11| .1E-13
ltw 67 43 | 4 3 -3498.09703304 | .1E-12 | .1E-10
ltw2 67 43 | 4 3 -3498.09703304 | .1E-12} .1E-10
w3 67 43 | 4 3 -3498.09703304 | .1E-12 | .1E-09
merloni 180 345 | 4 4 1050:79698955 | .1E-12 | .IE-12
mod006 29 89 | 4 7 834.68235294 | .1E-11 ] .1E-I3
mod007| 755 2756 | 4 5 2688.7500000 | .1E-11 | .IE-13
mod008 6 319 { 4 3 -23554.0000000 | .AE-12 | .1E-I3
mod009 176 548 | 4 6 315.25490196 | .1E-11 | .IE-10
mod010 146 2655 | 4 2 6532.083333 { .IE-10 | .IE-08
modOl1| 4480 | 10958 | 4 2 -62121982.55188 | .1E-13 | .1E-11
mod0llqd 4430 | 10974 | 4 2 -62121982.55188 | .1E-13 | .1E-1l
mod013 62 96 | 4 5 256.01666667 | .1E-11 | .1E-12
mod014 98 {- 141 |4 5 149.58876622 | .1E-11 | .1E-13
mod015| 780 370 | 7 y. 112130.04066 | .1E-11 | .1E-09
mod016] 141 96 | 7 il 1397.99739 | .IE-09 | .1E-13
mod017| 325 541 | 4 5 3273.02456699 | .1E-12 | .IE-10
mod019| 952 1209 | 7 5 18262.6461 | .1E-09 | .1E-11
mod020| 399 236 | 4 4 0000000000 | .IE-11 | .IE-13
fnod021 132 173 | 4 3 465442.58931 | .1E-11 | .IE-11
modi24 | 1631 2788 | 4 5 9494.45850308 | .IE-12 | .1E-09
. pOS 5090 9500 | 4 3 556000.276625 | .IE-12 | .1E-09
{ p30 30090 { 57000 | 4 4 3345141.94862 { .IE-12 | .IE-14
shell 536 1775 | 5 2 1208825346.000 | .I1E-13| .1E-16
shipl2s | 1151 2763 | 4 p 1489236.13440 { .1E-12 | .1E-09
stocforl 17 1 |7 5 4113197621 | .1E-10 | .1E-14
viennald 2929 5059 | 7 3 30397.871707000 | .1E-11 | .1E-12

Table 1 - Exccution statistics for the dual modificd barriér method (cont.)




Name Gap | Iter. Gap | Iter. Ratio | Iter. | Beta
Ist Update | Ist | Optimum | Opt. of Gaps | DifT.
25fva7 1E-04 14 JAE-11 38 JE+08 24 Sl
25(v4Ti .1E-03 23 .1E-12 46 AE+ 10 23 41
80baulb .1E-03 20 JAE-12 86| " .IE+10 66| .73
aadt .1E-01 9 .1E-09 23 AE+09 4] .27
aadti AE+00| 10 AE09 ) 23 AE+10 13] .20
afiro .1E-03 7 AE-11 22 JAE+09 15] .29
afiroi 1E-03 16 AE-11 29 AE+09 13 .24
agg 1E-04 16 .1E-14 72 AE+ 11 56 .66
aggi JAE-02| 46 AE-12| 651 E+11| 19| .30
bandm 1E-04 1§ J1E-10 33 AEA+OT 22 .53
barzhona .1E-02 I 1E-10 27 JAE+09 16 | .32
bigmip 1E+00 37 .1E-13 69 JAE+ 14 321 .39
bigmipi JE+00 51 SB13 83 AE+14 321 .39
biend 1E-02 9 JAE-10 26 AE+09 17 34
bm23u 1E-03 10 1E-10 24 AE+08 14 .32
bm24u AE-03 17 AE-10 32 AE+08 15| .34
bm25p 1E-03 9 AE-10 23 .1E+08 i4] .32
bm25u .1E-03 11 1E-10 24 AE+08 13 .29
bni2 .1E-0§ 18 1E-10 82 JE+06 64 .84
boise 1E-03 21 E-13 47 JE+11 26 .41
brandy 1E-03 26 AE-12 a7 AE+10 21 37
bronco 1E-01 5 AE-17{ 14| AE+17 91 .02
¢100150s .1E-08 16 .IE-13 3t AE+06 I5{ .46
€90100s .1E-05 10 .1E-13 b7 1E+09 42| .64
chevdd .1E-03 22 JE-11 60 AE+09 ] .62
choix .1E-04 17 1E-14 52 AE+11 35 32
czprob .1E-06 17 JAE-13 38 JE+08 21 46
d2q06c AE-07 18 AE-11 44 AE+0$ 261( .70
dantzig .1E-02 2 1E-07 10 AE+06 8| .24
example 1E-06 8 AE-10 20 AE+05 12| 46
fit2d 1E-06 il AE-13 35 AE+08 241 .51
fordd AEQ7 12 AE-10 a1 1E+04 29 .79
ganges 1E-06 38 AE-13 76 AE+08 38 .65
greenbea JE-03 19 AE-12 54 1E+08 35 .63
growl$ IE-04 15 AE-17 40 AE+ 14 25| .30
grow22 AE-04 17 AEB-17 37 AE+14 | 20 22
grow22i 1E-04 70 AE-13 92. AE+12 22 32
grow7 -1E-04 16 JAE-12 33 AE+09 17 34
ipcl .1E-04 35 AE-11 66 AC+08 3t .59
.1pcd .1E-04 20 JAE-i1 76 AE+08 56 a5
ipc6 AE-07 12 1E-09 29 JAE+03 171 .76
ipc7 AE-07 46 1E-10 67 ARE+04 21 .12

Table 2 - Empiricaily observed factor of objcctive function convergence i




Name Gap | Iter. Gap | Iter. Ratio | Iter. | Beta
Ist Update Ist | Optimum | Opt. of Gaps | Diff.
istael AE-03 19 .1E-14 44 AE+ 12 25 36
israeli .1E-03 22 AE-13 46 JAE+1T 24 38
jay E-06 14 AE-12 35 AE+07 21 a2
jay2 .1E-08 14 AE-12 35 AE+05 21 .64
jay3 .1E-08 14 AE-12 36 AE+05 21| .66
ki 1E-06 15 AE-{1 39 AE+06 241 .62
k4 1E08 | 19 AE-12] 53 AE+05| 34| .76
k8 .1E-08 29 JE-11 69 AE+04 40 .84
Ips AE-03 22 JE-13 98 JAE+11 76| .74
Iseu .1E-03 10 .1E-11 31 AE+09 | 21| .42
lseusos .1E-03 10 AE-11 30 JE+09 20 .40
Itw AE-03 12 .1E-12 27 AE+ 10 i3 25
1tw2 1E-03 12 1E-12 27 JE+ 10 15 Nk
Itw3 AE-03 12 AE-12 271 .JdE+10 1S 25
merioni .1E-03 13 AE-12 36 JAE+10 23 41
mod006 .1E-03 13 1E-11 34 AE+09 21 42
mod007 .1E-0t 26 1E-11 2 JAE+1L 46 | .61
mod008 AE-05 8 JAE-12 16 1E+08 g .13
mod009 1E-01 27 AE-11 79 AE+11 52| .64
mod010 1E-04 36 AE-10 80 1E+07 a4 .73
mod011 .1E-05 21 AE-13 50 J1E+09 291 53
modQ1la .1E-05 21 E-13 50 AE+09 29 .53
mod013 IE-04 8 JAE-11 21 1E+08 13 29
mod(14 AE-03 12 JAE-11 33 AE+09 21 42
mod(15 AE-08 13 AE-11 43 AE+04 30 19
mod016 AE-01 8 1E-N9 34 AE+09 26 .49
mod0l7 E-03 18 J1E-12 56 AE+ 10 38 S8
mod0i9 .1E-06 21 AE-09 70 JE+04 49 87
mod020 AE+00 23 AE-11 60 AL+ 12 37 50
mod(21 E-04 19 AE-11 58 JAE+08 391 66
" modiZa 1E-Ot 20 AE-12 89 AE+12 69 .69
p03 AE-03 18 JE-12 34 AE+10 {3 27
p30 1E-04 19 AE-12 38 AC+09 19 .38
P30 AE-04 46 AB-121 65 AE+09 9 .38
shell - LLEOT 17 AE-13 32 AE+07 15 .40
shipi2s AEB-07 8 AE-12 316 AE+06 18 53
stocfori AE-04 it AE-10 27 tE+07 16 42
tiny 1E-07 3 1E-11 3 JE+05 51 .16
tinynl 1E-04 2 1E-18 6| .UE+15| 4] .00
viennal2 AE-07 17 JAL-11 32 JE+05 35 T

Table 2 - Empiricaily observed factor of ebjcctive function convergence B ( cont.)




Problem Name I[SRAEL  u= % —10-¢ §=0.3

0o 1 2 3 4 5 6
Upiate § Itr#  Primal Ob;. Dual Obj. Gap Inf,
0 18  11256.50400000  -896444.83382418

1 19 -896644.84364246  -896644.83382418 10 10+
5 T Ebe  vewEzmis e senes
3 l 42 -896644.82186296  -896644.82186352 10-@  2x 10~
i 41 -806644.82(86304  -896644.82186306 10-%  2x [0-"
" Sy el v tuine  Jeomgiiskens e o gl

Table 3 -"Hot start” phenomenon in NETLIB problem ISRAEL.
Probiem Name P30 p==10-+ f=038

Update # Itr # Primal Ob;. Dual Ob;. Gap Inf.
0 10 34904890000  -68463.28633194

1 1l -6846324387296  -68463.28633194 10~ 10-¢
5L SRS SRS W SR
3 § 26 -68464.29329846:  -68464.29328029 10-*  2x 10-°
4 ) 29 6846429329073  -68464.29320175 10-%  2x [0S
5 ’ 31 -68464.20329011  -68464.29329359 10-® 2 10-¢
R e R T
O USRS, | ARSI TR A i
8 1 35 6846429329383  -68464.29329383 10-%  4x 10-®

Table 4 - "ot start” phenomenon in NETLIB problem P30.

s




Problem Name  FIT2D p== 10" =0.5I

Update g I # Primal Obj. Dual Obj. Gap inf.
0 10 349048.90030 -68463.23633194

I 11 -68463.24387296 -68463.23633194 10~ 10-¢
2 . 22 -68464.29322304 -68464.29320554 10°° 5x 10-3
3 . 26 -68464.29329846: -68464.29328029 10" 2% 10-¢
4 ’ 29  -68464.29329073 -68464.29329175 10~ 2ok 19-F
‘5 . 31 -68464.29329011 -68464.29329359 10— 2% 10-¢
6 ! 33 -68464.29329383 -68464.2932938[ g-3 4% 10-*
7 7 l 314 _68464.29329356 -68464.29329383 [0-12 4 x .l(fl"9
8 l 35 -68464.29329383 -68464.29329383 10-* 4 x 10-"

Table 5 - "Hot start” phenomenon iq NETLIB problem FIT2D.
Problem Name  GREENBEA 4 =+-=10-§ =063

Update # irtr 7 Primal Obj. Dual Obj. Gap Inf.
0 18 -17025.4606 -72555190.8585

{ [0 -72555248.1227 _72555190.8585  10-¢ 10-"

2 . 438 -72555248.1302 -72_555248.129l x [0-1 I x 10-

3 : 49 -72855248.1299 -72555248.1298 10-" Ix 10-1

4 I 50 -72655248.1293 -72555248.1298 10-7 10-1

5 ! 51 -72555248. 1282. -72555248.1298 10~ Sx10-1

6 1 32 -72555248.12838 -72555248.1298 10-" Sxi0-®

7 l 33 ~72555248.1304 -72555248.1298 [0-" S5x10-»

8 1 54  -72555248.1298 -72555248.1298 10-° Sx 10-8

Table § - "Hot start” phenomenon in NETLIB problem GREENBEA.
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