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Modified Interior Distance Functions !

Roman A. Polyak

ABSTRACT. The purpose of this paper is to introduce and to develop the theory of
Modified Interior Distance Functions(MIDFs).

The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem, which

is equivalent to the initial one and can be obtained from the latter by monotone
transformation both the objective function and constraints, i.c. MIDF is a particular
realization of the Nonlinear Rescaling Principle in constrained optimization.
In contrast to the Interior Distance Functions (IDFs), which played a fundamental role in
Interior Point Methods (IPMs), the MIDFs are defined on an extended feasible set and
along with center, have two extra tools, which control the computational process: the
barrier parameter and the vector of Lagrange multipliers.

Our second goal is to develop and analyze Modified Center Methods (MCMs) based on
MIDFs theory.

The MCMs find an unconstrained minimizer in primal space and update the Lagrange
multipliers, while both the center and the barrier parameter can be fixed or updated at each
step. In this paper we will restrict ourselves by considering MCM with fixd] both the
barrier parameter and the “center”.

It was proven that in case of nondegenerate constrained optimization, the MCM
produces a primal and dual sequences that converge to the primal-dual solutions with Q-
linear rate, when both the center and the barrier parameter are fixed. Moreover, every
Lagrange multipliers update shrinks the distance to the primal dual solution by a factor
0 <y <1 which can be made as small as one wants by choosing a fixed interior point as a
"center” and a fixed but large enough barrier parameter.

Convergence due to the Lagrange multipliers update allows to eliminate the ill-
conditioning of the IDFs Hessians and contributes to numerical stability of the MCM.

The MIDFs one can consider as Interior Augmented Lagrangean and MCM as a
multipliers method.

1. Introduction
In the mid 60s, P. Huard [ BuiH66], [Huar67a] and [Huar67b] introduced Interior
Distance Functions (IDFs) and developed Interior Center Methods (ICMs) for solving
constrained optimization problems. Later these functions, as well as Interior Center
Methods, were intensively studied by A. Fiacco and G. McCormick [FiacM68], K.
Grossman and A. Kaplan [GrosK81], R. Mifflin [Miff76], and E. Polak [PolE71], just to
mention a few.
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It was found [PolE71] that there are close connections not only between the IDFs and
the Barrier Functions [FiacM68], but also between ICMs and methods of feasible directions
{Zout60], {ZPP63].

The ICMs consist of finding at each step a central (in a sense) point of the Relaxation
Feasible Set (RFS) and updating it in accordance with the objective function level that has
already been attained. The RFS is the intersection of the feasible set with the Relaxation
(level) set of the objective function at the attained level. In the Classical ICM the "center"
is sought as a minimum of the IDF.

Interest in the IDFs, as well as in the Barrier Functions (BFs), grew dramatically in
connection with the well known developments in mathematical programming during the last
ten years since N. Karmarkar published his projective scaling method [Kar84]. In fact, his
potential function is an IDF and his method is a Center Method, which produces centers of
spheres, which belong to the feasible polytop. The concept of centers has a long and
interesting history.

In the 60s, concurrently with P. Huard's ICM, the Gravity Center Method was
independently developed by A.Levin [Lev65] and D. Newman [New65], the Affine Scaling
(ellipsoid centers) Method by I. Dikin [Dik67], and the Chebyshev Center Method by S.
Zuchovitsky, R. Polyak and M. Pimak [ZPP69). The Affine Scaling Method, which one can
view as a method of feasible direction with special direction normalization, was rediscovered
in 1986 independently by E. Barnes [Barn86] and R. Vanderbei, M. Maketon and B.
Freedman [VanMF86] as a simplified version of Karmarkar's method.

In the 70s, N. Shor [Sh70] and independently D. Yudin and A. Nemirovsky [YuN76]
developed the ellipsoid method, which generates centers of ellipsoids with minimal volume
circumscribed around some convex sets. Using this method, L. Khachiyan [Kh79] was the
first to prove in 1979 the polynomial complexity of the Linear Programming problem. His
result had a great impact on the complexity theory, but numerically the ellipsoid method
appeared to be not efficient. It is interesting to note that the rate of convergence, which was
established by L. Dikin [Dik74] for the Affine Scaling Method, in case of nondegenerate
linear programming problems, is asymptotically much better than the rate of convergence
of the ellipsoid method and numerically, as it turned out, the Affine Scaling Method is much
more efficient [AdRVK89].

The concept of centers became extremely popular in the 80s. Centering and reducing
the cost are two basic ideas that are behind the developments in the Interior Point Methods
(IPMs) for the last ten years. Centering means to stay away from the boundary. A
successful answer to the main question: how far from the boundary one should stay, was
given by Sonnevend [Son85] (see also [JarSS88]) through the definition of the analytic
center of a polytop. The analytic center is a unique minimizer of the Interior Distance
Function. The central path-curve, which is formed by the analytic centers, plays a very
important role in the IPM developments. It was brilliantly shown in the paper by C.
Gonzaga [Gon92].

Following the central path J. Renegar [Ren88] obtained the first path-following
algorithm with 0 (V'nL) number of iterations against 0(nL) of the N. Karmarkar's method.

Soon afterwards, C. Gonzaga [Gon88] and P. Vaidya [Vaid87] described algorithms
based on the centering ideas with overall complexity 0(»’L) arithmetic operations, which is
the best known result so far.

In the course of the 30 years history of center methods it became clear that both the
theoretical importance and the practical efficiency of the center type methods depends very
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much on the "quality" of the center and on the cost to compute the center or its
approximation.

The center was and still is the main tool to control the computational process in a wide
variety of center methods in general and in IPMs in particular.

However, still there is a fundamental question, which has to be answered: how
consistent the main idea of center methods - to stay away from the boundary with the
main purpose of constrained optimization - to find a solution on the boundary.

In this paper we will try to address this issue. The purpose of this paper is to introduce
the Modified Interior Distance Functions (MIDFs) and to develop their theory. Based on
this theory, we are going to develop the Modified Center Methods (MCMs), to investigate
their convergence and to establish their rate of convergence.

The MIDFs are particular realizations of the Nonlinear Rescaling Principle (see
[Ber82p309], [Pol86], [Teb92], [PolTeb95] and bibliography in it) which consists of
transforming a constrained optimization problem into an equivalent one and using the
Classical Lagrangean for the equivalent problem for both theoretical analysis and numerical
methods. In the case of MIDFs, we transform both the objective functions and the
constraints by monotone transformations. The constraints transformation is parametrized
by a positive parameter. The MIDFs, which is a Classical Lagrangeans for the equivalent
problem have properties that make them substantially different from both IDFs as well as
Classical Lagrangeans for the initial problem.

Instead of one tool (the centers), which controls the process in the IDFs, the MIDFs
have three tools: the center, the barrier parameter and the vector of Lagrange multipliers.
Two extra tools provide the MIDFs with very important properties.

The barrier parameter not only allows to retain the convexity of the MIDFs when both
the objective function and the constraints are convex, it also allows to "convexify" the
MIDFs in the case when the objective function and/or the constraints are not convex but the
second order optimality conditions are satisfied. The barrier parameter is also crucial for the
rate of convergence of the MCMs.

The other critical extra tool is the vector of Lagrange multipliers. It allows to attach to
the MIDFs nice properties of Augmented Lagrangeans [Ber82], [GolT89], [Hes69],
[Man75], [PolT73], [Pow69], [Rock74].

One can consider MIDFs as Interior Augmented Lagrangeans. Moreover, in addition
to the nice local Augmented Lagrangean properties, the MIDFs possess important global
self concordance properties (see [NesN94]), when the Lagrange multipliers are equal and
fixed. It allows to obtain methods with polynomial complexity by fixing the Lagrange
multipliers and changing the barrier parameter or the center to approach the solution.

What is most important, the MIDFs are defined and keep smoothness of the order of the
initial functions on the extension of the feasible set.

The special MIDFs properties allows to develop MCM, which produces the primal-dual
sequences that converge to the primal-dual solution, even when both the center and the
barrier parameter are fixed. Moreover, under nondegeneracy assumptions the primal and
dual sequences converge to the primal-dual solution with Q-linear rate.

The MIDFs are to IDFs as Modified Barrier Functions (MBFs) (see[P0l92]) are to
Classical Barrier Functions. It seems, however, that the differences between MIDFs and
MBFs are more fundamental than between Classical Distance and Barrier functions, which
are both critical tools in the IPMs developments.

The paper is organized as follows. After the statement of the problem, we discuss the
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IDF's properties and introduce the MIDFs. Then we establish the basic MIDF's properties
at the primal-dual solution and compare them with the correspondent IDF's properties. Then
we prove the basic theorem, which is the foundation for the MCMs and their convergence.

1. Problem Formulation and Basic Assumptions.
Let f,(x) and -f,(x),i = 1,..,m be convex, C* -function in R" and there exists

(1.1) x* = argmin{fy(x)/xeQ}

where Q = {x:f(x) 20, i=1,.,m}.
We will assume that Slater condition holds, i.e.

12) Ix: f(x9>0,i=1,.,m

So the Karush-Kuhn-Tucker's (K-K-T's) optimality conditions hold true, i.e. there exists a
vector u* = (u; ,..,u,,) > 0™ such that

(13)  LlGu®)=fix")- 5 uflx)=0", fx"u =0, i=1,.,m,
i=1

where L(x,u) = fy(x) - X, u,f,(x) is the Lagrange function for (1.1) and/,l(x) = grad f|(x),
i=0, ... m, are row-vectors. Let 1* = {i:f,(x*) =0} = {1,..,r} isthe active constraints set and
r<n.

We consider the vector-function f(x) = (f,(x),...f,(x)),the vector-function of active
constraints f,(x) = (fj(x),...f,(x)) and the vector-function of passive constraints £ ,.(x) =

o i@hrfp )

We also consider their Jacobians f'(x) =J(f(x)), fy(®) =J(f,(O), fom @) = (Fp_yX));
diagonal matrices U =[diag u,.];';l , U, =[diag u,],f=l with entries u,, i = 1, ..., m and Hessians

»
s ¥ s=1,..n . _ *
f"l(x)”lax.ax,l o1y =01, m

of the objective function and constraints. The sufficient r?gularity condition

(1.4) rank f,(x*) =r, >0, iel*

together with the sufficient condition for the minimum x" to be isolated

(1.5) (Ly(x*u")z,2) 2 A(z,2), A>0 Vz#0 if(x)z=0"

comprise the standard second order optimality condition, which we will assume in this
l\)sgizall use the following assertion, which is a slight modification of the Debreu theorem

(see [Pol 92)).

Assertion 1 Let A be a symmetric n X n matrix, B be an r x n matrix, and
U-=[diagu,]);.,: R"~R’, where u=(u, ..., u,)> 0" and let

Ay, »2A0,),A>0, Vy:By=0"
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Then there exists k, > 0 such that for any 0 < p < A the following inequality
((4+kBTUB)x,x) > p(x,x), Vx€R"
holds true whenever k > k,.

2. Interior Distance Functions
Let y € int Q and « = fi(y), we consider the Relaxation Feasible Set (RFS) on the level
a:Q(e) =QN{x:f(x) < ) andaninterval T ={t: a<t<a* = £ (x *)}. The Classical IDFs
F(x,a) and H(x,a): Q(e) x T—R! are defined by formulas

Fx,0) = -min(e ) - 32 In/®); Hese) =m (@) + 37'@)

Let us assume that In = -= and ' = for ¢ < 0, the Classical Interior Center Methods
(ICMs) consists of finding the "center" of the RFS by solving the following unconstrained
optimization problem

% =x(a) = argmin{ F(x,a)/x € R"}

and updating the objective function level a , i.e., replacing « by & =/,(£). Due to the
property x-~3Q(a) = F(x,a)~= the new center £(a:) € intQ(a)<Q for any a e 7.
Moreover, if the IDF possess the self-concordance properties (see [NesN 94]) the central
trajectory {£(a), « € T} has some very special features (see [Ren 88] and [Gon 92]).

Starting at a point close to the central trajectory - "warm" start - for a particular « € 7
and using Newton step for solving the system

Fl(x,a)=0"

in x following by a "careful" « updat®, one can guarantee that the new approximation will
be again a "warm" start and the gap between the current level ¢ = f;(x) and the optimal level
o’ = f(x") will be reduced by a factor 0 < g, < 1, which is dependent only on the size of the
problem.

However along with these nice properties the IDFs have their well known drawbacks.
Neither the IDFs F(x, «) and H(x, &) nor their derivatives exist at the solution. Both F(x, o)
and H(x, a) grow infinitely when X(a) approaches the solution.

All constraints contribute equally to IDFs and one can obtain the optimal Lagrange
multipliers only in the limit when £(o)— x*. What is particularly important for nonlinear
constrained optimization is the fact that the condition number of the IDF Hessians is
increasing unbounded when the process approaches the solution. Let's consider this
issue briefly, using F(x,a). Keeping in mind the boundness of the RFS Q(«) one can
guarantee that the unconstrained minimizer £ € int Q (o) exists and

M) e ™ ey S~ HD o
@1 Fx(x,a)—a_fo(f)fg(x) 21: T
or
@2) A -3 2Dy o

i=1 m_/,' (xA)
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We define

g,=d,(a)=(a-fENmLEN, i=1,..m

and consider the vector of Lagrange multipliers 4 = #(a) = (4,(a) , i=1,...,m), then (2.2) can
be rewritten as follows:

Li(%8)=f(%) - g 8,1/ (£) = f; (£) - af'(£) = 0"

Also &,f(£) = (a-fy(E)m~", i=1,.,m. So X 4,f,(£) = & - f, (£). Under the unique-
ness assumptions (1.4) - (1.5) we have

lim d(a)=u", lim #(a)=x"
a-~a' a-a

Let's consider the Hessian F”(x,a) We obtain

Fa(#,e) =f'() - 3“2 £7(2) - Z e ]/’()

o mi@) e mf(x)

- / - - -
Further, for any i = 1,..., m, we have (—“ f"(x)) =m! BN f"(’»]

) | £
Therefore

o - fo(%) ]fl( ) fl(x)) fl( )+E - &= fo#) (f/( ))T/J( )

mf(x) o mpn o mige) f( £)

S, B8 fliz) + 3 )

T« fo( %) =1 @) i ™ f(x)
o E AT E X ACOSAC)

Let D(x) = [dlagf,.(x)],=l , U(a) = [diag u,(a)],=, , then for the Hessian Fx/:(f, a)
we obtain

Gf()

Fl(%a) = LI(% @) + (f'(£))T U(@)D ' (£)f'(%) + A *)1’2 a(e)f (%)

f( %)
Inview of £ =X(a)-x", d=4d(a)~u"* we obtain

Ll a)~LY(x*u), U@ El 8,f (£~ £,7(x)f(x*)
f&-fx, U-U*, DE#)~D(x")

Therefore

23)  Fo#,) = L "u ) + (f,c N E@)f)(x ") + (@ -f(EN " 5 (e DA ()

where E(a) =[diag é,(x)]}., and
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. A . n -1 /A
24) lim é(a) = lim #4,(x)f, (¥(@)) = +
a-a a-a’

The mineigval F;:(x" ,) is defined by the first two terms (2.3), therefore in view of (2.4)
and due to the Assertion 1 with 4 = Lx/,f(x *,u*)and B =f(lr)(x *) there exists p >0 :

mineigval F.(£,a) = p
At the same time due to (2.4) we have

maxeigval in/(f,a) - o
and the condition number

k(£, a) = maxeigval Fx',:(f, o) (mineigvalF,Z(:‘c‘, ) -
when a- o'

The consequences of the ill-conditioning is much more critical in nonlinear
optimization than in Linear Programming. In case of LP the term Lx/: (x,u) in the expression
for the IDF Hessian disappears and by rescaling one can practically eliminate the. ill-
conditioning effect, at least, when the problem is not degenerate.

In nonlinear optimization the situation is completely different and the ill conditioning
was and still is an important issue both in theory and practice. To eliminate the ill
conditioning of the IDF we will introduce the Modified Interior Distance Functions.

3. Modified Interior Distance Functions

We consider a vector y € int Q and A(y, x) =f, () - f; (x) > 0, then the Relaxation

Feasible Set (RFS) is defined as follow‘s:
2
Q) ={x:f(x)20,i=1,..m ; A(y,x)>0}

The problem (1.1) is equivalent to
3.0 x* = argmin {f,(x) /xeQ()}
It is easy to see that for any k> 0

Q) = x:k " [In(kf,(x) + A(y,x)) - InA(»,x)]12 0 i=1,.,m; A(y,x)>0}.
Therefore the problem (3.1) is equivalent to the following problem:
3.2 x* =argmin{-lA(y,x)/xe Q(»)}

Assuming In ¢ = - for ¢ < 0 we define the MIDF F(x, y, u, k): R” x int 2 x R” x R'++ - R!
as a Classical Lagrangean for the equivalent problem (3.2):

(33) F@yuk)=(-1+k"! f:u,.)lnA(y,x) -k f: u, In(kf,(x) + A(y,x))
i=1 i=1
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The MIDF F(x, y, u, k) corresponds to the IDF F (x, ). To define the MIDF, which corres-
ponds to H(x, &), we first note that for any k£ >0

Q) = ek [(KfE) + A@x) T - AT 0] <0, i = L.m, AQx)>0 }
Therefore the problem (1.1) is equivalent to
G.4) x* = argmin (A" (3,x) /x € Q) }

Assuming £' = for ¢ < 0 we define the MIDF H(x,y,u,k) : R x intQxR"xR', - R
as a Classical Lagrangean for the equivalent problem (3.4):

65)  H@nuh =(-1+k" Eu) A0 + k7 S, () + A0
i=1 i=1

The MIDF (3.5) corresponds to the P. Huard's IDF H(x, o). Both F(x, y, u, k) and
H(x, y, u, k) are Classical Lagrangeans for problems equivalent to (1.1), which we obtained
by monotone transformation both the objective function and the constraints.

Finally, the MIDF Q(x,y,u,k) : R" x int Q x R” x R., - R!, which is defined by formula

0Cs k) = (A0u) " P o A Gkf AN

corresponds to the potential function
0(x,@) = (@£ ™ N7 G).

So, we have F(x,y, u, K)=1n O(x, y, u, k) and all basic facts about F(x, y, u, k) remain true
for O(x, , u, k), therefore we will not consider the MIDF Q(x, y, u, k) further in this paper.

There is a fundamental difference between the Classical and Modified Interior Distance
Functions. First we are going to show the difference at the local levek- in the neighborhood
of the primal-dual solution. In the next section, we will consider the local MIDFs properties.

4. Local MIDFs Properties
In contrast to the IDFs, the MIDFs are defined at the solution; they do not grow
infinitely when the primal approximation approaches the solution and under the fixed
optimal Lagrange multipliers, one can obtain the primal solution by solving one smooth
unconstrained optimization problem.

Proposition 4.1. For any k>0andanyy € int Q, the following relations are taking
place.

(P1) F(x"yu"k)=-InA(yx") ie. f(x*) =£,0) -exp(-F(x"p,u",k)
and

H(x ‘ay’u "k) = A_l(y’x ‘) ie. f;)(x ‘) =f£)(y) - H—l(x "yau t9k)

The property P1 follows immediately from the definition of MIDFs and the complementary
conditions for the K-K-T's pair (x",%°):
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u f(x*)=0, i=l,..m.

The fact that the MIDF's value at (x",x) coincides with the optimal objective function
value for the equivalent problem independently on both the center y € int Q and barrier
parameter k > 0 indicates that one can approach the solution by means other than those,
which have been traditionally used in the IPMs.

Proposition 4.2. For any k>0 and any y € int Q , the following relations are taking
place.

®2) F/ (x*yu”k)=A" (x*)L' (x*u*)=0
and
H (x*yu"k)=A(yx*)L' (x*u")=0

The proposition 4.2 immediately follows from the definition of MIDFs and K-K-T's
conditions.

Proposition 4.3. If k > ¥ u," the unconstrained minimizer of F(x, y, u", k) or
H(x y, v, k) inx is a solution of the convex programming problem (1.1), i.c., the Jfollowing
property is taking place.

(P3)  x"=argmin{F(x,y,u",k)/xeR"} = argmin{ H(x,y,u",k) /xeR"}

In other words, having the optimal Lagrange multipliers one can solve the problem (1.1) by
solving one unconstrained optimization problem. Therefore if F(x, y, u, k) is strongly convex
in x and we know a good approximation u for the vector u', then % =%(y,u,k)
= argmin{ F(x,y,u,k) /x€R"} is a good approximation for x" while both the "center" y e
int Q and k> ¥ u, are fixed.

If by using £ we can improve the approximation u, then it is possible to develop a
method where the convergence is due to the Lagrange multipliers update rather than to the
center or the barrier parameter update.

Our goal is to develop such a method, but first we will try to understand under what
conditions for the problem (1.1) the MIDFs F(x, y, u, k) and H(x, y, u, k) will be strongly
convex in x when both y and & > 0 are fixed.

The following proposition is the first step in this direction.

Proposition 4.4.If f,(x) € C*,i=0, 1,..., m, then for any fixed y e intQ, k>0 and
any KKT's pairs (x", u’) the following is true:

F/ (e yu k) = A (o x )L (e " u™) +
AT xRy N U, fyx *) = oo N gy gy oy ()]
Hy(xy,u' k) = A2 x )L ey +

A7 xRy N U, fiy ) = G Wty iy e N

(P4)

and
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The proof is given in the Appendix A1. We are now ready to prove the first basic statement.

Theorem 1. If f,(x) e C%,i=0, \,..., m , then

1) for any fixed y € int Q and k> X u;” the function F(x, y, u, k) is strongly convex in
the neighborhood x" if f{(x) or one of the functions - f{(x), i = 1,...,r is strongly convex at
x* or sufficient regularity conditions (1.4) are taking placeand r = n ;

2) if the second order optimality conditions (1.4) - (1.5) are fulfilled then there exist
k, > 0 large enough that for any fixed y € int Q and any fixed k> A(y, x) k,+ X u” there
exist such that n> 0 and M <+« that the following is true :

(P5)  a) mineigval Fl(x*yu* k)2 A (r,x)p
b) maxeigval F..(x*y,u" k)< A (3 x" )M
and the condition number of the Hessian F, x/: (x*y,u’k) is bounded, i.e.
®(x*,y,u",k) sMp™

Proof 1) Using P4 for any v € R” we obtain
Fl(x y,u* k)v,v) = A (rx L (e u ) v,v) +
A7 0 x VR0 U, i@ IVV) = (o N7ty iy @ IVV )]

= A VLG )VY) + A0 x ") (K - ) (e DT U fi (x IVo)
+ A7 0 () (] ),V - Eu (] ), V)]

Taking into account identity

(B Eu @) - Eu (7))
(4.1) i=1 i=1

LY Sutut (e -fx),v)1E20
2 P i T Vi J 2
we obtain
(FLG "y, umk)viv) 2 A7 (e (L e ")
4.2)

s AT 0x ) (k= Zu) () ) U, oy () vav))

So for a convex programming problem (1.1) the function F(x, y, «', k) is convex in x for any
yeintQand k> X o,

If one of fy(x), - f{x), i =1,..,r is strongly convex at x*then due to % >0,
i =1,..,r and f; (x) € C? the Classical Lagrangean L(x, u°) is strongly convex in the
neighborhood of x” while the matrix (k- Xu,") A™'(y,x ") (f,(x ) U, £,(x ") is non
negative defined for any y € int Qand k > X u,’, therefore F(x, y, u",k) is strongly convex
in the neighborhood of x°. If f,(x) and all - f(x) are convex then L(x, «") is convex in x. If
in addition the sufficient regularity condition (1.4) is satisfied and r = n, then for any y €
int Qand k> X ;" the matrix (k-Xu," )A™' (y,x ‘)(/(J,)(x * ))TU:f(J,)(x *) is positive defined
and again F(x, y, u, k) is strongly convex in the neighborhood of x*.

Note, due to fi(x) € C*,i=0, 1,.., m the MIDF F(x, y, «’, k) will remain strongly
convex in x for any u € R,” close enough to u" .



MODIFIED INTERIOR DISTANCE FUNCTIONS 193
2) Now let's consider the case when none of fi(x) and - fi(x), i = 1,..., r are strongly
convexand r <n.If k> A (y,x") ky + Zu, , then due to (4.2) we obtain
Faa(x " pu " k)vy) 2 A (x V([ L (e ")

+ k(g N U f(x)IV,Y), VVER”

4.3)

Therefore if the second order optimality condition (1.4) - (1.5) are satisfied, then due to the
Assertion | with A=L"_(x*,u") and B =f' ,(x") for k,> 0 large enough, any "center"
y € int Q and any k>A(yx Yk, + Xu; there ex1sts u>0

(4.4) Fl(xy,uk)vyv) 2 A x ) p(v,v), VveR

It is also clear that for a fixed y € int Q and fixed k > Ay, x°) k, +X u,” there exists
M <o

4.5) Flx " putk)vv) < AN (pxYM(v,v), VVeR"

Therefore k (x", y, u’,k) s M " and due to f{(x) € C%,i=0,1, ..., m the condition number
remains bounded in the neighborhood of (x°,«°) for any fixed "center" y € int {2 and any
fixed barrier parameter k > A(y, x") k, +X ;.

REMARK 1. The second part of Theorem 1 remain true even for nonconvex problem if
the second order optimality conditions are satisfied. In other words the barrier parameter
k not only allows to retain the convexity in x of the MIDF F(x, y, 4, k) but also provide
convexification of the F(x, y, 4, k) in x in case when the Classical Lagrangean L(x, u) for
the initial problem is not convex in x, € R".

Ay

REMARK 2. Theorem 1 holds true for the MIDF H (x, y, u, k). For any y € int Q and any
fixed k > 0.5 k, A(y, x") + X o, there exists p > 0 and M < that for V ve R” the following
is true: »

a) H'(x*yut)v,v)z A2(nx YL 9 ") + k(e ) U fyx 1v:v) 2
A (px ) pv,v),
b) ng(x ‘J’,u ',k)V,V) S A—Z (y,x ‘) M(V,V)

5. Modified Center Method
It follows from Theorem 1 that to solve a constrained optimization problem for which
the second order optimality conditions are fulfilled, it is enough to find a minimizer for a
strongly convex and smooth in x function F(, y, ', k) with any fixed y € int Qasa
"center" and any fixed k> A(y, x) k, + X ;" Due to the strong convexity of F(x, y, u,k)
in x to find an approximation to x” it is enough to find a minimizer

G0 £ = £(y,u,k) = argmin{ F(x,y,u,k) /xeR"}

for a given Lagrange multipliers vector ueR”, close enough to #*, when both y and k are
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fixed. Moreover, as it turns out, having the minimizer ¥ one can find a better approximation
i for the vector u" without changing both y € int Q and k> 0.
Let's consider it with more details. Assuming that the minimizer £ exists, we obtain

(5.2) Fl@yuk)=(1-k"'Zu +k'Ta)fj(&) -La,f (#)=0"

~

where the components of the new vector of Lagrangean multipliers # = 4 (y,u,k) are
defined by formulas:

8,0,u,k) = u, A 0, 8) K, (E) + A 0, )", i=1,.,m

Let d(x, y, k) = k f{x) + A(y, x) then we have the following formula for the Lagrange
multipliers update

(5.3) ,0,u,k) = u, A (,£) 4 (£,,k), i=1,..m

Formula (5.3) is critical for our further considerations.

First, we have 4 (u*,y,k) = u* forany fixedyeint Qand k > A(y, x) k, + L 4, i.e.
u’ is a fixed point of the map u - & (u,y,k).

Second, we will show later that for the new vector # the following estimation:

(54 fa-u*l<ck'A@x") tu-u*|

holds, and ¢ > 0 is independent on y € int Q and k> 0, where | x || = [ x ||, = max |x,| .

Isisn

Third, it turns out that the estimation (5.4) is taking place not only for # but for the

minimizer £ as well, i.e. .
hY

(5.5) bE-x"lsck'AQx") lu-u’|

In other words, finding a minimizer £ and updating the, vector u€R”, is equivalent to
applying to u€R”, an operator :

Cy,,‘: C,yu= a(uyk)=1
Note that C,, u” = u’ . The operator C,, is a contractive one if
1C,  u-u'l=1C, (u-u”)I<lu-u"}
The contractibility of C,, is defined by
ContrC, =¥, ;= ck'A@,x")
The constant ¢ >-0 depends on the input data and the size of a given problem and
independent on y and k. We will characterize the constant ¢ > 0 in the course of proving the

basic theorem. So, for a given problem, the contractibility 0 < y, ,< 1 depends on the
"center" y € int Q and the barrier parameter k£ > 0.
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The independence c ony and k makes possible to reduce y, , > 0 to any apriori given
level by increasing k > 0 under the fixed y, or reducing A(y, x*) under the fixed & or by
changing both the "center" y € int Q and the barrier parameter £ > 0 in the process of
solution.

In particular, for any "center” y € int Q and any given 0 <y < 1, one can find such a
barrier parameter £ > 0 that the operator C, , will shrink the distance between current
approximation (x, ) and the primal dual solution (x*, ") by a factor 0 <y < 1. Now we will
describe the basic version of the Modified Interior Center Method. The convergence and
rate of convergence will be considered later.

We start withy € int Q, #° =¢,, = (1,...,1) e R" and k > m. Let's assume that the couple
(x*, u*) has been found already. Take k£ > ¥ #; , then the next approximation (x**!, #**') we
find by formula:

(5.6) x**! = argmin { F (x,y,u*,k) /x € R"}
6.7 W w2 uf Aty d T (k) isl,m

First, let us consider conditions for the problem (1.1), under which the method (5.6) -
(5.7) is executable. To simplify our consideration, we assume without loosing the generality*

(A1) inf f(x)> -

xeR"

We also assume that the set of optimal solutions for the problem (1.1) is not empty and
bounded, i.e.

(A2) X" = Argmin{fy(x)/xeQ}+ o

is bounded.

Taking into account the Corollary 20 (see [Fiac M68] p 94) and assumptions Al - A2, we
conclude that the set Q,(y) = {x:kf,.(x’)‘) +A(y,x)20, i=l,..,m; A(y,x)>0} is bounded
forany yeintQand k > 0. Also x~9Q, (y)= F(x,,u’,k)~ = therefore for any
u*€R7,,yeintQ and k> X u;° the function F(x, y, u*, k) is convex in x € Q,(y), and the
minimizer s

x*! = argmin {F(x, y, u*, k) /x € R"}
exists. Therefore
(5:8) Fl(x*yu’k)=(1-k'Tu + k"' Zul" Y[ ) -Zu ' f 1) =0

and u*eR7, = u*'eR7,.
Hence, starting with a vector ° € R,,” one can guarantee that the Lagrange multipliers will
remain positive up to the end of the process without any particular care about it.

The convergence of the MCM (5.6) - (5.7) will follow from the Basic Theorem, which -

we will prove in the next section.

I int £, (x) = - =, like in case when f, (x) is linear, one can take f, (x): = ¢’
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6. Basic Theorem

The Basic Theorem establishes the contractibility properties of the operator C, ,. We
will start by characterizing the domain, where the operator C, , is defined and possesses
these properties. Let's consider a small enough number t > 0, a fixed y,: fi(,) > Tand a
subset Q_={x:f(x) 2 te}N{x:A(y,,x)>0} of the RFS {X(y,). Note that due to Al - A2
and the Corollary 20 (see [FiacM68]) the set Q. is bounded. We will choose the "center" y
from Q.. For any y € Q_ we have A(y, x*) > 0. Along with the fixed T > 0 we consider two
fixed small numbers € > 0 and & > 0 and a large fixed number &, > 0. In the course of
proving the Basic Theorem it will become clear what "small" and "large" mean.

To characterize the domain, where the operator C, , is defined, we will consider few
sets, in the dual space. The sets are dependent on the fixed parameters t, €, 6 and &,. To
simplify the notations we will omit the parameters in the notations.

We consider two types of sets. The first type

Uy';k={u,.:uizs, lu,-u*| <A (y,x* )k}, i=1,..,r

is related to the active constraints set.
The second type

in,k= {ui: OsuisﬁA"l(y’xt)k}, i=r+1,...,m

is associated with the passive constraints.
IfyeQ.and k2 kA(y,x*) + Tu; are fixedthentheset U, , = U, , x -, x U, x -~ x U},
is the feasible set for the Lagrange multipliers.

We will prove in the Basic Theorem that the operator C,,, is a contractive one on the set

D, = {uelU,,, k2ky}
Before we turn to the Basic Theorem, let's briefly describe thegnain idea of the proof.

In view of A1-A2 forany u €R",,y €int Q_and k>X u, there exists the MIDF's minimizer
#=%(y,u,k) and

6.1 Fl(Ry,mk) =f] (%) - £ 4,f/(£) - h(£,y,u,k) + g(£p,u,k) = 0
i=1

where

6.2) 8,=u, A2 d  (Eyk), i=1,.,r,

h(£.y,u,k) = > A, ) ] (£.3,K) £ (£)

i=r+l
and m
gEuk) =k T u (-1 +A@2d  (Ey0)fE)
i=1

Considering (6.1) and (6.2) asa system of equations for £ and &, , it is easy to
verify that ¥ =x"and 4, = u,, satisty the system forany yeQ., k>Xu ,and u=u
Moreover for any triple (3, u, k) € D, , the system (6.1)-(6.2) can be solved for # and 12(,).

Having the solution % = )E(y,.u,l;cu) and 12(,) = ﬁ(r)(y,u,k) one can find the Jacobians
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x, (-) J, (X(y,u,k)) and u(,)u () =J,(4,(y,u,k)) and estimate | % (y,u k)| and
! u(,),, (y,u NP

It turns out that under second order optimality condition, there is such k, > 0 that for
any ye Q. and k> k,A(y,x") + X 4" the following estimation

(63) max {1 £, (,u ", k)| , Nugy, (hu' k) I} sc

takes place and ¢ > 0 is mdependent on y and k.

Due to the contmulty %, (-) and u(,)u (*) in u the estimation (6.3) is taking place in the
neighborhood of u .

In view of x* =X(y,u*,k) and u* =4 (y,u",k) and using (6.3) one can estimate
I£-x*| and |2 -u"| through | u -u"|.

The independence ¢ > 0 on y and & makes possible to prove that for any fixed y € Q,
there exists k,> 0 such that for any k > k& A(y,x") + X 4 the operator C, , is a contractive
one, i.e. 0<vy,,<1, therefore ueU , = C ,u=iel,

In the course of proving the Basic Theorem we will assume

min{f(x*)/ i=r+1,.,m}=0>0,min{A (y,x*)/yeQ }=1,>0,077 be thep xq
zero matrix; I” be the r x r identity matrix, S(a,e) ={xeR":|x - a| <&}. We remind
that d,(x,y,k) = (kf,(x) + A(y,x))and introduce three diagonal matrices d(x, y, k) =

[diag d,(x,y, k)T, d,(x.3, k) = [diag d, (., E)]. . Ay, (33,K) = [ ditg d (2,3, K) T,

Theorem 2. 1) If Al - A2 are taking place, then for any/y €Q ,ue R7, and k>X u;
there exists % =X (y,u,k) = argmin{ F(x,y,u,k)/x e R"}: F,(%,y, u,k) 0",
QIf fi(x)eC 2 i=0,.,m and standard second order optimality conditions (1.4)-
(1.5) are taking place then:
a) for any triple (y,u k) € D, the minimizer X = X (y,u,k) exists, F, (x,y,u k)=0"and
Jor the pair X and i = 4 (y,u,k) the f(_:llowmg estimate
5

(6.4) max{|£-x*|, ld-u*} < ck' A, x*)|u-u"|

holds and ¢ > 0 is independent ony and k .

b) for any fixed y € Q. and k> k,A(yx")+ X u; ,the MIDF F(x, y, u, k) is strongly
convex in the neighborhood of X and there exists 1> 0 and M < e independent on
ueU,,that

(6.5) mineigval F(£y,u,k)2 A" (y,x*) i
(6.6) maxeigval F.'(£y,u,k)s A (y,x*)M

Proof 1) In view of the assumptions Al - A2 and the Corollary 20 (see {Fiac M68]
p94) the set Q,(y) = {x: kf(x)+A(»,x)20,i=1,.,m;A(y,x)>0} is bounded for any
yeQ.and k >0.Alsox - dQ,(y) = F(x, y, &, k) - = , therefore forany yeQ_,ueR7,
and k> X u, the function F(x, y, u, k) is convex in x € Q) and X = £(y,u,k) is an
unconstrained minimizer of F(x, y, u, k), i.e. Fx/ (X,y,u,k) =0".

2) For technical reasons, we introduce a vector = (¢,,...t,,), t, =k 'A(y,x*) (u, - u;")
instead of the vector of Lagrange multipliers u,then u =’ =¢ = 0™ . Such transformation
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translates the neighborhood of #" into the neighborhood S(0,8) ={z: |, <8 , i= 1,.,m}
of the origin of dual space.

We will split the vector # on two parts, which correspond to the active and passive
constraints.

Let 12(,) =(4,, i=1,.,r) isavector of Lagrange multiplier, which corresponds to the active
constraints, while ﬁ(m_r) = ﬁ(m_,) (x,y,1,k) = (4, (x,y,,k), i=r+1, .,m) is the vector of
Lagrange multipliers, which corresponds to the passive contraints.

We have i(x,y,5,K)=kA™ (i, x ILAG,x)d (xp,k), i=r+l,.,m, = (b, &,.,) and
for the vector-function A(x, y, , k) , g(%, y, u, k) we will have the following replacement.

h(x,y,t,k) = 5 2, (2,9, 6) (N = (B 51, K)oy N

i=rel

gy tk) =k {‘E et A (,x ") + 4 ) [ -1+ A(x) d’ (x,y,6)] }(/(f(x))T
i=1

So forany k> 0, small enough €,>0 and y € Q. the vector functions A(x, y, ¢, k) and

g(x, y, t, k) are smooth in x € S(x*, &,) and t € S(0,8). Then we have h(x *,»,0,k) = 0",
g(x*.3,0,K) = 07, B/(x*,y,0,k) = 0",g/(x",3,0,k) = -A™ (3,x *)f'g (¢ )y () also
by (°,9,0,)=0" and g _(x".,0,k)=0"".0n S(x " £0)%S (4, €0)*0,%8(0,8) % (0, + )
we consider the map ®(x, 12(,), y.4k): R rem+1_ R"*" defined as follows:

R NS R T HOR RO R AR
kA [(RA x ), + 0 ) Ay x) 7 (e p,k) - 8] ,i=1,.,r)
Taking into account (1.3) and A(x’, y, 0, k* = g(x", y, 0, k) = 0" we obtain
@ (x*,u,,»,0,k) =07 for any k>0 and ye Q..

b Y
Let @, = ®g, (00000, L = L"), f =f1(6) o 2 fpx),
U =[diagu, Ii., 4, =( ,i=1,.,r).
In view of h/(x*,3,0,k) = 0", b (x',3,0,k) = 0", g,(x".»,0,)
= - A x ) (2 )G (x7), £, (% 7,3,0,K) = 0™ we obtain

o B (s O LI-A'0xWs fo
,kE xu‘-'.xyu(’)’ ,y» = «
M U A, Sk AGxI”

Now we will prove the nondegeneracy of the matrix @, for any y € int Q. and any
k2 k,A(y,x")+ X 1 . Let us consider w = (z, v) € R"*", then the system @, ,, w=0""" can
be rewritten as follows:

(6.7) L'z -A'0,x ) s faz-figyv=0"

(6.8) Ul Sz -k Apx®)v = O
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We find v from (6.8) and substitute in (6.7). Taking into account the K-K-T's condition
Sflo=u'(,f'» We obtain

Loz + A 0 ) LA UL fy = iy gy 4y S 2= 0"

ie.
(LYz,2) + A (1, x VKU, oy 2.0y 2) - (i £y 21 =0
The inequality :
k> kAW +Xu;
implies

(L”z z2) + A x ) [K(U; £y 2 ,f(’,)z) (U Sy 2]

> (LT2,2) + A7 0 [k AGr ) U, fiy 7o)
(Eu,)(gL 2,z) + A ‘(y,xl)[k(ug Jiz) (uwﬁ)z)] 2
= (Ly2,2) + k() (,)f{,)z 2) + A e Y [ ) (. 2)) - (Bu) (], 2)) ]

Due to identity (4.1) we obtain (Xu," )(Xu,” (fl z)?) - ;Eu ¥ 2))? > 0. Therefore taking
into account Assertion 1, we have 0 = ((L + ko P U(,) "2 2) 2 1(z,2),1>0,ie.
z=0", hence from (6.7) we obtamf’ Y = 0", so due to (1.4) we have v=10,ie. @, , W=
0" = w = 0", i.e. the matrix @, ,, is a nonsingular matrix.

Let &, be large enough. We consider a compact

K={0"x{(y,k):yeQ k2 k2 kA(y,x*) + Xy}

Since ®(x°, (, ,y,O k) =0""", the matrix ® xu (x* u(,),y,O k) is nonsingular,
fi(x)eC?,i=1,.,m and K is compact, it ollows from the second implicit function
theorem (see[Ber82]p.12) that there is a small enough & > 0 that in the neighborhood
S(K,8) =t k):|4,| <8, i=1,.,m,yeQ ke lkA(y,x )+ X,k ]} of the compact
K there exist unique contmuously dlfferentlable vector-functionsx(¢) = x (3,4, k)
=(x, 1, k), X, (1K) and i, (2) = 4, O, 4,k) = (@, (3,1,k), ., 4,(y,1,k)) such that
x(y,O k) =x,4,(»,0,k) = u(,) and for any trlple ot k) € S(X, d) there is g, > 0 that

(6.9) max {1x(6K) - x°1 , | 4, (1K) - ug I s €,
The identity
(6.10) B (x (3,4, k), iy (1,1, K), 35, k) = D(x(2) iy (+)y+) = 0

holds true for all (y, 1, k) € S(K, 8).
So we obtain

FT(e)) - £ 8,(0)fT(x(2)) - h(x(2),) + g(x(*),*)
6.11) i=1
= A, x(* ) FL(x(*),y,u,k) = 0"

which due to A(y,x(*)) > 0 is the necessary optimality condition for the vector x(¢) to be
a minimizer of the function F(x,y,u,k) in x under the fixed (y,1,k). Also from (6.10) we
obtained the identities
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i,(2)= (kA (,x )8, + 1)) A,x(*))d, " (%(#),3,k), i=1,..,r forthe Lagrange multipliers
that corresponds to the active contraints. After multiplying both sides by k 'A(y, x°), it can
be rewritten as follows:

6.12) (4, +k A DU ) AG()) 4 (x(*) k) -k TTAx )i (0) =0 i=1,.,r

The Lagrange multipliers that correspond to the passive constraints , we can rewrite in the
following way:

(6.13)  &,(x(),*) = 4,(*) = kAT (x ), A x(9)) d 7 (x(*) k), i=r+l,..m

Let ﬁ(m_,)(-) =(d,(e), i=r+l,.,m) and i(*) = (12(,)(0); ﬁ(m_r)(-)). To prove the suffi-
cient optimality condition for the vector x(¢) to be a minimizer of the function F(x,y,u,k) in
x under fixed (3,14, k) we will show later that the function F(x,y,u k) is strongly convex in the
neighborhood of x(+) for any (y, u, k) € Dko. But first of all we will ascertain the estimation
6.4). :

First, let us prove that for small enough & > 0 and large enough £, there exists p > 0
such that the inequality .

(6.14) 1(®, 5, () iy()se ) s p

holds true for all (1, y,k) € S(X, ).
We consider the matrix

LY -A'ox R T

O, _ = . (x*,u,,0,y%)=
) 278 2By T .
(¢4 x4, ¥ fUrf(i) o

The matrix @, .., is nonsingula.r{or any y € Q_ . In fact, for a vector w =(z, v) e R"*" the
system

D, ,w=0""
can be rewritten in thefollowing way
(6.15) Liz- Ao faz-flgv=0"
(6.16) - U,'f’(r)z =0"

Because of u',,> 0" from (6.16) we obtain f(J,)z =0, i.e. (ff,z) =0, i=1,.,r,therefore
(X0, 4f],2) = (f; ,2)= 0. Multiplying (6.15) by z we obtain

(6.17) (Lyz,z) - A (x ) (f,2) - (v, £yz) =0

ie.
" r
(L,z,2)=0, Vz:j(J,)z=0
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so due to (1.5) we have z = 0" then from (6.14) one obtains f* ’(t)v = 0", which due to (1.4)
implies v=0".

Therefore, ®,,w = 0" implies w = 0"*" for any y € {2, i.e. the matrix ®,_, is non-
singular, so there exists a constant p > 0 independent of £ and y € Q _ such that

I @, 1 < Py

Hence, for the Gram matrix G, _, <I>T d>( ~) We have mineigval G, _,= o> 0. Then
there exists a large enough k,> 0 such that for any yefl 5 and k > koA(y N+ Xy ie.
TA(p,x") <k, ! we obtain for the Gram matrix G.1y = ity D1y the inequality

mineigval G, ;2 %2 lo

and p, > 0 is independent of y € Q. and k € [ k, A(y.x") + X o, k, ]. Therefore @, ,,)‘ is not
only nonsingular, but there exists a constant p >0 independent of y € Q. and k > k,A(y,x")
+ X u;" such that

(6.18) | @0l = 1975 (,0.k);4,(,0,0) | < p

The last inequality implies (6.14) if & > 0 is small enough. Now we will prove estimation
(6.4). First, let us estimate the norm | ﬁ(m_r) ).

Due to (6.9) for any small enough § > 0 there exists such small enough €,> 0 that for
Y (. ¢, k) € S(K ,8) max{|f,(x(y,5,k)) - f,(x(»,0,k)) | ,xlf(x(y,t k) -£,(x(»,0,k)) |,
i=r+l,..m}< €-

Therefore, in view of f(x") > 0> 0 for the passive constraints , we obtain

£Gx(ntk)) 2 2>0, i=r+l,.,m and for the Lagrange multipliers, that correspond to the
passive constraints we have

4 (3,46) = u, () - (3L 0)) (R GG E) +£,0) - GG 60))

=S4y £, £, - GOLRN LD - k(6" - £, 48)))
+ 1) £ ) = (h(x(tk) - fy(x NI

< 1 0h0) ~£y(x") + e (KL x™) = (K + 1)y +4 ) ~x*))'!

$ 2R =S )+ g) (™) = K7k + D)y + k™ () ~fy(x ™))

Hence, for small enough ¢, < % k(k+ 1) we obtain

ui(') = uf(y,t,k) < 2uAyx’) < 4uA(yx’)

. , i=r+l,...om
ko~ 2+A(x )k ko

So we have
* 4 - * *
| %yt 6) ~ 2y I S =KADY N Uy = Uy |

Now we will show that the estimation (6.4) holds for X(y,7,k) and 12(,)( k) =
(4,(y,t,k),i=1,.,r). To this end we differentiate the identities (6.11) and (6.12) with
respect to .

Let x/() =J,(¥(*)) = (/,(*)) = 1,21} gy (#) = (05 (2)) = (8 (#), i = 1,..,1) are
the Jacobians of the vector functlons x(*) and 4 )( ). Also L(x(e),4,(*))=fy(x(*))-
X .1 4,(*)f,(x(*)) and let J (h(x(*),*)) and J(g(x( ),*)) are the Jacoblans of the
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vector functions A(x(¢),*) and g(x(*),*).Then differentiating (6.11) with respect to ¢
we obtain:

IACOY RO HOBI AR WO

6.19)
~J(R(x(2),%)) + J(g(x(*),*) =0
n
£ (x(*))
Let F(r)(x(-)) =rl ... |, P&(),ntk)=[diag(s,+ k! u,.'A(y,x ‘))]: x
JAEI0))

[- 4y (x()3 B Fx(+)) - KA (e NN ORANEIQ)
+ AQ,(2))* dgr (x(2),,K) Fi (2 (N1

Differentiating (6.12) with respect to ¢ we obtain

B (x(o),y,1,k)x/ (o) - kT AD,x gy (0) =

(6.20)
-[AGnx(e) d(;)' (x(*),,k) ;07" 7"} = S(x(*),*)
Now let us consider the Jacobians )
J(h(x(*),*N=h /(x(),*)x/(*) + h, [(x(*),*)
) 'N(x( ), *)x/ (e )*q(x( ),*)
an

J(g(x(*),*)) = g (x(* ), )x,(*) + g/(x(*),*)
= G(x(),*)%/(*) + p(x(*),*)

We also consider the matrix

xu (x(e )’u(,)( )e)= d’x ..(’)( )=
n r
n [L,’i (x(*), Gigy(*)) + G(*) ) + NGx(0)0)  -f REIO)
r P(x(*),*) -kTAQx)IT

Then combining (6.19) and (6.20) we obtain

/

x, ()
(6. 21)
i, (*)

=(®

x4y

m
R [q(x(.)é:(_.’),(f)(.)’.) =, (D REC))

Now we consider the system (6.21) for ¢ = 0. Taking into account
x(y,0,k)=x", ﬁ(,)(y,o,k) = u(:), ﬁ(,,_r)(y,o,k) =07
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L (x(2,0,k),8,(,0,k) = L (x*,u "), G(x(,0,k),»,0,k)
= - () fo(x W (Vo (x*), N(x(3,0,k),,0,k) = 0™"
F(x0,0 K)52,0,) = U‘f(,)(x Y, g(x(%,0,6);,0,k) = q(x",,0,k)
=k [0"’ S (%) - (% ,y,k)] p(x(3,0,k),y,0,k) = p(x°*,y,0,k) =
(0™ Fr_y(x*) [ diagf,(x ), (x "3, 0) 1 1,
S(x(3,0,k),5,0,k) = S(x*,5,0,k) = (- 1";0"""")
we obtain the following system
000 | g@pok -ptp0k| '
(6.22) =, =@, R(x",,0,k).
i, (5,0,k) S(x*,y,0,k)
Therefore

623)  max{1x/(h0,0) 1,1 i, (3,0,k) 1} s 1 @, 1 | R(x",,0,0)1.

Taking into account min {A(yx"Y y€Q.} = 1,>0,
i [diag (F;(x") + k' A ) ' I, ks 07,
I [diag (f;(x (=) + kT AG ") TN K s 1,

. k)
one obtains ~

I Q(x ',t,O,k)I s 0-1 If -r)(x )l Ip(x !y’O k)' s 1'.0 lF(m-r)(x )I ’

1S(x*,0,0,k) < 1 and [R(x*%,0,k) | s 07 1, () 1+ 5 HFp(x )1+ 1.

In view of (6.18) and (6. 23) we have

max (1%, (10,K) 1, iy (1 0.0) 1} < p(1 + 67 S0 (31 + % U Fmp(x 1) =

So there exists a small enough & > 0 such that for any (y, ¢, k) € S(X, 8) the inequality

(@5, GOrat k), i, (,a0,k) ;3,2 b) R(x(,04,K) sy, 0,8) |
(6.24)

<2p(1+ao’! |ﬂ(m_,,(x W+t L F, m-nx)1) =6

holds true for any 0 < a < 1. Also we have

[ *O,4,k) - x(5,0,k) l
(6.25) |

8, (»,1,k) - 4,(»,0,k
f @, , GOraLk), (a8 k)y,atk) e R(x(,06k); y,atk) [1]da.

From (6.24) and (6.25) we obtain
max {] x(y,0,k) -x "1, 1 4, (0, 1,k) - u(:)l Yseghtl =k ' AGux ) fu-u'l.

203
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Let f(y’uak) =x(y7k_lA(y’x ')(u'"'),k),ﬁ(y,u,k) = (“(,)(y,k-lA(Yax ‘)(u - u'),k),
iy 5k Ay, x ") (1 - "), k) and ¢ = max {cy,407'}, then
max { | £(y,u,k) - x* |, | 4, u,k) -u* § s ck A x ) Ju-u').

So we ascertained the estimation (6.4). Also £(y,u*,k) =x" and d4(y,u*,k)=u" follows
from (5.3) for any triple (y, u’, k) € D,‘0 i.e. #" is the fixed point of the mapping
u-u(y,uk).

3) Now we will prove that F(x, y, u, k) is strongly convex in a neighborhood of
X =xX(y,u,k) for any (y,u,k) e Dko’

Using the formula for Fﬁ(f,y,u,k) (see Appendix A2) and taking into account the
estimation (6.4) we obtain for a small enough 6 and for any triple (3, u, k) € Dk0 that

Fr@y,u, 0= A7 (,x ) [Lg (3 ") + A7 (3 Yk ) (YU £y (2 7) - flo (6 ) (6 )
(KA N () - u))fg Vo (x) + k7N (E (0 - u))fy (x9)].

For any triple (v, 4, k) € D, wehave k > k, A(.x)+ X4/, and k7' u-u| <

8A°'(y,x*), i=1,..,m.Keeping in mind min {A(y,x")| yeQ,} = t,>0forany v
€ R"” we obtain

(Fayuk)v,v) 2 A 0 YL ) + ko Sl U (2 DV.V))
A Gx Y (4 ) gy U, oy (x ) = iy (x Mgy Gy fon (x )V, )

~(RAG N E N - | (v -k T ) - u] () (x)V,v)

2 A7 ML (2 ") + by 102 VU, S (2 DV,v)

- 8m Ty (15" (fy (xR + (fy (x YV, V).

So due to Assertion 1, there exists a k, large enough such that
(FLEy,uk)v,v) 2 A (,x ) [(v,v) - 875 m(ty' (f (x "), V)2 + (7 (x )V, V).
So for small enough & > 0 and any triple (v, u, k) € Dl‘o there exists 0 <fi<p:
Fl(&y,u,k)v,v) 2 A" (3,2 ) i(V,v), VveR"
ie.forV(y u k)e Dko' We have
mineigval F.(£,y,u,k) > A (y;x ") i

To complete the proof we note that for any triple (v, 4, k) € D,‘0 we have
' Zu < (Zu Y (Apx") + X0 ) +0mA (2 ) < (X, ) (kyty + X, ) '+ 6m1:;1.

Therefore if 0<& < ki , then k™'Y u,<1.So for small enough & > 0 the
m(L+(Zu; ) (kT ")
function F(x, y, u, k) is strongly0 convex in x € Qy) for any (y, u, k) € Dko. Hence the

vector X =%(y,u,k) is a unique minimum of the function F(x,y,1,k) in Quy), ie.
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Fl(%y,u,k)=0.
Due to the definition of F(x, y, u, k) we obtain

% = argmin{ F(x,y,u,k) | xe R"}.

Using the formula for in/ (x,y,u,k)one can find M such that for any triple (y, 4, k) € Dko
the estimate (6.6) is taking place.
We completed the proof of the basic theorem.

The following assertion is direct consequence of the Basic Theorem.

Assertion 2 If the standard second order optimality conditions (1.4) - (1.5) hold, thén
Jfor any fixed ‘center” y € Q. and any fixed barrier parameter k> kyA(y,x*) + X u” the
MCM (5.6)-(5.7) generates a primal dual sequence { (x*,u*)},., suchthat { u* Your € Uy_ i
and

max {fx*' -x" |, lu™ -u* |} sckTA,x ) ut-u*|
and ¢ > 0 is independent on 'y and k.

Corollary For any given 0 <y <1 and any fixed center y € Q, there exists k,> 0 that
Jor any fixed k>k,A(y,x*) +X u," the following is true.
»

(6.26) max {|x’-x"|, lu’-u"|} <y

REMARK 3. All statements of Theorem 2 remain true for the MIDF H(x, y, u, k). To prove
it we consider instead of ®(x, i,,y,t,k) the mapping Qﬂ(x,ﬁ(,),y,t,k):Rz" sremel_guer
defined by

@, (x,1,9,4,k) = (/g (x) - E. 4.f7(x) - h(x,p,,k) + g(x,,4,k)

k' AQx ) [(RA (1, x )2, + ) A2 (1, x) 2 (x,0,k) - 8,1, 0 = 1,.,7)
where

heptk) = T Gty
1

gyt k)=k X (kt, A (rx*) + 4, ) [ -1 + A2(1,2) d, 2 (2,0, 0) 1Y () (x))T
i=1
and
4,(x,y,0,k) = kA2 (x,y ), A2 (1, x) 4 (x,0,k) i = r+ 1,m

7. Concluding Remarks
The MCM (5.6) - (5.7) converges due to the Lagrange multipliers update when both the
“center” y € €1 . and the barrier parameter k> k,A(y,x*) + X u* are fixed. It makes the
MCM different from both Classical Center Methods (see [Huard67a], [Huard67b],
[FiacM68]) and modern IPM (see [Gon92], [Ren88]).
However the algorithm as stated is not practical in the sense that it requires the exact
optimum to the MIDF at each step. A suitable relaxation of such requirement which allow
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to retain the Q-linear convergence is the first issue, which has to be addressed.

The other important issue is the MCM convergence in the absence of the non-
degeneracy assumptions.

Due to the properties P1-PS one can expect that the Newton MCM will exhibit the “hot”
start phenomenon (see [Pol92], [MelP]), i.e., after each Lagrange multipliers update the

approximation for the primal minimizer remains “well” defined (see [Sm86]) for the updated
MIDF.

To find the conditions for the “hot” start is the third question which we are going to
consider.

Duality issues, which are coming up in connection with MIDFs and MCM, in particular,
the relations between the method (5.6) - (5.7) and Prox methods with Entropy-like

Distances for the dual problem (see [JenP94][PolTeb96]) is another area which deserves
attention. :

Finally, the MIDFs have some features which are typical for MBFs (see [Pol92]),
however, in many ways they are substantially different which can be seen even on small
examples, which we are going to provide.

All these issues we hope to discuss in another paper.
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9. Appendjx
Al. Proof of the Proposition 4. We consider the Hessian F x/:(x *y,u,k)for a fixed
yeintQ and k> 0.

Fle,p,u* k) =[(1 -k " Zu))(50) -f00) /) - k 7 T, (k0x) +£,0) - £,00) (W () -
JAe)

= [(1 -k Zu Y (50) L0 2HEN T + (1 -k Zu” Y0 -£,0) o () +
kU0, (K (6) + £,00) ~£,00) 20 0) - £y U ) - £ () - ™', (hf () +
JAORIAC) I CA(6)) e

= [(1 -k " Zu ) (F0) A0 N 20 NG )+ (1 -k Tu, W00 £ ) Vo () +
k0, () £ ) 2 (A e ) - £ 0 U (™) ~ 15 ) -
kT (100 - £30 N ) £ D]

= (10D ~£30 N ) £, N K NHG ) -k Eu W0 - fe N e
(a0 WHO D £ 0 -k Cu W 0™ + () £y ) kB, (e ) (x %)
S ACR) oM A 20 RO RN €20) o (620 B 2l 0 D08 €20 A E29)
- ):u,.'/,” x*)+k! (Eu,.')fg/(x 9

Taking into account the K-K-Ts relation j;,' x =Xy f,J (x *) we obtain

Fl(x"pu k) = (0 - £ "N Lo(x " u*)
+ k() - G N U WU, £y (%) - () -/ N A (N (2 )]
= (o) - fG N LL(x " u") +
O~ N RF T U, oy (x7) = Fy (6 Yugy ) fy (x )]
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Using the same considerations we obtain

Hx "y, 0,8 = (0) £ N LY " u™)
+ 201,00 =5 N R0 NTUfe ™) - Goee Wty sfos® M1

A.2. Formula for the MIDF Hessian F..(2,y,u,k)

Foyp, ), =(1 -k Ty 0) /) FoRW08) + (1 -k ") «
() £ EN o F) -k Zu () +£,00) £, kS @) -1 &) +
kN Cu b (E) +f,0) ~fEN S E) - fE) W) -/ %))

= (0D ~LEN 00 - £EN g EHE) -k (Cu) § G ) +
FE) -k Cu)fy &) - Tulhy0) - LENHIE) 00 -f,E) A @)) +
kT u ) - fHENHIE) +£0) - @) + kT Eu () -£E)) *
(2 +£,0) ~FEN " HE) +£,0) @) kY[ RY %) -
KR E) - K TR+ BN

= (00 SN KO ~£EN e RV E) -k Eu) s G () +
R@E -k Cu)]E) -Zaf®) +k (Ca), #) +
kG E) +£,0) - /) Y TRV R) - I BV ) -
K TEWE) 1 W)

A
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