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Abstract

The Generalized Walras -Wald Equilibrium (GE) was introduced by S.I.Zuchovitsky
et al. in 1973(see [17]) as an alternative to the Linear Programming (LP) approach for
optimal resource allocation.

There are two fundamental differences between the GE and LP approach for the
best resource allocation.

First, the prices for goods (products) are not fixed as they are in LP; they are
functions of the production output.

Second, the factors (resources) used in the production process are not fixed either;
they are functions of the prices for resources.

In this paper we show that under natural economic assumptions on both price and
factor functions the GE exists and unique. Finding the GE is equivalent to solving a
variational inequality with a strongly monotone operator.

For solving the variational inequality, we introduce a projected pseudo–gradient
method.

We prove that under the same assumptions on price and factor functions the pro-
jected pseudo–gradient method converges globally with Q-linear rate. This allows
estimation of its computational complexity and finding parameters critical for the com-
plexity bound.

The method can be viewed as a natural pricing mechanism for establishing an
economic equilibrium.
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1 Introduction

In the late 1930s L.V.Kantorovich in St Petersburg (then Leningrad) discovered that a

number of real life problems arising in technological, engineering and economic applications

lead to finding a maximum (minimum) of a linear function under linear inequality constraints.

(c, x∗) = max {(c, x)|Ax ≤ b, x ≥ 0} (1)

where A : Rn → R
m; c, x ∈ R

n, b ∈ R
m. This was the beginning of the Linear Programming

(LP) era.

During the Second World War and immediately after it become clear that LP has im-

portant military applications. In 1947 George Dantzig developed the Simplex method for

solving LP, which was judged one of the ten best algorithms in the 20 century. Almost at

the same time John von Neumann in a conversation with G.Dantzig introduced LP Duality,

which became the foundation of LP theory.

With each LP problem (1) is associated the co-called dual problem:

(b, λ∗) = min
{

(b, λ)|AT λ ≥ c, λ ≥ 0
}

(2)

The following Duality relations are fundamental for LP:

(c, x∗) = (b, λ∗) (3)

and

(AT λ∗ − c, x∗) = 0 (b − Ax∗, λ∗) = 0, (4)

Since then the interest to LP grew dramatically and over the last 60 years LP became

one of the most advanced fields in modern optimization.

In 1949 S.I.Zuchovitsky in Kiev introduced a method for finding Chebyshev approxima-

tion for a system of linear equations Ax = b i.e. finding

F (x∗) = min{F (x)|x ∈ R
n} (5)

where F (x) = max{|(Ax − b)i| | i = 1, . . . , m} is a convex and piecewise linear function.

The method was a realization of Fourier’s idea: in order to find F (x∗) one has to start at

any point on a descent edge of the piecewise linear surface and following along the descent

edges move from one vertex to another until the bottom of the surface will be reached.

S.I. was not aware of G.Dantzig’s results; the “Iron Curtain” made it impossible. It would

take another ten years before S.I. learned from E.Stiefel’s paper [14] that his algorithm for
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solving the problem (5) is in fact the simplex method for solving the following equivalent

to (5) LP problem

y∗ = min{y| |(Ax − b)i| ≤ y, i = 1, . . . , m} (6)

From this point on Optimization became the main focus of S. I. research.

The efficiency of the original simplex method has been drastically improved over the last

sixty years, and new very powerful interior point methods for solving LP problems have

emerged in the last 20 years.

In 1975 L.V.Kantorovich and T.C.Koopmans shared the Nobel Prize in Economics “for

their contributions to the theory of optimum allocation of limited resources”.

The question however is: How adequately does LP reflect the economic reality when it

comes to the best allocation of limited resources.

Two fundamental LP assumptions are:

a) The price vector c = (c1, . . . , cn) for produced goods is fixed and independent of the

production output vector x = (x1, . . . , xn).

b) The resource vector b = (b1, . . . , bm) is fixed and independent of the prices λ =

(λ1, . . . , λn) for the resources.

There are a few essential difficulties associated with these assumptions.

1. Unfortunately such assumptions do not reflect the basic market law of supply and

demand. Therefore the LP models might lead to solutions which are not always

practical.

2. Due to these assumptions a very small change of at least one component at the

price vector c might lead to a drastic change of the primal solution.

3. Small variations of the resource vector b can lead to a dramatic change of the dual

solution.

The purpose of the paper is to develop an alternative to the LP approach for resources

allocation which is based on GE [17].

The fixed vector c is replaced by a vector–function c(x): the price for a good depends on

the output x = (x1, . . . , xn). The fixed factor vector b is replaced by a vector–function b(λ):

the factor availability depends on the prices λ = (λ1, . . . , λm) for the factors.

We introduce the notion of well defined vector–functions c(x) and b(λ) and show that for

such functions the GE equilibrium exists and is unique.

Then we show that finding the GE is equivalent to solving a variational inequality with a

strongly monotone operator on the Cartesian product of non-negative octants of the primal

and dual spaces.

For solving the variational inequality we use the projected pseudo-gradient method and

show that for well defined vector functions c(x) and b(λ) the method globally converges with
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Q–linear rate. We estimate the computational complexity of the method and compare it

with LP complexity.

The paper is organized as follows. In the following section we state the problem and

describe the basic assumptions on the input data.

In the third section we provide some background related to the Nash equilibria of n-person

concave games and the classical Walras-Wald equilibrium.

In section four we consider existence and uniqueness of the GE and show that finding the

equilibrium is equivalent to solving a variational inequality for a strongly monotone operator

on Ω = R
n
+ ⊗R

m
+ .

In section five we consider the projected pseudo–gradient method, establish its global

convergence with Q–linear rate and estimate its computational complexity.

We conclude the paper with some remarks related to future research.

2 Statement of the problem and the basic assumptions.

We consider an economy which produces n goods (products) by consuming m factors (re-

sources) in the production process. There are three sets of data required for problem formu-

lation.

1) The technology matrix A : R
n → R

m which ”transforms” production factors into

goods,i.e. aij ≥ 0 defines the amount of factor 1 ≤ i ≤ m is required to produce one

item of good 1 ≤ j ≤ n.

2) The price vector–function c(x) = (c1(x), . . . , cn(x)), where cj(x) is the price for one

item of good j under the production output x = (x1, . . . , xj . . . , xn).

3) The factor vector–function b(λ) = (b1(λ), . . . , bi(λ) . . . , bm(λ)), where bi(λ) is the avail-

ability of the factor i under the price vector λ = (λ1, . . . , λi, . . . , λn).

We will use the following assumptions.

A. The matrix A does not have zero rows or columns, which means that each factor is

used for production at least one of the goods and each good requires of at least one of

the production factors.

B. The price vector–function c : Rn
+ → R

n
+ for goods is continuous and strongly monotone

decreasing, i.e. there is α > 0 such that

(c(x2) − c(x1), x2 − x1) ≤ −α‖x1 − x2‖2, ∀x1, x2 ∈ R
n
+ (7)

C. The factor vector–function b : Rm
+ → R

m
+ is continuous and strongly monotone increas-

ing, i.e. there is β > 0 such that

(b(λ2) − b(λ1), λ2 − λ1) ≥ β‖λ1 − λ2‖2, ∀λ1, λ2 ∈ R
m
+ (8)
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where ‖.‖ is the Euclidean norm.

Assumption B implies that an increase of production xj of good 1 ≤ j ≤ n when the rest

is fixed leads to decrease of the price cj(x) per item of good j, moreover the margin of the

price decrease has a negative upper bound.

Assumption C implies that the increase of the price λi of any factor 1 ≤ i ≤ m when the

rest is fixed leads to the increase of the availability of the resource bi(λ) and the margin for

the resource increase has a positive lower bound.

We will say that the price c(x) and the factor b(x) vector–functions are well defined if (7)

and (8) hold.

It is worth mentioning that (7) is true if c(x) is a gradient of a strongly concave function

defined on R
n
+, whereas (8) is true if b(λ) is a gradient of a strongly convex function on R

m
+ .

The GE problem consists of finding x∗ ∈ R
n
+ and λ∗ ∈ R

m
+ such that

(c(x∗), x∗) = max{(c(x∗), X)|AX ≤ b(λ∗), X ∈ R
n
+}) (9)

(b(λ∗), λ∗) = max{(b(λ∗), Λ)|AT Λ ≥ c(x∗), Λ ∈ R
m
+}) (10)

In the following section we provide some background, which helps to understand the relations

between GE and both LP duality and the Classical Walras–Wald equilibrium, which is

equivalent to the J. Nash equilibrium in an n–person concave game.

3 J. Nash equilibrium in an n-person concave game

and the Walras -Wald equilibrium.

The notion of equilibrium in a concave n-person game was introduced by J. Nash in 1950(see

[9]). In 1994 J. Nash received the Nobel Prize in Economics for his discovery.

For many years it was not clear at all whether the J. Nash equilibrium had anything to

do with economic equilibrium introduced as early as in 1874 by Leon Walras in his most

admired work “Elements of Pure Economics”. Moreover,it was even not clear whether the

Walras equations have a solution.

The first substantial contribution was due to Abraham Wald, who in the mid 30s proved

the existence of the Walras equilibrium under some special assumptions on the price vector–

function c(x). These assumptions, unfortunately, were hard to justify from the economics

standpoint (see [5]).

In the mid 50s Harold Kuhn modified the Walras-Wald model and proved under min-

imal assumptions on the input data the existence of the equilibrium. He used two basic

tools: Kakutani’s fixed point Theorem (1941) and LP Duality (3)-(4) (see [5] and references

therein).

Our interest in J. Nash equilibria was inspired by Ben Rosen’s paper [13] in mid 60s, where

he discovered some relations between J.Nash equilibria and convex optimization. Soon after
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we developed (see S. I. Zuchovitsky et. al. [15]–[18]) a few numerical methods for finding

a J. Nash equilibrium. Moreover, we proved that H. Kuhn’s version of the Walras–Wald

equilibrium is equivalent to the J. Nash equilibrium in a concave n–person game [16].

In this section we recall some basic facts and notations related to J. Nash equilibrium,

which will be used later.

Let Ωj ⊂ R
mj be a convex compact set, which defines the feasible strategies xj =

(xj1, . . . , xjmj
) for the players 1 ≤ j ≤ n. The Cartesian product

Ω = Ω1 ⊗ . . . ⊗ Ωj ⊗ . . . ⊗ Ωn

defines the feasible strategies set for a concave n–person game. The set Ω ∈ R
m, m = Σn

j=1mj

is convex and bounded.

The payoff functions ϕj : Ω → R of the players 1 ≤ j ≤ n, are continuous and

ϕj(x1, . . . , xj , . . . xn) is concave in xj ∈ Ωj .

The vector x∗ = (x∗

1, . . . x
∗

j , . . . x
∗

n) ∈ Ω defines a J. Nash equilibrium if for every 1 ≤ j ≤ n

the following inequality holds

ϕj(x
∗

1, . . . , xj , . . . , x
∗

n) ≤ ϕi(x
∗

1, . . . , x
∗

j , . . . , x
∗

n), ∀xj ∈ Ωj (11)

which means that for every player 1 ≤ j ≤ n derivation from the equilibrium strategy

can only reduce the corresponding payoff value if the other players accept their equilibrium

strategies. Along with J. Nash equilibrium, let’s consider the normalized equilibrium for a

concave n–person game. Let x = (x1, . . . , xj , . . . xn) ∈ Ω. On Ω⊗Ω we consider the following

normalized payoff function

Φ(x, X) =
n

∑

j=1

ϕj(x1, . . . , Xj, . . . xn)) (12)

Vector x∗ ∈ Ω is a normalized equilibrium in n-person concave game if

Φ(x∗, x∗) = max{Φ(x∗, X)|X ∈ Ω} (13)

It is clear that each normalized equilibrium x∗ = (x∗

1, . . . , x
∗

n) ∈ Ω is a J. Nash equilibrium,

but the opposite generally speaking is not true.

By finding x∗ ∈ Ω from (13) we find the J. Nash equilibrium in a concave n-person game,

because it follows from (13) that if any player violates his equilibrium strategy x∗

j and the

rest accept their equilibrium strategies, then the player can only reduce his payoff, i.e. (11)

holds.

Let’s consider the vector–function

g(x) = ∇xΦ(x, X)|X=x = (∇x1
ϕ1(X1, x2, . . . , xn), . . . ,∇xn

ϕn(x1, . . . , xn−1, Xn))|X=x (14)

= (∇x1
ϕ1(x), . . . ,∇xn

ϕn(x))
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where

∇xj
ϕj(x1, . . .Xj, . . . xn)|Xj=xj

=

(

∂ϕj(x)

∂xj1

, . . . ,
∂ϕj(x)

∂xjmj

)

, 1 ≤ j ≤ n (15)

The vector function g(x) is called a pseudo-gradient of Φ(x, X) at X = x.

For any given x ∈ Ω the normalized payoff function Φ(x, X) is concave in X ∈ Ω. Hence,

ω(x) = Arg max{Φ(x, X)|X ∈ Ω} (16)

is the set of solutions of a convex optimization problem. Therefore for any given x ∈ Ω the set

ω(x) ⊂ Ω is convex and bounded. Moreover, it follows from the continuity of Φ(x, X) that

ω(x) is an upper semi–continuous set valued function on Ω (see [6]). Therefore the existence

of a fixed point x∗ ∈ Ω of the map x → ω(x) i.e. x∗ ∈ ω(x∗) is a direct consequence of the

Shizuo Kakutani Theorem (see, for example, [6]).

If x∗ ∈ Ω is a given normalized equilibrium, then finding

Φ(x∗, x∗) = max{Φ(x∗, X)|X ∈ Ω} (17)

is a convex optimization problem.

The fact that x∗ ∈ Ω is the solution of convex optimization problem (17) means that for

the pseudo-gradient g(x∗) = ∇xΦ(x∗, X)|X = x∗ the following inequality

(g(x∗), X − x∗) ≤ 0, ∀X ∈ Ω (18)

holds.

On the other hand if x∗ ∈ Ω is a solution of the variational inequality (18) then x∗ is a

J. Nash equilibrium in the n–person concave game. Therefore finding J. Nash equilibrium

in a concave n–person game is equivalent to solving the variational inequality (18).

At the same time one can view (18) as an optimality criteria for the normalized equilib-

rium.

The monotonicity of the nonlinear operator g : Ω → R
m, i.e.

(g(x1) − g(x2), x1 − x2) ≤ 0, ∀(x1, x2) ∈ Ω × Ω (19)

is critical for solving the variational inequality (18).

The operator g is strongly monotone on Ω if there is γ > 0 such that

(g(x1) − g(x2), x1 − x2) ≤ −γ‖x1 − x2‖2 ∀(x1, x2) ∈ Ω × Ω (20)

We conclude the section by recalling that H. Kuhn’s version of the classical Warlas–Wald

equilibrium is equivalent to J. Nash equilibrium in n–person concave game (see [16]).

One obtains H. Kuhn’s version from (9)- (10) by assuming that the factor vector–function

b(λ) is fixed, i.e. b(λ) ≡ b.

In other words a Walras-Wald equilibrium is a pair (x∗, λ∗) ∈ R
n
+ ⊗R

m
+ that
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(c(x∗), x∗) = max{(c(x∗), X)|AX ≤ b, X ∈ R
n
+} (21)

(b, λ∗) = min{(b, Λ)|AT Λ ≥ c(x∗)|Λ ∈ R
m
+} (22)

Let’s assume that the price for any good is a non increasing, continuous function of the

corresponding output when the production of other goods are fixed, i.e.

t2 > t1 > 0 ⇒ cj(x1, . . . , t2, . . . , xn) ≤ cj(x1, . . . , t1, . . . , xn), 1 ≤ j ≤ n.

Then the function

ϕj(x1, . . . , xj , . . . , xn) =

∫ xj

0

cj(x1, . . . , t, . . . , xn)dt (23)

is continuous in X = (x1, . . . , xj . . . , xn) ∈ Ω = {X : AX ≤ b, X ∈ R
n
+}, and concave in xj .

Therefore one obtains Walras-Wald equilibrium by finding the normalized J. Nash equi-

librium with payoff functions defined by (23), i.e. by finding x∗ ∈ Ω :

Φ(x∗, x∗) = max

{

n
∑

j=1

ϕj(x
∗

1, . . . , Xj , . . . , x
∗

n)|X ∈ Ω

}

(24)

Existence of the Walras–Wald equilibrium is a direct consequence of existence of a normalized

J. Nash equilibrium for a concave n–person game with payoff functions (23) and feasible

strategies set Ω.

In fact, using the optimality criteria (18) and keeping in mind that g(x∗) = c(x∗) we can

rewrite the problem (24) as follows

max{(c(x∗), X)|AX ≤ b, X ∈ R
m
+} = (c(x∗), x∗)

Therefore using LP Duality one obtains λ∗ ∈ R
m
+ :

(b, λ∗) = min{(b, λ)|ATλ ≥ c(x∗), λ ∈ R
m
+}

i.e. by finding J. Nash equilibrium from (24) one finds the Walras–Wald equilibrium (21)-

(22).

Finding a Walras-Wald equilibrium from (24) is equivalent to solving a variational in-

equality (18). Solving (18), generally speaking, is more difficult then solving the Primal

LP (1).

In the following section we consider the GE (9)-(10), which looks more difficult than (21)-

(22), however for well defined c(x) and b(λ) finding GE turns out to be much easier then

solving the LP.
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4 Existence and Uniqueness of the GE.

The GE problem was revisited in 1977 by M. Primak and the author in [10]. It was shown

that finding a GE is equivalent to solving a particular variational inequality. We will discuss

it briefly in this section and use the equivalence later for establishing the existence and

uniqueness of the GE as well as for developing the projected pseudo–gradient method for

finding GE.

Let’s fix x ∈ R
n
+ and λ ∈ R

m
+ and consider the following dual pair of LP

max{(c(x), X)|AX ≤ b(λ), X ∈ R
n
+} (25)

min{(b(λ), Λ)|AT Λ ≥ c(x), Λ ∈ R
m
+} (26)

Solving the dual LP pair (25)-(26) is equivalent to finding on R
n
+ ⊗ R

m
+ a saddle point for

the corresponding Lagrangean

L(x, λ; X, Λ) = (c(x), X) − (Λ, AX − b(λ)) (27)

i.e. finding

max
X∈Rm

+

min
Λ∈Rm

+

L(x, λ; X, Λ) = min
Λ∈Rn

+

max
X∈Rn

+

L(x, λ; X, Λ), (28)

under fixed x ∈ R
n
+, λ ∈ R

m
+ .

The problem (28) is in turn equivalent to finding a J. Nash equilibrium of a concave two

person game with the following payoff functions

ϕ1(x, λ; X, λ) = (c(x), X) − (λ, AX − b(λ)) = (c(x) − AT λ, X) + (λ, b(λ)) (29)

and

ϕ2(x, λ; x, Λ) = (Ax − b(λ), Λ) (30)

where X ∈ R
n
+ is the strategy of the first player and Λ ∈ R

m
+ is the strategy of the second

player.

Let y = (x, λ), Y = (X, Λ) ∈ R
n
+ ⊗ R

n
+ = Ω. The corresponding normalized payoff

function is defined as follows

Φ(y, Y ) = (c(x) − AT λ, X) + (Ax − b(λ), Λ) + (λ, b(λ)) (31)

Therefore finding a saddle point is equivalent to finding a normalized J. Nash equilibrium of

two person concave game, i.e. finding such ȳ ∈ Ω that

Φ(ȳ, ȳ) = max{Φ(ȳ, Y )|Y ∈ Ω} (32)

Let us consider the corresponding pseudo–gradient

∇Y Φ(y, Y )|Y =y = g(y) ≡ g(x, λ) = (c(x) − AT λ, Ax − b(λ)) (33)
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So finding ȳ ∈ Ω from (32) is equivalent to solving the following variational inequality

(g(ȳ), Y − ȳ) ≤ 0, ∀Y ∈ Ω (34)

Let us fix ȳ ∈ Ω. It follows from (34) that

max{(g(ȳ), Y − ȳ)|Y ∈ Ω} = (g(ȳ), ȳ − ȳ) = 0 (35)

From (35) we obtain that g(ȳ) ≤ 0, because by assuming that at least one component of

the vector g(ȳ) is positive, we obtain

max{(g(ȳ), Y − ȳ)|Y ∈ Ω} = ∞ (36)

Therefore if ȳ = (x̄, λ̄) ≥ 0 solves the variational inequality (34), then

c(x̄) − AT λ̄ ≤ 0 and Ax̄ − b(λ̄) ≤ 0 (37)

Note that solving (35) is equivalent to finding

max

{

n
∑

j=1

(c(x̄) − AT λ̄))jXj +
m

∑

i=1

(A(x̄) − b(λ̄))iΛi|Xj ≥ 0, j = 1, . . . , n, Λi ≥ 0, i = 1, . . . , m

}

Therefore for 1 ≤ j ≤ n we have

(c(x̄) − AT λ̄)j < 0 ⇒ x̄j = 0, x̄j > 0 ⇒ (c(x̄) − AT λ̄) = 0 (38)

and for 1 ≤ i ≤ m we have

(Ax̄ − b(λ))i < 0 ⇒ λ̄ = 0, λ̄i > 0 ⇒ (Ax̄ − b(λ̄))i = 0 (39)

Hence ȳ = (x̄, λ̄) ∈ Ω is a primal–dual feasible solution, which satisfied the complemen-

tarily condition (38)-(39).

Therefore the vector Y = ȳ is the solution for the following primal–dual LP

max{(c(x̄), X)|AX ≤ b(λ̄), X ∈ R
n
+} = (c(x̄), x̄) (40)

min{(b(λ̄), Λ)|AT Λ ≥ c(x̄), Λ ∈ R
m
+} = (b(λ̄), λ̄) (41)

i.e. ȳ = y∗. On the other hand it is easy to see that GE y∗ which is defined by (9)-(10), solves

the variational inequality (34). Therefore finding GE y∗ is equivalent to solving variational

inequality (34).

Now let us show that y∗ ∈ Ω exists.

The arguments used for proving the existence of a normalized J. Nash equilibrium in

section 3 can’t be used in case of (32), because the feasible set Ω is unbounded and Kakutani’s

Theorem can’t be applied.
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It turns out that if c(x) and b(λ) are well defined, then in spite of unboundedness Ω the

GE exists. We start with the following technical Lemma.

Lemma 1. If vector–functions c(x) and b(λ) are well defined, then the pseudo–gradient

g : Ω → R
m+n is a strongly monotone operator, i.e. for γ = min{α, β} > 0 the following

inequality holds
(

g(y1) − g(y2), y1 − y2
)

≤ −γ‖y1 − y2‖2 (42)

for any pair (y1; y2) ∈ Ω ⊗ Ω.

Proof Let y1 = (x1, λ1), y2 = (x2, λ2) ∈ Ω then

(g(y1)−g(y2), y1−y2) = (c(x1)−AT λ1−c(x2)+AT λ2, x1−x2)+(Ax1−b(λ1)−Ax2+b(λ2), λ1−λ2)

= (c(x1)−c(x2), x1−x2)−(AT (λ1−λ2), x1−x2)+(A(x1−x2), λ1−λ2)−(b(λ1)−b(λ2), λ1−λ2)

= (c(x1) − c(x2), x1 − x2) − (b(λ1) − b(λ2), λ1 − λ2).

Invoking (7) and (8) we obtain (42). We are ready to prove existence and uniqueness of the

GE.

Theorem 1. If c(x) and b(λ) are well defined, then the GE y∗ = (x∗, λ∗) exists and is

unique.

Proof. Let us consider y0 ∈ Ω : ‖y0‖ ≤ 1 and a large enough number M > 0. Instead of (32)

we consider the following equilibrium problem.

Φ(y∗

M , y∗

M) = max{Φ(y∗

M , Y )|Y ∈ ΩM} (43)

where ΩM = {Y ∈ Ω : ‖Y ‖ ≤ M}. The normalized function Φ(y, Y ) defined by (31) is linear

in Y ∈ Ω and ΩM is a convex compact set. Therefore for a given y ∈ ΩM the set

ω(y) = Argmax{Φ(y, Y )|Y ∈ ΩM} (44)

is a solution set of a convex optimization problem. Therefore for any given y ∈ ΩM the

set ω(y) ⊂ ΩM is convex and compact. Moreover, the map y → ω(y) is upper semi–

continuous. In fact, let us consider a sequence {ys} ⊂ ΩM : ys → ȳ and any sequence of

images {zs ∈ ω(ys)} converging to z̄.

Due to the continuity of Φ(y, Y ) in y and Y we have z̄ ∈ ω(ȳ). Therefore y → ω(y) maps

convex compact ΩM into itself and the map is upper semi–continuous, hence Kakutani’s

Theorem can be applied. Therefore there exists y∗

M ∈ ΩM : y∗

M ∈ ω(y∗

M).

Let’s show that the constraint ‖Y ‖ ≤ M is irrelevant in problem (43). Using the

bound (42) for y1 = y0 and y2 = y∗

M one obtains

γ‖y0 − y∗

M‖2 ≤ (g(y∗

M) − g(y0), y0 − y∗

M) = (g(y∗

M), y0 − y∗

M) + (g(y0), y
∗

M − y0) (45)

Vector y∗

M is the solution of variational inequality (34) when Ω is replaced by ΩM , hence

(g(y∗

M), y0 − y∗

M) ≤ 0 (46)
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It follows from (45)-(46) and the Cauchy–Schwarz inequality that

γ‖y0 − y∗

M‖2 ≤ |(g(y0), y
∗

M − y0)| ≤ ‖g(y0)‖‖y
∗

M − y0‖ (47)

or

‖y0 − y∗

M‖ ≤ γ−1‖g(y0)‖ (48)

Therefore,

‖y∗

M‖ ≤ ‖y0‖ + ‖y∗

M − y0‖ ≤ 1 + γ−1‖g(y0)‖

Hence, for M > 0 large enough, the inequality ‖Y ‖ ≤ M is irrelevant and can be removed

from the constraint set in (43).

In other words y∗

M = y∗ = (x∗, λ∗) is the GE. It turns out that if the vector–functions

c(x) and b(λ) are well defined, then GE not only exists, but it is unique as well.

In fact, assuming that ȳ ∈ Ω, y∗ ∈ Ω are two different solutions of the variational in-

equality (34) then one obtains (g(ȳ), y∗ − ȳ) ≤ 0 and (g(y∗), ȳ − y∗) ≤ 0, therefore

(g(ȳ) − g(y∗), ȳ − y∗) ≥ 0

On the other hand it follows from (42) for y1 = ȳ and y2 = y∗ that

(g(ȳ) − g(y∗), ȳ − y∗) ≤ −γ‖ȳ − y∗‖2 (49)

The contradiction proves uniqueness of the GE y∗ .

5 Projected pseudo–gradient method for finding GE.

In this section we introduce the projected pseudo–gradient method for finding GE and show

its global convergence with Q–linear rate. We estimate the ratio through the basic parameters

of the input data. The global convergence with Q–linear rate allows us to estimate the

computational complexity of the method.

For well defined c(x) and b(λ) the pseudo–gradient

g(y) = (c(x) − AT λ, Ax − b(λ)) (50)

is strongly monotone, i.e. (42) holds. Therefore finding GE can be reduced to solving the

variational inequality (34) for a strongly monotone operator g : Ω → R
n+m.

We start by recalling basic facts related to the projection operation (see [4],[8]).

Let Q be a closed convex set in R
n. Then for each x ∈ R

n there is a unique point y ∈ Q

such that

‖x − y‖ ≤ ‖x − z‖, ∀z ∈ Q (51)

The vector y is called the projection of x on Q, i.e.

y = PQx (52)



13
and PQ : Rn → Q defined by (52) is called the projection operator. Let x0 ∈ Q, then finding

projection y = PQx is equivalent to solving the following convex optimization problem:

d(y) = min{d(z) = ‖z − x‖2|z ∈ Q0} (53)

where Q0 = {z : ‖z − x‖ ≤ ‖x0 − x‖}.

The problem (53) has a compact convex feasible set Q0 and strongly convex and contin-

uous objective function d(z). Therefore the projection y = PQx exists and is unique for any

given x ∈ R
n.

Let’s consider the optimality criteria for the projection y in (53). Keeping in mind that

∇d(z) = 2(z − x) and the fact that y is the point in Q0 closest to the vector x we obtain

(y − x, z − y) ≥ 0 or (y, z − y) ≥ (x, z − y), ∀z ∈ Q0 (54)

Now we would like to recall few properties of the projection operator PQ which will be used

later.

Lemma 2. Let Q be a closed convex set. Then the projection operator PQ is non–

expansive, that is

‖PQx1 − PQx2‖ ≤ ‖x1 − x2‖, ∀x1, x2 ∈ R
n (55)

Proof. Let y1 = PQx1 and y2 = PQx2, then using the optimality criteria (54) for y1 and y2

we obtain

(y1, z − y1) ≥ (x1, z − y1), ∀z ∈ Q

and

(y2, z − y2) ≥ (x2, z − y2), ∀z ∈ Q.

From the first inequality one obtains

(y1, y2 − y1) ≥ (x1, y2 − y1). (56)

From the second we have

(y2, y1 − y2) ≥ (x2, y1 − y2). (57)

Combining (56)and (57) and using the Cauchy–Schwarz inequality we obtain

‖y1 − y2‖
2 ≤ (x1 − x2, y1 − y2) ≤ ‖x1 − x2‖‖y1 − y2‖.

Hence

‖y1 − y2‖ ≤ ‖x1 − x2‖.

Lemma 3. Let Q be a closed convex set in R
n. Then x∗ is a solution of the variational

inequality

(g(x∗), x − x∗) ≤ 0, ∀x ∈ Q (58)

if and only if for any t > 0 vector x∗ is a fixed point of the map PQ(I + tg) : Q → Q, i.e.

x∗ = PQ(x∗ + tg(x∗))
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Proof. If x∗ is the solution of the variational inequality then (58) holds. Multiplying the

inequality by t > 0 and adding to both sides (x∗, x − x∗) one obtains

(x∗ + tg(x∗), x − x∗) ≤ (x∗, x − x∗) ∀x ∈ Q.

It follows from (54) that x∗ = PQ(x∗ + tg(x∗)). On the other hand if x∗ = PQ(x∗ + tg(x∗))

then from (54) taking y = x∗ and x = x∗+tg(x∗) we obtain (x∗, x−x∗) ≥ (x∗+tg(x∗), x−x∗),

i.e. (g(x∗), x − x∗) ≤ 0 ∀x ∈ Q.

We are ready to describe the projected pseudo–gradient method for finding GE.

Let y0 = (x0, λ0) ∈ R
n
++ ⊗ R

m
++ be a starting point. Assume that approximation ys =

(xs, λs) has been found already. The next approximation one finds by the formula

ys+1 = PΩ(ys + tg(ys)) (59)

Keeping in mind that Ω = R
n
+⊗R

m
+ the method (59) translates into the following formulas

for goods and prices updates

xs+1
j =

[

xs
j + t(c(xs) − AT λs)j

]

+
, j = 1, . . . , n (60)

λs+1
i = [xs

i + t(Axs − b(λs))i]+ , i = 1, . . . , m (61)

where [z]+ =

{

z z ≥ 0,

0 z < 0.

Before we specify the step length t > 0 let’s consider the update formulas (60) and (61).

It follows from (60) that if the current price cj(x
s) exceeds the current expenses (AT λs)j

than the production of good 1 ≤ j ≤ n has to be increased. If the current price ci(x
s) is less

than current expenses (AT λs)j then the production of the good has to be reduced.

It follows from (61) that if the current consumption (Axs)i of factor 1 ≤ i ≤ m exceeds

the current availability bi(λ
s), then one has to increase the price for the factor.

If availability bi(λ
s) of factor 1 ≤ i ≤ m exceeds consumption (Axs)i, then the price

should be reduced.

The projection operation keeps the new primal–dual approximation ys+1 = (xs+1, λs+1)

in Ω, i.e. ys+1 is non–negative.

We recall that for well defined c(x) and b(λ) the pseudo–gradient g(y) is strongly mono-

tone on Ω = R
n
+ ×R

m
+ , i.e. (42) holds.

Let us also assume that pseudo–gradient g(y) satisfies the Lipschitz condition as well, i.e.

there is L > 0 such that

‖g(y1) − g(y2)‖ ≤ L‖y1 − y2‖ ∀y1, y2 ∈ Ω (62)

Theorem 2. If c(x) and b(λ) are well defined and (62) holds then for any given 0 < t <

2γL−2 the projected pseudo–gradient method (60) globally converges to GE with Q–linear

rate and the ratio 0 < q(t) = 1 − 2tγ + t2L2 < 1. Also the following bound

‖ys+1 − y∗‖ ≤ (1 − (γL−1)2)1/2‖ys − y∗‖ (63)
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holds for t = γL−2 = mint>0 q(t)

Proof Let us estimate

‖ys+1 − y∗‖2 = ‖PΩ(ys + tg(ys)) − PΩ(y∗ + tg(y∗))‖2

Using Lemma 2 and Lemma 3 we obtain

‖ys+1 − y∗‖2 = ‖PΩ(ys + tg(ys)) − PΩ(y∗ + tg(y∗))‖2

≤ ‖ys + tg(ys) − (y∗ + tg(y∗))‖

Then

‖ys+1 − y∗‖2 ≤ ‖ys + tg(ys) − (y∗ + tg(y∗))‖2 =

(ys − y∗ + t(g(ys) − g(y∗)), ys − y∗ + t(g(ys) − g(y∗))) =

‖ys − y∗‖2 − 2t(ys − y∗, g(ys) − g(y∗)) + t2‖g(ys) − g(y∗)‖2

Using the strong monotonicity (42) and Lipschitz condition (63) we obtain

‖ys+1 − y∗‖2 ≤ ‖ys − y∗‖2 − 2tγ‖ys − y∗‖2 + t2L2‖ys − y∗‖2

= (1 − 2tγ + t2L2)‖ys − y∗‖2 = q(t)‖ys − y∗‖2,

Therefore for any 0 < t < 2γL−2 we obtain 0 < q(t) < 1.

Hence for any 0 < t < 2γL−2 the projected pseudo–gradient method globally converges

with Q–linear rate and the ratio 0 < q(t) < 1. Also q(γL−2) = mint>0 q(t) = 1 − (γL−1)2, i.

e. the bound (63) holds.

The projected pseudo–gradient method (60) converges to GE (x∗, λ∗) :

x∗

j > 0 ⇒ cj(x
∗) = (AT λ∗);

x∗

j = 0 ⇐ (AT λ∗)j > cj(x
∗)

λ∗

i > 0 ⇒ (Ax∗)i = bi(λ
∗)

λ∗

i = 0 ⇐ (Ax∗)i < bi(λ
∗).

Therefore if the market “is cleared” from goods for which the production cost exceeds the

price and from factors, which exceed the needs for them, then for the remaining goods and

factors we obtain the following equilibrium:

(AT λ∗)j = cj(x
∗), (Ax∗)i = bi(λ

∗)

and

(c(x∗), x∗) = (b(λ∗), λ∗),

which one can view as the Generalized Walras Law.
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The pseudo–gradient method (60)-(61) can be viewed as a projected explicit Euler method

for the following system of differential equations

dx

dt
= c(x) − AT λ

dλ

dt
= Ax − b(λ)

If vector–functions c(x) and b(λ) are well defined and Lipschitz condition (62) holds then

for any given 0 < t < 2γL−2 the corresponding trajectory {ys = (xs, λs)}∞s=0 converges to

GE (x∗, λ∗) and the following bound holds

‖ys+1 − y∗‖ ≤ q‖ys − y∗‖, s ≥ 1 (64)

where 0 < q := (q(t))1/2 = (1 − 2tγ + t2L2)1/2 < 1

Let small enough 0 < ǫ << 1 be the required accuracy. Due to (64) it takes O((ln ǫ)(ln q)−1)

projected pseudo–gradient steps to get an approximation for GE (x∗, λ∗) with accuracy ǫ > 0.

The number of operations per step is bounded by O(n2) (assuming that n > m), therefore

the total number of operations for finding the GE with given accuracy ǫ > 0 is

N = O(n2(ln ǫ)(ln q)−1)

This means that for well defined c(x) and b(λ) finding GE might require much less

computational effort then solving an LP.

6 Concluding Remarks

Replacing the factor vector b by the factor vector–function b(λ) leeds to “symmetrization”

of the classical Walras–Wald equilibrium (see[5]). The symmetrization is not only justifiable

from the economic standpoint, it also eliminates both the combinational nature of LP as

well as the basic difficulties associated with finding classical Walras–Wald equilibrium by

solving variational inequality (18) with g(x) = c(x). In fact, instead of solving variational

inequality (18) on a polyhedron, we end up solving the variational inequality (34) on R
n
+⊗R

m
+ .

What is even more important, the “symmetrization” leads to the projected pseudo–

gradient method (59), which is not only attractive numerically, but also represents a natural

pricing mechanism for finding economic equilibrium.

All these important features of the projected pseudo–gradient method are due to our

assumptions that vector–function c(x) and b(λ) are well defined and sufficiently smooth.

If this is not the case then other methods for solving the variational inequality (34) can

be used (see [7]).

Lately the interest in gradient projected type methods has been revitalized and a number

of important results have been obtained (see [1]–[3] and references therein). Some of the

methods developed in [1]–[3] can be used for solving variational inequality (34).



17
Our main goal however is keeping the algorithms simple and efficient with full under-

standing of the pricing mechanism they represent.

We hope that the dual Nonlinear Rescaling methods in general (see [12] and reference

therein) and the dual MBF method (see [11]) in particular can be used as prototypes for

such algorithms. Some new results in this direction will be covered in an upcoming paper.

The research was supported by NSF Grant CCF-0836338.
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