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Abstract We present & genersd Nonlinear Rescaling (NR) methods for discrete minimax
problem. The fundamental difference between the NR approach and the smooth-
ingtechniquemnsis&ofusingﬂmhgnngcmﬂﬁplimuﬂnmaindﬁvingfm
to improve the convergence rate and the nomerical stability.

In contrast to the smoothing technique the NR methods converge to the primal-
dus! solution under & fixed scaling pasameter.

It allows to avoid the ili-conditioning 2ad st the same time impraves the con-
vergence rate. In particular, under the standard second onder optimality condition
the NR method converges with Q-linear rate when the scaling paramcter is fixed,
but small enough.

hd
58

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON



236 NONSMOOTH / NONCONVEX MECHANICS

Moreover, if along with Lagrange multipliers update one decreases the scaling
parameter from step to step then the NR method convereges with Q-superlinear
Tate.
We present two numerical realizations of the general NR method: Newton’s
NR and the Primal-Dual NR methods.

The obtained numerical results strongly corroborate the theory. In particular,
we systematically observed the so-called "hot start” phenomenon, when prom
some point on only one Newton’s step is enough for the Lagrange multipliers

update.

1. INTRODUCTION

A number of important technical problems which arise in structural optimiza-
tion, synthesis of filters, antenna design etc. (see [Ben-Tal and Nemirovsky,
1998]) leads to well known discrete minimax problem

z€X* = Argmin{F(z)|z e R*}
= Argmz'n{l% fi(z)|z e B}, 2.1

where f; : IR® — IRare convex and smooth enough.

Along with nonsmooth optimization methods ( see [Demyanov and Maloze-
mov, 1974],[Kiwiel, 1985],[Lemarechal, 1989],[Shor, 1998] and references in
it) the smoothing technique has been used for the discrete minimax since the
early 70s [Polyak, 1971}, (see also [Bertsckas, 1982},[Charalambous, 1977],
[Sobieszczanski-Sobieski, 1992] and references in if). It has become very
popular lately due to the growing interest to the smoothing technique for the
complementarity problems and constrained optimization (see [Auslender et al.,
1997], [Chen and Mangasarian, 1995] and references in it).

The smoothing technique employs the s monofone increasing strictly
convex function 4 : IR — Rto transform (12.1) into a sequence unconstrained
optimization problems

z(p) = argmin{S(z,p) = pY_v( ' fil@) |z e K},  (122)

=1

where S(z, ) is a smooth approximation for the function F(z).
The solution z* for the original problem one obtains as

= ll‘i__r)noz(p). (12.3)

The smoothing technique is a penalty type approach with a smooth penalty
function, so it is in fact a Sequential Unconstrained Optimization Technique
(SUMT) (see [Fiacco and McCormick, 1990]) type method with all the advan-
tages and disadvantages, that are typical for SUMT method. Along with some
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very important properties of the primal trajectory z(s) for some transformations
4 (see [Nesterov and Nemirovsky, 1993]) the smoothing method is rather slow.
When the scaling parameter i > 0 is small enough, the Hessian V2, S(z, u)
becomes ill conditioned and the area where Newton’s method for the problem
(12.2) is ”well defined” [see [Smale, 1986]) shrinks to a point.

In this paper we consider an alternative to the smoothing technique approach,
which is based on the Nonlinear Rescaling (NR) methodology (see [Polyak,
1988] - [Polyak, 1999] and references therein).

The NR approach consists of using ¢ to transform the original minimax
problem into an equivalent one. The transformation is scaled by positive scal-
ing parameter or by a vector of positive scaling parameters. The Classical
Lagrangian for the equivalent problem is the main tool in the NR methods.

The NR method consists of finding the minimizer of the Lagrangian for the
equivalent problem and updating the Lagrange multipliers, using the minimizer.

The scaling parameter or the vector of scaling parameters can be fixed or one
can update it from step to step. In this paper we restrict ourself to one sealing
parameter.

Our first contribution is the convergence proof of the general NR method
under the fixed scaling parameter. It turns out that for a wide class of transfor-
mations the NR multipliers method converges under the standard second order
optimality condition with Q-linear rate when the scaling parameter is fixed but
small enough. It allows not only to avoid the ill conditioning but also to improve
substantially the convergence rate and the numerical stability.

This remains true if instead of exact minimizer one uses its approximation.
We have pointed out the conditions for a such approximation, which allows to
retain the convergence rate.

If one decreases the scaling parameter from step to step like in the smoothing
methods then the NR multipliers method erges with Q-superlinear rate
instead of arithmetic rate, as it takes place in smoothing methods.

We introduced two numerical realizations of the NR method. The firstis based
on Newton’s method for primal minipization followed by Lagrange multipliers
update. The second uses Newton’s method for solving primal-dual system,
which combines the optimal condition for the primal minimizer with the system
for the Lagrange multipliers update. This is our second contribution.

The numerical realizations have been implemented. The correspondentMAT-
LAB codes were used for solving large enough minimax problems.

We compare the numerical results with results obtained by the smoothing
technique as well as results obtained by using the NR approach for the con-
strained optimization problems, which are equivalent to the discrete minimax.
In both cases the NR multipliers method for discrete minimax produced much
better results. This is our third contribution.
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The obtained numerical results show that NR method allows to solve a wide
class of discrete minimax problems with up to 10 digits of accuracy using only
few Lagrange multipliers update. We observed that the number of Newton’s
steps required for the Lagrange multipliers update systematically decreases
from one update to another. From some point on ( the hot start”) only one
Newton’s step is enough for the Lagrange multipliers update. Moreover the total
number of Newton’s steps is almost independent on the size of the problems.

The paper is organized as follows. In the next section we state the problem
and describe the basic assumptions. We also discuss the main motivations for
the NR approach to the minimax problem in Section 3.

We consider the equivalent problem, the correspondent Lagrangian and de-
scribe the NR multipliers method in Section 4.

In Section 5 we prove convergence and estimate the rate of convergence of
the NR multipliers method.

We consider the numerical realization of the NR method in Section 6.

In Section 7 we describe the numerical results. "

We conclude the paper with some remarks concerning the future research.

2. PROBLEM FORMULATION AND BASIC
ASSUMPTIONS

The discrete minimax problem congists of finding
z* € X* = Argmin{F(z) |z e R'} # 8, 1249

where F(z) = oax fi(z)and f; : IR* = IR,i=1,... ,m are smooth and
convex. =i=m

We assume that X* is bounded. This implis that for any z € I® and for
any direction 2 € IR® limg o0 F(z + £2) = 00.

Without loss of generality we can assume that F'(z*) = 0. So for any ¢ > 0
the set @ = {z : F(z) < ¢} isbounded and fi(z*) < ¢,i =1,...,m.

Therefore there exists \* € IR} such that the following Karush-Kuhn-Tucker
(KKT’s) conditions for the discrete minimax hold true.

V.L(z*, \*) = f: XVfi(z*) =0 (12.5)

=1

Afi(e*)=0,i=1,...,m (12.6)

XeSn=(AeRP:Y N=1}, (12.7)

=1
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where L(z,\) = Y™, A f;(z) is the Lagrangian for the original problem 12.4.
LetI* = {i : f;(z*) = F(z*)} = {1,... ,r} is the active set.
Letalsof(z) = (f(a), i = 1,... ,m)and fyy (&) = (fi@), i=1,... 7).
bR.eSpecﬁvcly Vi(z) = J(f(z)) and Vfy(z) = J(f(r)(z)) are their Jaco-
ians.
We will say that the pair (z*, \*) satisfies the second order optimality con-
ditions, if

(V2.L(z*,2*)y,y) 2 p(1,9), >0, Yy : V(r)(=*)y = 0, (12.8)

filz*) < 0=F(z*),i=r+1,... ,m, (12.9)
rankV f,)(z*) =1, (12.10)
A €SpandA} >0,i=1,...,r (12.11)

holds true.

We complete this section with the Debreu type theorem which will be used
later.

Let A : I®* =& IR be a symmetric matrix, B be an r X n matrix and
A = diag(X)L_; : R* = IR be a diagonal matrix with positive elements. If
(Ay,y) > po(y, ), Vy : By = O then there exists 9 > 0, such that for any
0 < p < pp we have

((A + uBTAB)z,z) > p(z,z), Vz € K (12.12)
asfaras 0 < p < pgo.
3. SMOOTHING TECHNIQUE IN DISCRETE
MINIMAX ’
The smoothing technique consists of replacing F(z) = JAX fi(z) by a

smooth approximationand using this approximation in the framework of SUMT.
We introduce a class ¥ of smoothing transformations, which satisfies the
following properties:

P1 $(0)=0, ¢/(0)=1,
P2 ¢/(t) >0,

P3 ¢'(t) > 0,

P4 Lm ¢'(t) =0,
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Before we describe the general smoothing method let us introduce a few
transformations ¢ € V.

1. Exponential $(t) = et — 1,

2. Logarithmic () = —In(1 — 8),

3. Hyperbolic ¥3(t) = tt;,

4. Log-Sigmoid ¥4(£) = 2In0.5(1 + ¢*).

One can verify the properties P1-P4 directly for transformations ¥ - ¥4.

Moreover it is easy to see that for the transformations ¥; - ¥4 property P4
can be strengthen, i.e. for any @ < 0 there exists b > 0 the following inequality

P5¢/(u~'a) < pb '

is true as soon as 0 < u < g and pg is small enough.

We define the smoothing function S : IR* x IR, ; — IRby formula

m
S(za ”) =p E¢("~1fi(z))7
i=1
where g > 0 is a scaling parameter.
Due to the convexity of ¥ and all f;(z) the smoothing function S(z, i) is
convex in z for any g > 0. Also S(z, ps) is as smooth as ¢ and f;.
One can find an approximation for * by solving the unconstrained optimiza-
tion problem

z(p) = argmin{S(z,p) |z € R'}. (12.13)

It turns out that lx_g’no z(p) = z* € X*. 'I‘he‘cxistence of z(p) follows from
m

the boundness of X™* and the properties P2 - P4.

As we mentioned already the boundness of X* = {z : fi(z) < 0,1 =
1,... ,m} leads to the boundness of R = {z : F(z) < c} for any c > 0 (see
[Fiacco and McCormick, 1990]). It means that the recession cone of the set 2
(see [Auslender et al., 1997))

Qoo = {y: s — 00, 24 € Rwithy = 71}
k

is empty.
Therefore for any given £ € 2 and z # 0 there exists fp and £ > 0 :
(V fio(z + 22), 2) > 0. Using the convexity of f;, we obtain
Jio(z +12) — fio(z +12) 2 (t — D) (VSi(z +12), 2).

Therefore eli-iﬁo fio(z +1t2) = o0.
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Using the convexity ¥(t) we obtain
Y fio (@ + t2)) — ¥ fio(z + 12)) 2

s (57 o (& + 52)) (fio (@ + 2) — fio( + E2))
So keeping in mind P2 we have
Lim Y~ fio (z + £2)) = co.
Invoking P4 we conclude that
Jim S(z +tz, 4) = lim 5 Evﬁ(ﬂ‘lf.-(x +12)) = 00

for any 4 > 0.
Therefore z(u) exists, i..

VaS@(),m) = Y ¥ (6 filzW) Vhilzw) =0. (1219
=1

Moreover the primal trajectory {z(ss)}5..,,, is bounded. Taking into account

F(z(s)) > 0 and P1, we obtain 7(z(s)) = X2, ¢’ (6™ fi(z(w))) 2 1.
Let us consider the vector of the Lagrange multipliers

Aw) = i(p) =¥ (5 filz@)) 7~ z(@), i=1,... ,m  (12.15)

The dual trajectory {A(1s)}5_ ., >0 is bounded because A(y) € Sm = {A €
R} : Y A = 1}. Without loss of generality we can assume that

E= ‘l‘i_x’nox(p) and A 31_?6 A(p).

Then for i € I_(F) = {i : fi(Z) < 0} due to P4 we obtain X; = 0. Therefore
by passing both side of the system (12.14) to the limit we obtain

V.S(Z,0 = Y XVfiF) =0,
iclo(¥)

where In(Z) = {i : f;(Z) =0} ={1,...,r}.
In fact, assuming that I, (£) = {i : f;(Z) > 0} # O,i.e. there exists at least
one index ép : fi, (%) > 0 we obtain ”li_%p‘“lf.-o(:c(u)) = o00. Due to P2 and

P3 we have ‘l‘i_r’notﬁ (8 fio(z(1s))) = 00. On the other hand due to P4 for any
i € I_(T) we have
lim o (5™ fi=(W) =0,
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and
lim o (6~ filz(w)) = Fi > —o0, i € I-(3).
Therefore for 4 small enough
Sew),p) = s Y, @ fi=w)
i€l (z(n))
+ 5 Y, YT fi=@w) >0 (216
i€Ly(z(w))

On the other hand due to P1 - P2 we have

 S(a(w),p) < S w)=u Y Y filz") <0

i=r+1
The contradiction allows to conclude that I, (Z) = @ and

F(@) = max fi(z) = max fi(z) =0,
i.e. the pair (Z, \) satisfies the KKT’s condition (12.5)-(12.7), therefore (Z, A) =
(=*, 2*).

Moreover, if the second order optimality conditions (12.8)-(12.11) are satis-
fied, then using arguments similar to those in [Polyak, 1988] (see Lemma 2)
one can prove the following lemma for any ¢ € W.

Lemma 12.1 ¥ f;(z) € C? and the standard second order optimality condi-
tions (12.8)-(12.11) are satisfied then for any formation ¢ € ¥ there exists
a small enough po > 0 such that

1. the estimate
lz(s) — =*|| = O(us), |A(1) — A*[| = O(n) (12.17)
holds for any 0 < p < po.

2. the smoothing function S(z,ps) is strongly convex in the neighborhood
of z(p).
Now we will consider the smoothing function S(z, i), its gradient V. S(z, 1)
and Hessian V2_5(z, z) in the neighborhood of z(u) for s > 0 small enough.
First of all using the Lipschitz condition for fi(z), i = 1,... ,r in the neigh-
borhood of z* and 12.17 we obtain

s Hiz(w) = p7 (filz(w) - fi(z*) = O(1),i=1,...,m (12.18)
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for any 0 < p < po.
Therefore in view of the smoothness f; and ¢ € ¥ and taking into account
P2-P3, there is 0 < a < band 0 < ¢ < d such that
a < (5 filz(w)) <bi=1,... 1, Vi € (0, po] (12.19)
and

c<¢" (b fiz(w)) <d,i=1,...,r, Yp € (0, po] (12.20)

Also using P4 we obtain li_LR) ¥ (5 fi(z(p))) = 0,i € I_(z*). Therefore for
M
small enough p > 0 we have

VS (@), ) = Y ¥ (57 file(w) Vil (ws))-

i=1

Hence for the Hessian V2,S(z, is) we obtain

V2,8 (z(u), ) = 3 ¥ (67 filz())) V2 Silz())+

=1

sV Yo" (5 e (W) V@)V () =
=1

r(o() 3 AWV )+

i=1

BV i (&) (5 @) VT (@) =

2(WVEL() + 57 Vi) " (OVIE ()
or

V25(p) (12.21)

7() [VLLO) + (x ) (Vi OTOVIHO) ], a2
where () = m(z(u)) = Ty ¥ (fi()) and ¥7() = diag (#" (s~ i) -
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It follows from (12.19) that there is 0 < o’ < bV that @' < w(z(p)) <
V. Therefore using the second order optimality condition (12.8)-(12.11) and
Debreu inequality (12.12) with A = V. L, B=V f(“; , A = ¥" we can find
p > 0 that

mineigenval V2,8 (z(p),4) 2 p >0, V0 < s < pio.

~ On the other hand due to the second term in (12.22) for small enough i > 0
we have

mazeigenval V2,5 (z(p), p) = O(s™").
Therefore

mineigenvalV2,S (z(p), 4)
mazeigenval V2, S (z(u), )

condV2,5(z(p), ) = = O(u)

‘l‘i_l)%co"dvzzzs(x(l‘)vﬂ) =0.

Hence the areaaround z(ys) where Newton’s method for solving V. S(z, p5) = 0
is well defined (see [Smale, 1986}) shrinks to a point when s — 0.

In the next section we will consider the NR multipliers method, which allows
to eliminate the mentioned drawbacks. The NR method converges under the
fixed s > 0, just due to the Lagrange multipliers update. Therefore the area
where Newton’s method is "well defined” does not shrink to a point Moreover,
under the second order optimality condition instead of estimation (12.17) the
rate of convergence is Q—linearandﬂlemﬁocqbemadeassmallasoneneeds
by adjusting the scaling parameter g > 0.

4. NONLINEAR RESCALING METHOD

First, we transform the original pn;blem into an equivalent one using one of
the transformation ¢ € W. The transformation is scaled by a scaling parameter,
i.e. instead of original problem (12.1) we consider an equivalent problem

z* € X* = Argmin{F,(z) = p max Yl fiz) |z e B}, (1223)

Our main tool is the Classical Lagrangian for the equivalent problem £ :
I x Sy x Ry — Rwhich is defined by formula

Lo 0 = 53 AV i), where) € S = (A € R : D N = 1.
i=1

§=1
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Before we will describe the NR multipliers method we would like to mention

a few important properties of the Lagrangian £(z, ), ) at the KKT’s pair
(z*, A*). For any s > 0 we have

L L2 8) = s T2 N~ filz") = F=*) =0.

2. Vo L(z*, X, p) = X2, NV (" fi(2*))V fi(z*) =
=¥ IA:VI.(x)-v,L(z %) =0

3. V2L, 3 p) = VEL(E, X +u W O)V fy ()AL, V15 (),

where A%, = diag(X})i

The properties 12 — 3% follow directly from P1 and the complementarity
condition. _

The Lagrangian [.(a:, A, p) is convex in £ € IR for any A € Sy, it is strictly
or strongly convex in z if at least one of f;(z) is strictly or strongly convex and
the corresponding A; > 0.

The Lagrangian £(z, A, i) is as smooth as f;(z) and 4. For A = \* and any
# > 0it is an exact smooth approximation for the nonsmooth function F(z) at
z=2zx%ie. forany y >0

z* = argmin{L(z,\*, p)|z € K'}, (12.24)

Moreover, if none of f; is convex but the standard second order optimality
conditions (12.8)-(12.11) are satisfied then due to 3° and the Debreu theorem
the Lagrangian £(z, A, #) is strongly convex in z if 4 > 0 is small enough and
(12.24) holds.

The unconstrained minimization of £(z, ), ) in z followed by the Lagrange
multipliers update leads to NR multipliers méhod.

Let A% € Sy, is a positive vector and s > 0. Let us assume that the pair
(=%, X\*) € IR* x Sy, have been found already. We find the next approximation
(z*+1, A211) by the following formulas:

z*+! = argmin{L(z, \*, u)|z € K}, (12.25)

Mo WA, =AY 229

=1

MH =3l =1, ,m (12.27)

Due to the properties P2-P4 the method 12.25-12.27 is well defined and the
vectors of the Lagrange multipliers X*, s > 1 remains positive if \? € RT,.
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Also for z**! we have

VLEL N, = 3 M ) VAE) =

=1
m
M1 YAV = 1 L™, X)) =0 (1228)
=1
or
2t = argznen;g L(z,2**1), (12.29)

We can avoid the normalization procedure 12.27 by introducing shifts for the
functions f;(z). In other words on the step 8 > 1 foreach 1 < § < m we can
introduce a shift ¢} that

A = A + N

or

-1 1y 4 gaHl _'\:“
Y (=) + 7)) = .

i

Due to P3 there exists a unique inverse function ¢/ ~!, i.e

f-(z‘“)“p‘df"l()\;“, ) -t (12.30)

Therefore shifts 21! can be uniquely defined by
s+
() - e

where 9* is Fenchel transform of ¢ € ¥. From (12.29) we have
d(Aa-l-l) = min L(z, A‘+1) = L(x8+1, Al—l-l),
z€IR®

where d()) = nenl% L(z A) is the dual function. Also
4
f(z'+1) € M(X"H),

where 8d()) is the differential of d(A). Therefore from (12.30) we obtain

0 € ad(\**) - Z (mp“ (5— ) t“”) &, (12.31)

=1
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where ¢; = (0,... ,1,...0).
The system (12.31) is the optimality condition for the vector

A = argmaz{d(3) - EA: G -] 1xem).
(12.32)

Therefore the method (12.25)-(12.27) is equivalent to the Prox-type method
(12.32).
S. CONVERGENCE OF THE NR METHOD

In this section we will prove the convergence and estimate the rate of con-
vergence of the NR method (12.25)-(12.27) under the standard second order

optimality conditions.

Theorem 12.1 [fthe second order optimality conditions (12.8)-(12.11) aresat-
isfied and f; € C?, then for any positive vector of Lagrange multipliers AESH
and any 0 < p < po, where pg > 0 is small enough the following statements
are true

1. there exist £ and t such that

& = argmin{y_ (s~ (fi(z) + &)) |z €K'} :

=1

Zw'(u 1(f#) + 8) V) -—):XVf.(f) 0,

i=1
where A = (:\o'#"(#"l(fi(ﬁ) ;i-i})), i=1,... ,m) € Sp.
2. for the pair & and X the following estimates hold
£ — 2| < culld = X[, % = A"l < epllx = X
where ¢ > 0 is independent on i > 0.
3. the Lagrangian L£(z, )\, is) is strongly convex in the neighborhood of 2.

The proof is along the lines of the proof of the Theorem 1 in [Polyak, 1988].
We will only point out the main steps.
We consider the Lagrange multipliers vector

'{A\(zv Atyp) = (AiW(ﬂ—l(fi(x) +t)),i=1,... ’m) =’i\() (12.33)
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‘/’I‘hen“)«(z‘,,\‘,o,p) = X* for any & > 0 or \* is a fixed point of the map:

v

A=Az, 2,0, ).

Let h(z, A t, ) = h(-) = T2, 11 () V fi(-), then h(z, A, ¢, p) is smooth.
Also h(z*,2*,0, ) = 0 and h(z, \, t, ) is continuous in the neighborhood of
(z*,A*,0, 4s) together with its derivatives in z, i.e. h'(z*,A*,0,) = 0 € .

We consider the following map &(z, \, ¢, ), p) : ROH3m+1 _, ettt iy
the neighborhood of (z*, X*, 0", 0) defined by formula

3 MV i) + h(z, Aty )

=1 .
8z, N t, ) = | filg)+t—pp” (%}) i=1,..,r (12.34)
i)liw T i@\t u) =1

i=rt1
Then in view of KKT’s condition, F(z*) = fi(z*) = 0,4 = 1,... ,rsand
¥ (1) = 0 we obtain &(z*, X*,0,X*, ) = 0 € R+, Also

o VL Vfg, ©
Vot 2@ X030 = | Vi 0 e |, (1239
0 ery O

where eS,.) = (1,...,1) e K, i(,.) = (X.',i = 1,...,r), e = (t,d =
L...,r).

The matrix V¢, ® is nonsingular. In fact, consider a vector w =
(v,v,7),y € R’,v € R and 7 € R Then V5,1, Bw = 0 implies

Veely + Vf(ff,ul 0 (12.36)
Viny+rer =0 (12.37)
(e¢r)sv) =0 (12.38)

By multiplying the second system by A, we obtain Vi y)+r(er), Azr)) =
r r
0. Soin view of 3° A} = (e(r), X)) = 1 wehave (3 AV fi(z*),y) + 7 =0.
=1 =1
Taking into account KKT’s condition é A}V fi(z*) = 0 we obtain 7 = 0.
= ,
Therefore from (12.37) we have .
Viey=0. (12.39)
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By multiplying (12.36) by y we obtain
(VELv,v) + (Veyy,0) =0.
Hence we have (V2,Ly,y) = 0 for Vy : Vf,)y = 0. Invoking (12.8) we

obtain y = 0. Then from (12.36) we have V f)v = 0, which together with
(12.10) leads to v = 0. In other words sz(')t(r){nu =0=>w=0o0

Vzi(,,t(,)‘l' is nonsingular in the neighborhood of 2* = (z*, Aty 0 4\?,),0).
Since f;(z) € C? the implicit function theorem (see[Bertsekas, 1982]) suggests
that in this neighborhood of 2* there exists smooth vector functions £(-) =
Q(A’ ”)9“(') =“(A7 “)1 t(') = t(Av I‘) such that

& (2(),3), 8 A u) = 2() =0

or

Y MOVLE() =0

=1

MO =¥ (B (HO+HEN) A i=1,...,r
and 2_:1 M) =1
By differentiating the identity ®(-) = 0 with respect ;) we obtain
Vﬂ(,)t(,)i(‘)w(') + V»\(.-)@(') =0,

where () = (V200 ), VA 3 Vs t(\, ) . Therefore

-1
w() = (Vo 80))  Vay20)-

Since VA(')‘(')Q(-) is nonsingular in the neighborhood of A* there exists
such ¢; > 0 that

s | .
1V St @ O S 1
Also there is such ¢2 > 0 that
IIVA(,)‘I’(')Il < ogp.
Therefore for ¢ = ¢1c2 we have
lw() < cp. (12.40)
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Since T(X*,p) = z*, \)(X*, ) = Al from (12.40) using consideration
similar to those in [Polyak, 1988] we obtain

2, 1) — 2*[leslirgy — Al (12.41)
Ay 1) — Xllesslingy — Ayl (1242)
Also from (12.26) and P5 follows

() = ¢ (6 filz())) SbApyi=r+1,...,m
Therefore we can rewrite (12.42)) as follows
12 — 2*l| < eslld = A, 1A = X%l < epllx — A°]l, (12.43)

The strong convexity of £(z, A, ps) in the neighborhood of (z*, A*) follows
directly from the formula for V2,_L(z, A, ), estimation (12.43) and Debreu
inequality (12.12).

The method (12.25)-(12.27) is a theoretical one because it requires finding
&= 21211% L(z, \, ps). It turns out we can find approximation for £, which holds

the estimation (12.43) as long as the standard second order optimality conditions

(12.8)-(12.11) are satisfied and g > 0 is small enough.
Instead of finding £ = znenlxé L(z, A\, s). we consider

% : |VaL(z, A\ p)|| < TIAE, A ) — A}, (12.44)

where A(z, ), ) = X() = (N =¥ (™t ;{3))&,1-1 ,m),
n(z,\p) = E'l”(u 1£i(z)) ) and

—X(Ey A»") (A.(Z, 7’-‘)” 1(3’ ’I‘)’ i= 19- .- M),
Then the following proposition, which is similar to the Proposition 2 in
[Polyak, 1988] takes place.

Proposition 12.1 If the second order optimality condition are satisfied and the
Hessians V2, fi(z),§ = 1,... ,m satisfy the Lipschitz conditions then for any
p > 0 small enough and any positive vector A € Sy, the following estimation
holds true

12— z*[| < e(1 +7)pliA =A%), IX = A" < el + T)ullA — A% (12.45)

The estimation (12.45) can be proven using considerations similar to those in
[Polyak and Tretyakov, 1974] and [Polyak, 1999].

The possibility to replace the exact minimum £ by Z provides the stopping
criteria at each step of method (12.25)-(12.27). It allows to consider a numerical
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realization of the multipliers method, which requires finite number of iterations
at each step.

In the following section, however, we will consider stopping criteria which is
based on the converging to zero sequence of positive numbers and the primal-
dual gap. We used this criteria in our calculations which are presented in Section
7.

6. NUMERICAL REALIZATION OF THE NR
ALGORITHM

We consider two numerical realizations of the NR method for discrete mini-
max,

In the first realization we use Newton’s method with step length for mini-
mization of the Lagrangian £(z, ), i) in primal space followed by the Lagrange
multipliers update. ‘

In the second realization we use Newton’s method for solving the primal-dual
system of equations, which consists of the KKT’s equations and formulas for
the Lagrange multipliers update followed by the normalization of the Lagrange
multipliers.

As a stopping criteria we use the primal-dual gap

A(z,\) = F(z) — d()).
For any z € IR® and X € S,, we have A(z, ) > 0 and
A(z,\) =0 iff z=z* =X

Newton’s NR method for discrete minimax consists of using Newton’s method
with step size for minimization £(z, A’, 1) i  up to the point when
[IVzL(z, A*, )} is rather small and then update the Lagrange multipliers us-
ing the approximation for 7*t! in the formulas (12.26)-(12.27). In particular,
we can use the formula (12.44) as a stopping criteria at each step. Another
way consists of choosing a positive"monotone decreasing sequence {4, }22, :
lim, o0 8, = 0 to control the value ||VL(-)]|.

In the following algorithm we choose the scaling parameter g > 0 and
parameter § > 0 small enough and decrease them linearly using parameters
0<vy<land0 < x <1 as ratios.

NR Algorithm:
An accuracy parameter € > 0
Primal z° € IR*, dual X% = (1,...,1) e R®
Initial scaling parameter & > 0, initial accuracy § > 0
and two parameter0 < y< land0 < s < 1
begin
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z—zoA—AoF—r<na<xf.(“)
while A(z,\) > e do

while | VL(z, A, p)]| > 6 do
begin
find Az : VZ,L(z, \, p)Az = -V L(z, A, p)
t:=1;
while L(z + tAz, A p) — L(z, \, ) >
0.33t(V.L(z, \, ), Az)
dot:=t/2;
z =1z + tAz;
end

= E P @)

A= /\d" (w1 (z))"f_l, i=1,.
F:= mu f!($)7 Ec_l A'fc(z)’ Alz,A) :==F —

d —67, u =
end
end
outputz, A, F

Now we describe Primal-Dual NR method for discrete minimax.
We consider the KKT’s equations

VL(£,)) = AVfi(&) =0 (12.46)

together with the formulas for the Lagrange multipliers update

=9 (5 i@) N (1247)



Nonlinear Rescaling in discrete minimax 253

Let's linearize the system (12.46)-(12.47) with regard £ and , i.c. let’s assume
#=z+4 Az, A=A+ A Then

S XVAi(E) =Y (% + ANV Si(z + Az) =
=1 =1

3 0% + AN)(VSi(e) + V(@) Az) =

=1

Y AVfiz) + Y ANVSil=) +

=1 =1

f:)qv2f.-(z)Az+ Y ANVSi(z)Ax. (12.48)

=1

By ignoring second order terms we obtain

(CAVH@)Az + 3 ANVAila) =~ S NVAE)  (1249)

=1 =1

Further, the system (12.47) we can rewrite as follows:

N+ AN = ¢ (W (e + Az)) ki =

¥ (b i) + u Y fi(z)Az) M.
By ignoring second order terms in the right hand side we obtain
?
X+ AN = Ny (57 fi(@) + p7 A" (071 filD)) Vi) Az
or

—uIZy” (6 fi(2)) Vii(z)Az + AN =

MWW (=) -1),i=1,...,m. (12.50)
Combining (12.49) and (12.50) we obtain
V2, L(z,)Az + VfT(z) A\ = V. L(z, )) (12.51)

—p AV (5 f(2)) Vi(@) Az + A = (¥ (a7 f(z)) — ) A (12.52)
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By introducing the primal-dual corrector Ay = (Az, AX) and the dual pre-
dictor X = (X, = ¢'(p 1 fi(z)) M, i = 1,... ,m) we can rewrite the system
(12.51)-(12.52) as follows

MAy = [ V‘L(z’ ) ] (12.53)
where
M= Y2I:1A\I:"Vf V{T]
and W' = diag (¥’ (s~ lf.(z))),_l,A diag(X\:),
" = diag (¥"'(s~ fi(=))) ., - >From (12.52) we have
AX=p AV'VFAZ + (X - ) (1254)

After we substitute A in (12.51) we obtain the following system
V2, LAz + VfT (p1AV"VfAz + (X — X)) = -V.L,  (1255)

(V2 L+ 'VITAW'Vf) Az = -V, L-VfI(X - N = (1256)

~V.L(z, X). (12.57)

>From the system (12.57) we find the primal cprrector Az. Then from (12.54)
find the dual corrector A\ and X = A+AX enextappronmahon for the
Lagrange multipliers vector is A := A(Y™, X)L

We can view the primal-dual method as dual-primal predictor-corrector. First
we predict the dual X' := M\’ (5~1 £(%)), then solve the system (12.57) to find
the primal corrector Az and then we find the dual corrector A from (12.54)
and normalize the dual approximation.

The primal-dual method is fast and numerically stable in the neighborhood
of (z*, X*). To make the NR method converge globally we can combine it with
Newton’s NR or with a smoothing method, using technique similar to those
described in [Melman and Polyak, 1996].

Newton’s NR method has been implemented and the MATLAB based code
was applied for two different sets of discrete minimax problems.

The first set is random generated Quadratic minimax problems, i.e. a prob-
lems type (12.1) with

fi(z) =057 Qiz + qf T+ Giyi = 1,...,m
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where Q; = QT : R* — R" positive definite matrices, and ¢; € IR?, g;, € R
The second set is Chebichev center problems, i.e. for a given set of points
{yi e R, i =1,... ,m} one wants to find the Chebichev center

* . ai?
T -argmm{lggn Iz — will* |z € R}

In other words we want to find the center z* of a sphere with minimum radius,
which can cover the set {y;}7,.

For the first set of problems we used both versions of Newton’s NR method
with a fixed scaling parameter, which we update from step to step. There is a
few observations following from the obtained results.

1. For all problems we observed the so-called "hot start” phenomenon (see
[Polyak, 1992] [Melman and Polyak, 1996]), when very few and from
some point only one Newton’s step is enough for the Lagrange multipliers

update.

2. The number of Lagrange multipliers update and the total number of New-
ton’s steps is practically independent on the size of the problem.

3. All problem have been solved with final duality gap 10~°.

We compared the obtained results by Newton’s NR method with smoothing
technique. For the smoothing method with the same nonlinear rescaling func-
tion ¢ and po = 0.1, v = 0.1, 0.2 it requires much more Newton’s steps to
achieve the same accuracy because after each scaling parameter update the old
approximation does not belong to the area where Newton’s method is "well”
defined (see[Smale, 1986]). Therefore after.each scaling parameter update it
requires some effort to get back to Newton’s}rea (see Tables 12.4, 12.5.

In case of NR method it is possible to eliminate this effect because the area
where Newton’s method is "well” defined remains stable (see Table 12.6).

Finally we would like to mention ihe problem (12.1) is equivalent to

minz = Tp41 (12.58)
s.t.
filz) —zp41 £0,i=1,... , m (12.59)

Itturnsout that replacing (12.1) by a constrained optimization problems (12.58)-
(12.59) leads to substantial increase of the total number of Newton’s steps
although for the problem (12.58)-(12.59) we also applied the NR method.

In this case we also observed the "hot start” phenomenon, which is typical
for NR methods, but the total number of Newton’s steps is almost ten times
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it lgl/n gap # of steps

0 4.271734e+09  6.105779e+04 0

1 4.407985e-01  1.769816¢-01 21

2 1.247075¢-02  3.321384e-03 12

3  3.608019e-04  5.814294¢-05 1

4 5.087897e-05  3.158259¢-06 1

5  1.774342¢-05 2.369148e-07 1

6 9.149201c-06  1.979549¢-08 1

7 1.133337¢-06 1.513192¢-09 1
Total number of Newton's steps 38

Table 12.]1 Quadratic Minimax. Newton’s NR method. n = 500, m = 300, r = 100,
p=0.1=const

more than in case when Newton’s NR method was applied to discrete minimax
problem directly.

It refiects “degeneracy” phenomenon which is due to the extension of the
primal space. Newton’s method being applied in the framework of NR tech-
nique for the problem (12.58)-(12.59) turns out to be substantially less efficient
because the corresponding system of linear equations are far from being as sta-
ble as the corresponding system when NR mee is applied to the discrete
minimax problems directly.

NUMERICAL RESULTS

The first three tables (12.1), (12.2) and (12.3) present the results for three
different random generated problems with the same number of variables n =
500 and the same number m = 300 of functions f;(x) but different number r
of active functions. We applied Newton’s NR method to solve these problems.

7.

The next rwo tables (Table 12.4 , Table 12.5) present results obtained by
using smoothing technique for the same random generated minimax problem
withn = 300, m = 200 and r = 100. We use different strategies for the scaling
parameter update, but the total number of Newton's step is about the same in
both examples. '

Table 12.6 shows the performance of NR Newton’s method for this problem.
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it lgl/n gap # of steps

0 3987928e+10 1.312341e+03 0

1 1563947¢+00 4.702257¢-01 26

2 2398495¢-02  4.586030e-03 10

3  1.480449¢-04  4.008626e-05 2

4  4998604¢-05 2.391677¢-07 1

5 839267206 9.477171e-10 1
Total number of Newton's steps 40

Table 12.2 Quadratic Minimax. Newton's NR method.

p=0.1=const

n=500,m=300,r;-.=10,

it lgl/n gap # of steps
0 6.123844e+ll  4.900217e+0S 0
1 4.055045¢-01 1.066249¢-02 22
2  3.830370e-03  3.198765¢-04 17
3  1.167304¢-03 2.949390205 2
4  5.054220e-04 4.937376¢-06 1
5 1.774485¢-04  8.228653e-07 1
6 2.817522e-05 * 1.266776e-07 1
7  5.063400e-05 1.846078¢-08 1
8 1.996417e-05 2.019193¢-09 1
Total number of Newton’s steps 46

Table 12.3 Quadratic Minimax. Newton’s NR method. n = 500, m = 300, r = 280,

p=0.1=const
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it gl/n gap # of steps
0 3.8761290+10 5.544589¢+04 0
1 6.645551e-02  9.767213¢-02 18
2 3.209086e-02  8.295744¢-03 13
3  6.623261e-02  9.155524e-(4 23
4  9.243970e-02  9.878368¢-05 32
5 557045302  4.583108¢-06 14
6 8.603320e-02 1.017187¢-06 43
7 5.195266e-02  6.913358¢-08 8
8 3.564213¢-02 7.167045¢-09 20
Total number of Newton’s steps 171

Table 12.4 Smoothing method. » = 300, m = 200, r = 100, pto =0.1,7=0.1

it Isl/n gap # of steps
0 3.8761290+10 5.544589¢+04 0
1 6645551e-02 9.767213¢-02 18
2 8.060323¢-02  1.849595¢-02 6
3 2669111e-02  3.396737¢-03 6
4 6.872043¢-02 3.27 13899{04 9
5 4925083e-02  8.335165¢-05 18
6 8247744c-02  2.303061c-05 18
7  9.735537¢-02 *5.135152¢-07 12
8  3.791857e-02  8.134346e-07 21
9  8.744086e-02  4.204158¢-08 14
10 6.969266e-02  1.661993¢-08 19
i1 7.516014e-02  2.520661¢-09 16
Total number of Newton’s steps 157

Table 12.5 Smoothing method. n = 300, m = 200, r = 100, sso = 0.1,y = 0.2
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it lgl/n gap # of steps

0 3.8761290+10 5.544589¢+04 0

1 5372130e-01  9.724620e-02 20

2 1.104875¢-02  1.305847¢-03 14

3 1.219049e-03  1.446832¢-05 2

4  3.675979¢-04  7.240549¢-07 1

5 1.818994e-04  1.547403¢-07 1

6 7.641389¢-05 4.647747¢-08 1

7  8322390e-06 2.197183¢-09 1
Total number of Newton’s steps 40

Table 12.6 Newton’s NR method. n = 300, m = 200, r = 100, go = 0.1, 7y = 0.66
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it igl/n gap # of steps

0 20298734+11 6.736350e+05 0

1 2980716e-01  6.716260c-02 23

2 4.644735¢03  9.155294e-04 16

3 8997086e-04  9.092558¢-06 2

4 1176992c-04 2.20662%06 1

5  3.137098¢-05 8.531576¢-08 1

6 439272105 1.163497¢-08 1

7 5515149e-05 * 6.744794c-09 1
Total number of Newton’s steps 45

Table 12.7 Nonlinear Rescaling. n = 1000, m = 500, r = 300, po = 0.1, v = 0.66

Table 12.7 represents the performance of NR method for the randon generated
problem with n = 1000. The results reflect the fact that the number of Newton’s
steps is independent on the dimension of the problem.
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it lol/n gap constr violat  # of steps
1 1.912858e+01 1.922016e+01  5.632464e-02 164

2 9.531485¢-01 4.491116e-01  7.120833e-02 131
3 7.724585¢-02  1.912551¢-04  5.936578e-02 42
4 9783521c-04 2.316859¢-05 6.524854¢-03 11
S 2.033553e-03 2.149152¢-05 6.106230e-03 2
6 6512459¢-05 1.472351e05 8.429840e-04 2
7 2.501971c-04 6.816172c-06 1.345928¢-04 1
8  1.725497¢-04 5.279747e-07 2.446371e-04 1
9  5914055¢-05  7.340055¢-07 8.454459¢-07 1
10 1311045¢-05 1.156677¢-07 7.921827¢-08 1
11 8.005334e-06 1.963896e-08  1.163732¢-08 1
12 3.563255¢-06 6.889967¢-10 1.429145¢-09 1
Total number of Newton’s steps 358

Table 12.8 Constrained minimization. n = 300, m = 200, r = 100, 4 = 0.1 = const

Table 12.8 shows the performance of NR method applied to equivalent con-
strained optimization problem. The chosen problem is the same as in Table
12.4, Table 12.5 and Table 12.6. and Table 1235.

Finally in Tables 12.9, 12.10, 12.11 we results obtained with Newton’s
NR method for three problems of finding Chebichev center for m = 200 and
m = 1000 points in IR and one Chebichev center for m = 10 points in .

The next tables show the performangce of NR algorithm for Chebichev center
problems in IR®. The number of points is m.

8. CONCLUDING REMARKS

The NR approach for discrete minimax produced results, which are in full
compliance with the outlined theory. In particular, we systematically observed
the so-called “hot start” phenomenon, which has been predicted in several
papers where NR approach was applied for constrained optimization [Polyak,
1992] [Melman and Polyak, 1996].

Due to the "hot start” from some point on it is possible to reduce substantially
the number of Newton’s steps per Lagrange multiplier update. Moreover, from
some point on only one Newton’s step is enough to update the Lagrange multi-
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it dual value gap # of steps
0 3.360553c+01 5.289076e+01 0
1 1.094691e+01 1.261813c+01 4
2 2.1676760+01  1.079517-01 6
3 21730446401  4.695135¢-03 2
4 2173333e401  1.054259¢-03 1
5 2.173397e+01 2969259004 1
6 21734156401  8.990378¢-05 1
7 2.173421e+01  2.781590e-05 1
8 21734226401  8.666529¢-06 1
9 21734236401  2.7063920-06 1
10 2173423401  8.4577036-07 1
11 21734236401  2.643709¢-07 1
12 2.1734236+01  8.264301c-08 1
13 2.173423e+01  2.583498-08 1
14 21734236401  8.0763240-09 1
Total number of Newton’s steps 23

Table 12.9 Chebichev center. n = 2, m = 200, p = 1 = const

261
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it dual vaine gap # of steps
0 3.041008¢+01 6.559907c+01 0
1 1.181194e+01  1.274004e+01 4
2 2.330307e+01  4.434190e-01 4
3 2.353763e+01  1.663498e-01 2
4 2360860e+01 8.056320c-02 1
5 2364110e+01 4.206331c-02 1
6 2365769¢+01  2.206217e-02 1
7 2.366610e+01  1.137728¢-02 1
8 2.367015e+01  5.705734¢-03 1
9 2367195¢+01  2.777420e-03 1
10 2.367268e+01  1.323817¢-03 1
11 2.367296e+01 6.231645¢-04 1
12 2367307¢+01  2.906277¢-04 i
13 2.367310e+01  1.343539e-04 1
14 2367312¢+01  6.160661e-05 1
15 2.367312¢+01  2.805813¢-05 1
16 2.367313e+01  1.271270¢-05 1
17 2.367313c+01 5.738289e£06 i
18 2367313401  2.583294¢06 1
19 2367313e+01  1.160820e-06 1
20 2.367313e+01 ,5.2096350-07 1
21 2.367313e+01  2.336032e-07 1
22 2.367313e+01  1.046899¢-07 1
23 2.367313e4+01  4.690010c-08 1
24 2367313e+01  2.100626¢-08 1
25 2.367313e+01  9.407504¢-09 1
Total number of Newton’s steps 32

Table 12.10 Chebichev center. n = 2, m = 1000, 4 = 1 = const
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dual value

gap

# of steps

9.026055¢+02

1.493950e+02

0

2.073758c+02

4.081056e+01

2.192080e+02

1.163328e-01

2.192081e+02

8.438290e-04

2.192081e+02

6.499606¢-06
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6.426757¢-07
6.929753e-09

2.192081e+02
2.192081e+02

ON|lA]l R | VI N|=]D

64
5
3
1
1
1

Total number of Newton’s steps 75

Table 12.11 Chebichev center. n = 50, m = 10, y = 1 = const

pliers. This phenomenon allows to improve the numerical stability and obtain
results with high accuracy.

Still a number of issues require further attention.

First, we have to understand better the efficiency of the primal-dual method
for the discrete minimax.

Global convergence of the NR type methods in the absence of the standard
second order optimality condition is the second issue.

Also it is important to characterize the "hot start” phenomenon, i.e. to under-
stand better when "hot start” occurs. It would allow to combine the smoothing
technique in the initial phase of the process wg’th Newton’s NR or Primal-Dual
method in the final phase . '

Using a vector scaling parameters, one parameter for each functions f; is
another line of research, which we are panning to pursue along with wide
numerical experiments. *
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