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Abstract

The nonlinear rescaling principle (NRP) consists of transforming the objective function and/or
the constraints of a given constrained optimization problem into another problem which is equiv-
alent to the original one in the sense that their optimal set of solutions coincides. A nonlinear
transformation parameterized by a positive scalar parameter and based on a smooth scaling func-
tion is used to transform the constraints. The methods based on NRP consist of sequential
unconstrained minimization of the classical Lagrangian for the equivalent problem, followed by
an explicit formula updating the Lagrange multipliers. We first show that the NRP leads naturally
to proximal methods with an entrofiy-like kernel, which is defined by the conjugate of the scaling
function, and establish that the two methods are dually equivalent for convex constrained mini-
mization problems. We then study the convergence properties of the nonlinear rescaling algorithm
and the corresponding entropy-like proximal methods for convex constrained optimization prob-
lems. Special cases of tHe nonlinear rescaling algorithm are presented. In particular a new class
of exponential penalty-modified barrier functions methods is introduced.

Keywords: Convex optimization; Nonlinear rescaling; Modified barrier functions; Augmented Lagrangians;
Proximal methods

1. Introduction

One of the most important applications of the proximal algorithm [12,21], is when
applied to the dual of a convex programming problem. Rockafellar [20] shows that
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applying a proximal algorithm to the dual of a convex program is equivalent to the
quadratic augmented Lagrangian method (also called multiplier methods). Augmented
Lagrangian methods have many advantages over penalty methods, see for example the
monograph of Bertsekas [1].

Recently, nonquadratic augmented Lagrangian methods have received much attention,
see e.g. [6,9,16,17,22,24]. It has been already recognized in [1, Ch. 5] that the use of
penalty terms other than quadratic in an augmented Lagrangian functional, can affect the
rate of convergence of the associated iterative methods and consequently their perfor-
mance. Moreover, while the classical quadratic augmented Lagrangian is differentiable
only once (even if the problem’s data possess higher differentiability), nonquadratic
augmented Lagrangians are often C? if the objective /constraints are also twice contin-
uously differentiable. This is an important advantage since Newton type methods can
then be applied. ’

Nonquadratic multiplier methods can be derived from many different approaches. This
paper will concentrate on the interplay between two of these approaches: the nonlinear
rescaling principle and proximal-like mapping. Given a constrained convex optimization
problem, the nonlinear rescaling principle [15] consists of transforming the objective
and/or the constraints into another equivalent optimization problem, namely one which
has the same set of minimizers. The nonlinear transformation is parameterized by a
positive parameter and based on a smooth function, called the scaling function. The basic
steps of the nonlinear rescaling (NR) algorithm emerging from this are then based on
a primal-dual scheme, namely to minimize the classical Lagrangian associated with the
equivalent problem, followed by an explicit update formula for the dual variables. The
NR algorithm leads to various classes of nonquadratic multiplier methods which include
as special cases several known multiplier methods such as for example: the exponential
muitiplier method, the class P; of multiplier methods intreduced by Bertsekas [1],
and the Modified-Barrier Functions (MBF) and Modified Interior Distance Functions
introduced by Polyak[15,16].

Recently, Teboulle [22] introduced a new class of proximal-like mappings, where
the usual quadratic term in the Moreau [13] proximal approximation of a convex func-
tion is replaced by an entropy-like distance, defined in terms of a convex function. It
was shown in [22] that applying a proximal-like map to the dual of the given convex
optimization problem provides a unified framework for constructing nonquadratic aug-
mented Lagrangians, and allows for recovering the class of multiplier methods proposed
by Bertsekas [1], and the modified barrier functions methods of Polyak [16]. The two
approaches, namely the nonlinear rescaling principle and the proximal-like framework
are seemingly completely different, but in fact they are completely equivalent. To show
this will be the first contribution of this paper. More precisely it is shown that the
nonlinear rescaling principle leads naturally to one of the class of entropy-like distance
functions introduced in [22] with kernel given in terms of the conjugate of the scal-
ing function. This will be developed in Section 3, after introducing the NR method in
Section 2.
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The other contribution of this paper is to study the convergence properties of the
NR algorithm and corresponding entropy-like proximal algorithms. Under very mild
assumptions on the given constrained convex optimization problem, we will prove that
for any positive barrier parameter, and for a wide class of scaling functions, the dual
sequence generated by the NR method globally converges to an optimal dual solution,
while the corresponding primal sequence approaches optimality in an ergodic sense.
These results extend and complement some of the convergence results recently obtained
for various classes of nonquadratic augmented Lagrangian methods discussed below.
In Section 5 we give some examples and in Section 6 we introduce a new class of
multipliers method based on a scaling function which combines an exponential penalty
with modified barrier functions, and for which our convergence results can be applied.
Finally, Section 7 draws some brief conclusions and outlines some directions for future
research.

To put the results obtained in this paper in the perspective of recent achievements,
we conclude this section by briefly surveying the convergence results currently avail-
able for special realizations of the NR algorithm. In a recent paper [24], Tseng and
Bertsekas proved the convergence of the dual sequence to an optimal dual solution
and showed that the primal sequence approaches optimality in an ergodic sense for the
exponential multiplier method (see Section 5.1). Convergence results for the class of
logarithmic/hyperbolic modified, barrier function methods (see Section 5.2) for linear
and nonlinear programming including nonconvex constrained optimization, have been
developed by Polyak in [15,16], under nondegeneracy assumptions. It was proven that
if the primal and dual problems have unique solutions, then the MBF method converges
with linear rate and thé ratio can be made as small as desired by choosing a fixed, but
large enough barrier parameter. In a more recent work, Jensen and Polyak [11] proved
that the primal and dual sequences generated by the MBF method converge in values
for both linear and convex programming problems for any positive barrier parameter,
when the primal and dual feasible sets are bounded. It was also shown in [11] that
the primal MBF sequence converges to an optimal solution in an ergodic sense. The
recent work of Iusem, Svaiter and Teboulle [9] gives convergence results for a general
class of multiplier methods generated by a kernel which is required to satisfy a certain
inequality on the derivative of the kernel (see Section 4). Further convergence and rate
of convergence results for the case of linear programming have been obtained by Tseng-
Bertsekas [24] for the exponential multiplier method and by Iusem-Teboutlle [10] for a
more general class of multiplier methods which includes the examples of Section 5. In
all of these works, the convergence of the whole primal sequence to an optimal solution -
remains an open question. Only very recently, Powell [17] has proved that for linear
programs, the primal sequence produced by the logarithmic MBF method converges un-
der the assumption that the primal feasible set is bounded. In particular, he also proved
that the primal logarithmic MBF sequence converges to the Chebyshev center on the
optimal face with linear R-rate. Convergence results of the primal sequence for a large
family of methods (which includes the logarithmic MBF) in the linear programming
case has been proved in [10], under different assumptions to those used in [17].
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the NR algorithm generates a sequence of feasible points for the dual problem (D).
On the other hand, the primal sequence {x*} produced by (2.2) need not be a feasible
one. Therefore, one of our main tasks in the convergence analysis of the NR method is
to make sure that either the sequence {x*} or a byproduct of it will converge toward
a primal feasible solution. One important step in that direction is developed in the fol-
lowing section where we show that in fact, the NR algorithm leads to a special type of
proximal method applied to the dual problem of (P).

3. Nonlinear rescaling and proximal-like maps

Recently, it has been shown by Teboulle [22] that when applying an entropy-like
proximal regularization to the dual functional, one obtains the class of NR algorithms.
In this section we show that the nonlinear rescaling principle gives rise naturally to this
class of entropy-like proximal approximation introduced in [22], and thus demonstrate
that while the two approaches appear to be seemingly completely different, they can be

seen essentially as equivalent.
Starting with the NR method, by writing the optimality conditions for (2.2) we obtain

m
VEEY = ui (pgi(x ) Vgi(x*) = 0.
i=1
Substituting in the above the dual update given in (2.3) we then have
m
VGt =) ut Vei(xt!) =0,
i=1

showing that x*+! is the minimizer of L(x,%°*!). On the other hand, from the definition
of the dual functional, we know that

(=g (x*h),...,—gm (N € R (W), (3.1)

where dh(u+!) denotes the subdifferential of & at us*!. By (A3), the inverse function
(')~ exists. Once again, using (2.3) we obtain

g(x D = w7 W) TN @ W) = p T W) W ) i=1,.m,

where the second equality follows from the well known relation (¢’ )y~ = (c,b*)’ and
where ¢* (s) = inf,{st — ()} is the concave conjugate of ¢, see e.g., [19]. Therefore,
the above inclusion can be rewritten as

us+1 us+l
0€aht!) +p7! ((«m' (;—) SN CA) (f))
1 m

Given ¢ € ¥, we now introduce the function ¢ as

(1) = —¢*(1). (3.2)

T
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Then the last inclusion can be written as

usH W\ T
0€ oh(ut') — p! <¢’( L >,...,¢’< - )) : (3.3)
u uy,

The next result gives the properties of the function ¢ inherited from ¢.

Proposition 3.1. Let ¢ € ¥. Then the function ¢ is a strictly convex differentiable
function on R which satisfies

e(1) =¢'(1) =0, (34)
lir(r)l @' (t) = —o0. ' (3.9)
t—0+

Proof. The function #* is concave and hence ¢ = —y* is convex. Using [19, Sec-

tion 24] we have
ridomy* C rangeyy’ C domy™.

By (A2), the function ¢ is monotone increasing, i.e., range ' C Ry,. Therefore we
have ridom¢* C R, and hence dom¢ = domy™* C R, . Since ¢ is strictly concave
on R, it is essentially strictly concave; hence by [19, Theorem 26.3] its conjugate y*
is essentially smooth and henge by [19, Theorem 26.1] differentiable. Thus, ¢(#) is
differentiable for ¢ > 0. Now, t0 prove (3.4), we compute

e(1) = —¢* (1) = —inf(t — (1)) = —¢(0) =0 (by (AD)).
-
Also, using again the well known relation for conjugate functions:
") =)™ (3.6)

we have from (3.2) ¢'(1) = —(¢*)' (1) = —(¢') "' (1) =0, by (Al). Finally, to prove
(3.5) using (3.6) and (A4) we obtain

lim ¢'(r) = — lim(§*)' (1) = — lim(y')~' (1) =—c0. O
t—0 t—0 t—0

The class of functions satisfying Proposition 3.1 will be denoted by @. Given ¢ € &,
we define d, : R}, xR}, — Roas

s =S (). o
F=) Yj

The function d,, is called the ¢-divergence and is used as. a kind of “distance” between
two vectors in R, (see [22] for further details). This is justified in the following result.
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Lemma 3.2, Let ¢ € &. Then,
(a) d,(x,y) 2 0 and equality holds iff x = y.
(b) dyo(x,y) is jointly convex in (x,y).

Proof. Property (a) follows easily from the gradient inequality for ¢. To prove (b) it
is enough to show that {(s,t) := te(s/t) is jointly convex in (s,t). By the convexity
of @ V(Sl,tl), (S2,t2) € R-Z'.-g.v and A € (0’ 1),

Asi+(1=A)s» _ Al s1 (1=-M)¢ $2
A+ =MDn) T\ +(0-Ntaty A+(1-Dt 1

A
< -
ST a _/\)t2t1¢(sl/t1)

a-»

mh?’(h/h%

which can be rewritten as
LAs1 + (1= A)s2, Aty + (1 = A1) < AL(s1, 1) + (1 = A){ (52, 12),
proving the joint convexity of {. O

Going back to the inclusion (3.3), using (3.7), it follows that (3.3) is nothing else
but the optimality condition to solve:

wt! = argmax{h(u) — u”'dy(u,u%)}. (3.8)
uz20 N

The latter is precisely the entropy-like proximal algorithm recently proposed in [9]
when applied to the dual problem (D). We have thus shown that the nonlinear rescaling
algorithm leads naturally to the class of proximal-like regularization, with distance kernel
involving the negative of the conjugate of the nonlinear scaling function . This in turns
gives rise to the entropy-like algorithm applied to the dual of (P), and therefore the
two methods are dually equivalent. Using the equivalence between the NR algorithm
and the entropy-like proximal method, we will use some convergence results from the
latter to prove the convergence of the dual sequence to an optimal dual solution u*, and
an ergodic convergence result for the corresponding primal sequence.

4. Convergence analysis

In this section, we develop convergence results for the NR algorithm with a general
nonlinear transformation ¢ € ¥ which will allow us to obtain convergence results for
a wide class of multiplier methods. The key steps in the convergence proof of the
primal-dual sequence {x*,#*} generated by the NR algorithm consist of establishing the
following properties for the sequences {x*,u‘}:
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(i) Boundedness of the dual sequence {u‘}.
(ii) Asymptotic complementary slackness.
(iii) Convergence of the sequence {u’} to an optimal solution.
(iv) Asymptotic feasibility of the primal sequence {x°}.
As we shall see later, the most delicate parts are to establish properties (iii) and (iv).
Unless stated otherwise, in this section we assume that ¢ satisfies (A1)-(AS) and that
assumptions (P1) and (P2) hold.

Proposition 4.1. The sequence of dual objective function values {r(u*)} is monotone
nondecreasing and convergent. :

Proof, From (3.8), we have shown that the sequence u’ is equivalently given by

ut! = argmax {h(u) — u='d, (u,u)}.
u20

Therefore,
Rt > h(u) — p'dy(u,u®), Vu 0.

In particular, with u = »° in the above inequality, and using the fact that d,(u’,u’) =
0 (see Lemma 3.2(a)), we obtain that h(ustl) > h(u®), proving that {h(u)} is
monotone nondecreasing. Moreover, by the weak duality t heorem, the sequence {h(u*)}
is bounded above by the optimgl primal value f*, and hence {h(u*)} is convergent. 0O

Proposition 4.2. The dual sequence {u’} generated by the NR algorithm is bounded.

Proof. By assumption (P2) the set of optimal Lagrange multipliers is nonempty and
compact, i.e., one level set of A is compact. Since 4 is a closed proper concave function,
all its level sets are compact, and in particular L := {u : h(u) > h(u')}. Since by
Proposition 4.1 u® € L, Vs, it follows that u* is bounded. U

Proposition 4.3. Let {x*,u*} be the sequences generated by the NR algorithm. Then,

lim ujg;(x*) =0, i=1,...,m. ' (4.1)
§—+00

Proof. Using the concavity of h and —g(x°*!) € dh(u*!) (cf. (3.1)), we obtain

Z(uf - uf“)gi(xﬁ-l) < h(utY) = h(u). (42)

i=1
Using the dual update formula given in (2.3), we have foreach i=1,...,m:

w — it =uf — o (g ()] = uf (1 - ¢/ (ngi(x™")))

=u'r(ugi(x*)),
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where in the last equality we use once more the dual update formula (2.3), and we
have defined r(z) :=1/¢/'(#) — 1. Substituting this in (4.2) we then obtain:

Zu”‘g.(x”')r(ug.(x‘“)) < Rty — h(w),
i=1

which gives by summation,

SN uta(xr(ugi(xh) < lim h(w') — h(u') < f* - h(u') < oo,

s=1 =1
where the second inequality follows from Proposition 4.1. Therefore,

m
> ut g yr(pgi(xth)) — 0. (4.3)
i=1
Now, since ¢ is concave with ¢(0) = 0,4/(0) =1 and ¢'(z) > 0 we have tr(z) >
0, Vt. Hence, since u® > 0, Vs, and g > 0, each term in the summation of the sequence
(4.3) is nonnegative and we obtain that

lim uitg () r(ugi(x1)) =0, Vi=1,...,m. (4.4)
F—00

To complete the proof, we argue by contradiction. Suppose that for any fixed i, there
exists a subsequence S C {1,2,...} and an & > 0 such that

luitlgi (x| >e>0, VseS. (4.5)

Then from (4.4) {r(ugi(x**!'))}s — 0. Since r(t) = 1/¢'(1) — 1,%'(0) = 1 and
u > 0, it follows that {g;(x**1))}s — O, and hence from (4.5) that {ui*'}s —
o0, which contradicts the boundedness of {u*} proved in Proposition 4.2. Therefore,
limy_o it gi(x**1) =0, i=1,...,m. O .

We will now prove that the dual sequence converges to an optimal dual solution. To
establish this result, it will be convenient to recall the recent resuit proven in [9] for
the entropy-like proximal minimization algorithm. Consider the convex minimization
problem

(C) min{c(u) :u€RL},

where ¢ : R* — (—o0,+00] is a proper closed convex function. Let U, denote the
set of optimal solutions of that problem, and assume that U, is nonempty and that

domcNR%, # 0.
Given ¢ € @ and u° > 0, the entropy-like proximal method for solving the above
problem generates a sequence u° via the iteration:

st = argmin{c(u) + pu " dy(u,u®)}. (4.6)
uz0
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The next result was proved in [9, Theorem 4.2].

Theorem 4.4 ([9]). Let ¢ € D. Assume that the set of optimal solution for problem
(C) is bounded. Then, the sequence {u’} generated by (4.6) converges to a limit.
Moreover, if ¢ satisfies ¢'(t) < ¢"(1) logt, Vt > 0, then u’® converges to an optimal
solution of problem (C).

We shall prove the convergence of the dual sequence {°} to an optimal dual solution
u* under the following additional assumption on the kernel ¢:

(A6) The function ¢’ is logarithmic convex.

Recall that a function k : R — R, is logarithmic convex if and only if log k(?) is
convex.

Proposition 4.5. Let ¢ € ¥ and assume that (P1) and (P2) hold. Then,
(i) the dual sequence {u*} converges to a limit,
(ii) if (A6) holds, then {u*} converges to an optimal dual solution u*.

Proof. From (3.8) we have

w't! = argmax{h(u) — p”"dp(u,u°)}.
230 b

Therefore, since by assumption (P2) the set of optimal Lagrange multipliers is nonempty
and compact, applying the first part of Theorem 4.4 with h = —c, we obtain the
convergence of the saquence {°}, proving (i). Now, since by (A6) the function log ¢’
is convex, this implies that

: , ¥ (0)
logy/ (s) ~logy/(0) > 5" 7,

and since by (A1) ¢'(0) =1, the above can be written as
logy’ (s) > s¢"(0). , (4.7)

From (3.2) we have ¢*(s) = —¢(s). Therefore, —¢’ = (*) = ((/J’)—l,‘ from which
we obtain

Y (—¢'(s)) =35, Vs

Differentiating the above identity we get —¢" (—¢'(s))¢"(s) = 1. Substituting s = 1.
and using ¢'(1) =0 in the latter, we obtain that

—¢"(1) = 1/¢"(0). (4.8)

Let ¢’ (s) = t. Then, using (4.8) in (4.7) we obtain @' (1) < ¢"(1) logt. Therefore,
we can apply the second part of Theorem 4.4 to conclude that {u*} converges to an
optimal dual solution »*. O
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We will now establish that the primal sequence {x°} converges to the feasible set in
an ergodic sense. Ergodic convergence is frequently used in the analysis of fixed points
of nonexpansive mappings. The idea is to generate a sequence of (weighted) averages
from the original sequence which in general possesses nicer properties than the original
one; see e.g., [4] for results and references on ergodic convergence type results.

Given the sequence {x*} generated by the NR algorithm one defines the sequence of
averages

$
#=st SR (49)
k=1

Before establishing the ergodic feasibility of the sequence {¥°}, we will first prove a
technical result.

Lemma 4.6. Let w(t) : R — Ry, be a monotone decreasing continuously differen-
tiable logarithmic convex function, with w(0) = 1. Then, for any t; e R,i=1,...,s
and any y € [0, 1), we have

[Irvey <=y =36z -y
i=1 i=1

Proof. The left inequality in the lemma is equivalent to

re 4

m
- logw(t;) > —log(1-7), Vi €R, Vye[0,1).
i=1
Using logz < z — 1, z> 0 in the above inequality implies that
m
=D logw(t) 2y, Wrel[0,1). (4.10)
i=1

Now, since w(¢) is logarithmic convex, then log w(t) is convex. Applying the gradient
inequality to the convex function logw(¢) and using w(0) = 1 we obtain:

logw(t) > tw'(0), VieR. (4.11)

Combining (4.11) with (4.10) and recalling that —w’(0) > 0, the result is proved. [

We are now ready to establish the ergodic feasibility of the sequence {¥°}.

Proposition 4.7. Let ¢ satisfy (A1)-(AG6). For the sequence %* defined by (4.9), we
have

liminfg;(%°) >0, i=1,...,m. (4.12)

SO0
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Proof. By Proposition 4.5(i), {«’} is a convergent sequence, say to the point &#. Define
I°={i: @& =0} and I* = {i : & > O}, so that I°UI* = {1,...,m}. We will first
consider the set I*. Using the concavity of g; we have

5 s
&i(¥°) =gi(s_1 Zxk> >s5! Zgi(xk), i=1,...,m (4.13)
k=1 k=1
From Proposition 4.3 we obtain
liminfg;(x*) =0, Viel*. (4.14)
§—00 -

and therefore liminf,_,_ s~ 3 ;_, &(x*) >0, i € I'*. Hence from (4.13) we obtain

liminfg;(¥*) >0, ielt.

§—00

Next, we consider the set I°. Using the dual update formula (2.3) and the fact that
uf — i; =0, for i € I% we obtain

s
uj = u?l_lllr’(ugi(xk)) -0, iel.
e

Therefore, there exists {y{} witxh limy$ = 1 such that
s kN
[I¢ (neix)) <19, iel’
k=1

It is now easy to veri‘fy that all the assumptions of Lemma 4.6 are satisfied with the
choice w = ¢’, and hence the latter inequality implies that

Y st = -y O, iel®
k=1

and using once again (4.13) we thus obtain
&(E) > —yi(usg"(0))7'(>0), iel’,

from which it follows that liminf,_,  g(%*) >0, i€ I°. O

Remark 4.8. From the proof above, we see that the asymptotic ergodic feasibility is
obtained without assumption (A6) for i € I*. However, in the boundary case (ie., -
u — 0,i € I°), assumption (A6) is essential to complete the proof. We have not been
able to prove the result without it or without making additional assumptions on the
problem’s data ( f,g). Fortunately, assumption (A6) is satisfied for many interesting
choices of the kernel ¢, see the examples given in Sections 5 and 6.

We are now in position to establish the main result of this section.
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Theorem 4.9. Let ¢ satisfy (Al1)-(A6) and assume that (P1) and (P2) hold. Let
{x°}, {u’} be the sequences generated by the NR algorithm. Then,
(i) {u’} converges to an optimal dual solution u*,
(ii) the average sequence {X°} defined by (4.9) is bounded,
(iii) every limit point of the sequence {%°} converges to an optimal primal solu-
tion x*, :
(iv) limyoo f(x°) =limg oo A(u*) = f(x*).

Proof. The first statement of the theorem was proved in Proposition 4.5(ii). From
Proposition 4.3 we have ug;(x*) — 0, i=1,...,m, and from the definition of the dual
objective h together with the fact that x* minimizes the Lagrangian L(x,u*), we have
h(u®) = f(x*) — > uig:(x*). Hence it follows that

lim f(x*) = lim A(4®). (4.15)
§—00 =0
Using (4.9) and the convexity of f, we obtain
8 $
f(®) = f(s“ Zx") <sTHY G, (4.16)
k=1 k=1
By the weak duality theorem we have
h(u’) < f(x*) Vs, » (4.17)
Therefore using (4.17), (4.15), it follows that
limsup f(3*) < lim A(u*) < f(x*). (4.18)
s—00 §—o0 *

By Proposition 4.7 we also have
liminfg;(*°) 20, i=1,...,m. (4.19)
§—00
Since by assumption (P1), the optimal set of (P) is nonempty and bounded, invoking
[7, Corollary 20, p. 94] it follows from (4.18)~(4.19) that {%} lies in a compact set,
which proves (ii). Let % be any limit point of {%*}. By continuity of f and g (4.18),
(4.19) thus implies that

(%) < llim h(u') < f(x*), g(x) 20, i=1,....,m. (4.20)

Since X is feasible, we also have f(%) > f(x*), therefore it follows from (4.17)-(4.20)
that f(x) = f(x*), i.e,, % is primal optimal and lim,_,, f(x*) = lim,_, o, h(u*) =
f(x*), proving (iii) and (iv). O

This result extends the recent convergence results of [24] proved for the exponential
multiplier method, to a general class of multiplier methods. It also complements the
recent convergence results derived in [9]. We note that the convergence of the whole
sequence x° itself to an optimal primal solution remains an open question, even for
special realizations of the NR algorithm discussed in the next section.
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5. Examples

The convergence result proved in the previous section can be applied to various
realizations of the NR algorithm. This section gives some examples for the choice of the
scaling function ¢ satisfying (A1)-(A6), and the corresponding kernel ¢ = —* which
generates the corresponding entropy-like distance d,, and for which our convergence
result can be applied. The specific realizations of the NR algorithm for each of these
examples, giving rise to particular methods are also given.

5.1. The exponential multiplier method

Let ¢(t) =1 —e™',t € R. Then, y*(s) =s— 1 —slogs, s > 0. The corresponding
NR algorithm (2.2)~(2.3) is then

m m
e argmin{f(x) +u Zufe"‘g"(‘) - Zuf ix€ R"},
i=1 =1

— (S
uf+1=ufe 18i(x )’

i=1,...,m,
which is the exponential multiplier method [1,24]. This method is then equivalent to
the following entropy-like proximal method:

S m
Wl = argmax{h(u) - ,u,‘ﬁ Zu,- log u_; —u; + uf}.
u>0 i=1 u;

5.2. Logarithmic modified barrier functions

Let us consider the shifted logarithmic bérrier transformation ¢ (¢) =log(1+1¢), t >
—1. Then, ¢*(s) =logs — s + 1, s > 0. The NR algorithm in this case takes the form

m

xtle argmin{f(x) —u71> uflog(1 + pgi(x)) i x € R"},
i=1

s+1 _ u;" -

ut = ———1 T () , i=1,...,m,

which is exactly the modified barrier function (Frish-type) method proposed by Polyak

[16]. This method is in turn equivalent (cf. (3.7)) to the following proximal method:

m m
wtl = argmax{h(u) —u! Z(ui —uf) +p”! Zuf logu,}.
i=1 =1

u>0
From the above, it follows that the MBF in primal space is equivalent to the weighted
classical barrier method in dual space with a shift in the dual objective function. In the
case of linear programming a similar observation has been made in [11,23]. Note that

due to the weighted classical barrier term ™! 37 uflogu; (and since logt = —oo
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for + < 0), one can see that the proximal method requires solving only an uncon-
strained optimization problem at every step. Therefore in contrast with the classical
quadratic proximal method (and associated classical augmented Lagrangian methods),
the nonnegativity of the Lagrange multipliers is taking care of automatically.

5.3. Hyperbolic modified barrier functions

Let ¢(¢) =t/(1+1), t > —1. Then, ¢*(s) = 2y/s—s—1, s > 0. The NR algorithm
in this case reduces to

m

S+1 . _ S gi(x) . n}
X eargmm{f(x) Zu’———(1+,ug,~(x))'xeR ,

i=1

s
s+1 _ U

1
BT+ pg( )

i=1,...,m,

which is the other modified barrier (Caroll-type) function method given in [16]. The
equivalent proximal method (3.7) in this case takes the form

m m
wtl = argmax{h(u) —p! Z(“i —uf) +2p7" Z v “f“i}'
i=1

uz0 i=1

6. An exponential-penalty modified barrier function

The original idea behind the nonlinear rescaling principle and the corresponding mod-
ified barrier function, was to allow for extending the feasible set of the constraints. While
the MBF theoretically provides such an extension, from the camputational point of view
this might not be enough, because for large enough u > 0, the shifted logarithmic barrier
for example, has almost the same behavior as the classical barrier. Another difficulty is
the fact that since the minimization step in F(x,u*, u) is performed approximately, it is
possible for x* to leave the extended feasible set. One approach to overcome this diffi-
culty is to switch to an exterior penalty formulation when infeasible iterates occur. The
idea of combining barrier (logarithmic or hyperbolic) functions with exterior penalty
functions was proposed in [5], where a linear function was used to handle infeasible
points and in [8], where a quadratic function was suggested to penalize the infeasible
iterates. This approach was used to develop a class of pure barrier-penalty algorithms
(i.e., with no multiplier updates). We refer the reader to the references just cited and to
[18] and references therein, for other possible choices of the penalty functions.

More recently in [2], this idea has been used in the context of multiplier methods,
where a shifted logarithmic barrier function is combined with an exterior quadratic
penalty to penalize infeasible points. This corresponds for example in the NR algorithm
to the choice:



R. Polyak, M. Teboulle/Mathematical Programming 76 (1997) 265-284 281

o) = {log(t+ 1) if 1> -1 61

-2 +1 —log2 ift< —%.

This approach appears to lead to computationally more efficient algorithms than the
ones based only on modified barrier functions. See for example the recent numerical
experiments reported by Ben-Tal, Yuzefovich and Zibulevsky [2], Breitfeld and Shanno
[3], and Nash, Polyak and Sofer [14]. The conclusions drawn in these papers from
extensive computational testing, is that the Penalty Modified- Barrier Function (PMBF)
exhibits better performance than the modified barrier function, and appears quite promis-
ing for solving large scale nonlinear constrained optimization problems. However, thus
far there is no theoretical proof that such methods generate primal-dual sequences of
points which are globally convergent to an optimal primal-dual solution, without further
assumptions on the problem’s data.

Note that Propositions 4.1, 4.2, 4.3 and 4.5 hold for the NR algorithm with the kernel
(6.1). However, the quadratic part of the penalty term in the example (6.1) violates
assumption (A6), namely, the quadratic function is not logarithmic convex, and therefore
Theorem 4.4 is not applicable. However, since as explained previously, the basic idea
of constructing a PMBF is to penalize the infeasibility of the current iterate, one could
think of choosing any other appropriate reasonable function which will penalize the
constraints and behave almost like a quadratic near the cut-off parameter n where the
branching between the penaltytand the barrier occurs. This motivates us to introduce a
new class of PMBF, where the penalty branch is taken as an exponential function, and
which accordingly will be called EPMBF. More precisely we thus propose exponential
penalty-modified barr‘i‘er kernels of the form:

b(t) iftz—n,
= 6.2
v {P(t) ift < —m, (©2)

where b(t) above is a modified barrier function in the class ¥, while p(¢) is an
“exponential” penalty type function defined by

p(t) =ae” +c, . (6.3)

which extends into the infeasible region, and 0 < % < 1, is the matching parameter.
To preserve the smoothness of the scaling function ¢ we require that the following
conditions be satisfied:

b(—n) =p(-n); b(—m)=p'(=m); b"(-n) =p"(-n). (6.4)

Two examples of this class can be obtained by using the shifted-log barrier and shifted
hyperbolic barrier for b(¢). To illustrate this consider the following specific examples
with 77 = % Using (6.2), (6.3) and (6.4) we obtain:

log(1+1) lft/'--

(a) ‘/f(t) = { —2( 1 + 1 _10g2 lf t <
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with corresponding conjugate

o (s) = logs—s+1 if0<s <2,
—islogs+ (3s+1)log2—1 ifs>2.

Note that if we take the quadratic approximation of e 2~! +1 —log2 at t = —% we
obtain

p(1) =22 +1 —1log2,

namely exactly the quadratic penalty branch used in (6.1).

t
ifr> -1
(b)) g ={ d+D 2
—e "% ifrg -4,

with corresponding conjugate

2vs—-s—1 if0<s<4,
¢*(S)={ Vs

—Lls—islog(ys) ifs>4.

The corresponding NR algorithm with example (a) leads to an exponential penalty-
modified logarithmic barrier multiplier method with Lagrangian function (cf. Eq. (2.1))
obtained by choosing the function ¢ given above in (a). The corresponding equivalent
proximal method then takes the form:

( m m :
h(u) — p! Z(u,- —ul)+ wo! Zuf logu; if 0 <u; < 2uj,
i=1 i=1

s+1 m
= argmax { - Ui s
e M@—@M‘E{m%;—wmw—u—mmmﬁ
i

i=1

if u; > 2us.

1

\
Similarly, one can generate another exponential penalty modified barrier function
method and its equivalent proximal method, by using the example (b).
Now, it is easy to verify that the EPMBF generated by the kernel (6.2) satisfies the
assumptions (A1)-(A6). Therefore, we can apply Theorem 4.4 to conclude

Theorem 6.1. The dual sequence generated by an EPMBF globally converges to an
optimal dual solution, while every limit point of the corresponding primal sequence of
averages converges to an optimal primal solution of (P).

7. Concluding remarks
The equivalence between the NR algorithm and proximal methods with entropy-

like kernels makes it possible to obtain an elegant framework and further insights
in the development and convergence analysis of nonquadratic augmented Lagrangians.
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In the dual space, the NR method is in fact an interior point algorithm where the
entropy-like kernel plays the role of a weighted barrier, which automatically takes care
of the nonnegativity constraints of the Larange multipliers, and thus eliminates the
combinatorial nature of the dual problem. Moreover, in both primal and dual spaces we
are dealing with smooth unconstrained optimization problems and therefore the whole
arsenal of unconstrained smooth optimization techniques, and in particular Newton type
methods, can be applied to solve such constrained optimization problems.

Several important aspects of the NR method remain to be studied and are left for
future research. This includes both theoretical and computational work. The NR method
as stated in this paper is not a practical one, but just a conceptual algorithm. In partic-
ular, the method, as stated, requires exact unconstrained minimization at each step of
F(-,u*, w). This is obviously numerically impossible, and therefore the effect of inexact
unconstrained minimization on the method needs to be analyzed. Another important
issue is to study the rate of convergence of the NR method under different assumptions
on the problem’s data.
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