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Abstract:

In this paper we developed Modified Barrier Function (MBF’s) theory for
nondegenerate dual pair Linear Programming (LP) problems and methods, that are
based on this theory, for their simultaneous solution.

The MBF methods have up to superlinear rate of convergence and they con-
verge linearly with a given ratio when the penalty parameter is fixed. The numerical
realization of these methods leads to primal and dual Newton MBF Methods
(NMBM’s).

The main difference of NMBM’s from thelinterior Point Methods that are based
on Classical Barrier Functions (CBF’s), resuits from the difference between MBF and
CBF trajectories. The NMBM'’s follow the MBF trajectories that along with “warm
start” possess a "hot start”. »

Beginning at the *hot start” both primal and dual variables became and there-
after remain "well defined”. So by updating the vector of dual variables instead of
the penalty parameter, it is possible to decrease substantially (from 0(/n ) to 0(/n n))
the number of Newton steps required to reduce the gap between primal and dual
objective functions by a given factor.

As it turns out, the crucial parameters that determines the "hot start”, rate of
~onvergence of MBF methods as well as the complexity of the NMBM’s, are the
condition numbers of the primal and dual LP.

We introduce and numerically characterize the condition numbers in terms of
<he key parameters of dual pair LP.

The main results of this paper remain true if only one of the dual pair LP has a
unique solution.



The practical implementation of the Newton MBF Method, that was undertaken
recently at the IBM T.J. Watson Research Center, allows us to observe the "hot
start” phenomenon practically for every LP.

Keywords: Modified Barrier Functions, dual problems, non-degeneracy, condition
number
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1. Introduction

In this paper we introduce Modified Barrier Functions (MBF’s) for primal and dual
Linear Programming (LP) problems. We develop the MBF theory for nondegenerate
dual pairs of LP and methods for their simultaneous solution that are based on this

theory.

MBF's are Classical Lagrangians for an equivalent problem that one can obtain from
the original problem by a monotone transformation of the constraints. However, in
contrast to the Classical Lagrangian for the original LP problem, the MBI’s have a
unique extrenum under the fixed optimal Lagrange multipliers. This extrenum coincides
with the LP solution and one can find it as a minimum of a smooth and strongly convex

function.

MBF’s have some common features with Augmented Lagrangians (see [3], [11],
'15], [26], [28]), and one could consider the MBF’s as Interior Augmented
Lagrangian’s. However, in contrast to the Augmented Lagrangian approach to LP (see
[2], [22]), instead of solving at every step a subproblem with inequality constraints that
remains the combinatorial nature of the origin§l problem, the MBF’s methods require
solving at every step a smooth and strongly convex optimization problem with linear
equality constraints or finding the minir;lum of a smooth and strongly convex function.
It allows us to eliminate the combinatorial nature of the subproblems and at the same

time not only maintain the main Augmented Lagrangian’s advantages, but to gain some

new important properties.

In contrast to the Classical Barrier Functions (CBF’s), (sec [4], [5], [8], [13]) the
MBF’s are smooth of any order in a neighborhood of primal and dual solutions and the

condition number of their Hessians are stable when the process approaches the solution.



Moreover, being Classical Lagrangians for an equivalent problem, MBF’s combine
the global CBF self-concordant properties (see [20]), that guarantee the polynomial
complexity of the interior point methods (see [1], [7], [12], [14] [27]), with excellent
local properties, which allow us to speed up essentially the process in the second stage,

and to make the process potentially more stable.

The numerical realization of the MBF methods leads to the Newton Modified Barrier
Methods (NMBM's). As it turns out, for any nondegenerate dual pair LP along with
the "warm start” (see [1], [7], [12], [14], [27]), there exists a “hot start” (see
[23]-[25]). From this point on both the primal and dual variables become and there-
after remain “well defined”. The primal variable is “well defined” in terms of S. Smale’s
theorem (see [29]) whereas the dual is “well defined” in terms of the basic MBF theorem

(see [24]).

As a result, the number of Newton steps required to reduce the gap between primal
and dual objective functions by a given factor, beginning at the "hot start”, is signif-

icantly less than that required by the Interior Point Methods, that are based on CBF's.

The moment when the process reaches the Yhot start” is crucial for the complexity
of NMBM. The “hot start” essentially depends on the condition numbers of the primal
and dual LP which is introduced and nimerically characterized in terms of the key pa-

rameters of the dual pair LP.

Some of the results in this paper were obtained in 1986 and part of it was mentioned

in [24].



2. MBF for the Primal LP Problem

In this section, we transform the primal linear program into an equivalent problem
using the logarithmic barrier functions. The Classical Lagrangian associated with the

equivalent problem leads to primal MBF.

The following notation and assumptions will be used throughout the paper. Let
A = (N, B) be an m x n matrix (n > m), with columns g, = Z-l-i Ji=1,...,n,
N=(a,i=1,..,n—m)bean mx (n — m) matrix and B=(a:1ii=n—m+ 1,...,n) bean
m x m matrix, pe R", ge R” and suppose that there exists an optimal solution x* for

the primal problem P(A4, p, q)

(1 x* € Argmin{(p,x)| Ax=q, x2=0},
then there exists an optimal solution for the dual problem D(4, p, q)
2) v* € Argmax {(q,v)| vA < p}.

We assume that the dual pair (1) and (2) are nondegenerate, i.c. rank 4 =rank B=m,

and the complementary slackness conditions hold in strict form with the additional

}

proviso that

(3) w*>0andx* =0, j=1,..,n—m x*>0andu* =0, i=n—m+1,..,n,

where u=p — vA and u* = p — v*4. (Under the ndndegeneracy assumption the optimal

solutions x* and v* are unique, i.e. (1) and (2) are equalities.)

Let py=(p1s -+ Py _ ) P = (P, —ma D  Pp)y iy = (1, .., u, ),

ug=(u _m+1,...,un), sou*y=py—V*N>0,u*p=pp—v*B=0.

Consider now a class of equivalent transformations of the problem (1) parameterized

by a constant k>0 and based on a monotone-increasing, twice-continuously-
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differentiable concave function ¥(f) on R! 5 R! that satisfies: Y(0)=0, y'(0)=1, and

¥'’(0) <0. Clearly problem (1) is equivalent in finding
-1
4) x* =argmin{(p,x)| Ax=¢q, k Y(lkx)20, j=1,.. ,n}

Removing the linear manifold
Q= {x: Ax=gq}

from the list of constraints, we define now the Lagrangian associated with (4) for the rest

of the constraints:

Lexu, k)=, )=k ) u(kx).
J=1

The MBF for the primal LP problem (1) we define by formula

L(x,u, k), xe intQ, n Q
Frub=9 oo x¢gintQ 0o

1

where Q, = {x e R": x> — k™ ,i=1,..,n}. We start with a few useful observations

A

concerning the properties of this Lagrangian. Taking (3) into account and recalling that

¥(0) =0, we have
Fx*, u*, k)= (p,x*), Vk>O0.
Next, from (3) and ¥'(0) = 1 and taking into account u*z = 0, we obtain

n
F' (x,u* k) ngf = p — [diagy’(kx*)],_, u* = p — u*,

where F' (x,u, k) is the gradient of F(x,u, k) with respect to xe R"”. Now, since

p — u* = v*4 it follows that the optimal solution x* to (4) also satisfies

x* = argmin{F(x, u*, k)| xe Q}, Vk>0.



Furthermore, in view of the uniqueness of x* and the smoothness of F(x, u, k), the vector
X = argmin{F(x,u, k)| x € Q)

can be forced to lie as close to x* as one desires simply by taking u close enough to u*.

These observations suggest that the solution to (1) may be found by using a rapidly
converging method to minimize the smooth function Fx,u, k) over Q and then
recursively refining the initial approximation u to u* based on the information obtained
by minimizing F(x, u, k) at x. In the first part of this paper we specify this procedure for
the particular monotone transformation given by the logarithmic function

¥(?) = ¢n(t + 1) and for the Newton method for minimizing /{x, u, k) on Q. So we have

n -
-1 :
,X)—k ufn(kx,+ 1), ifxeintQ, n
P [ ;, (kx, + 1) N0
oo, ifx¢intQ, n Q.

3. The Basic Theorem

In this section we present the main result ox% which the convergence analysis of the
primal MBF method will be based. A version of this result appeared in [23] and [24]
for nonlinear programming programs. "I‘he key role in the proof of the basic results in
nonlinear programming play the second order optimality conditions. In case of a linear
programming problem, these conditions make no sense. So to proof the corresponding

results for linear programming, we have to use different techniques and arguments.

Let ¢ >0 and & > 0 are small enough and a number ky > 0 is large enough. We will

call the positive number

o = min{min {x*l|i=n—m+l,...,n},min{u"‘l|i=l,...,n—m}}

measure of the nondegeneracy of LP.



D; (u*, koSr€) = D;(*)

O<e

llllllllllllllllllllllllllllllllllllllllllllllll

D;(u*,ko,S,é)=Di(-)

U“ll“'g'll!ll‘llll""lllllllllllllllllllllllll“ll .
kO n—=m+15isn K

D(u*, ko, S,€)=D(1)=D|(")@...8 D; () 8...8 Dy (*)

| .Uk’-'uf‘ @...QU; ®..8U;



Let Dl(o)=D,(u"‘,ko,6,e)={ui:ui2£,|ui—u"‘i| <ok k= kg, i=1,..,n—m,
D‘(u"‘,ko,é,s)={ui:OSu,-Sék,kzko},i=n—m+ 1,..,n, D(u* kg, 6,6)=D(*)=
Dy(+)® ... ®D{+)® ... ®D,( «) Also for any fixed k > kg define sets U,'; =
{u;: max {e, u*;— Sk} Su; Su*; + 0k}, i=1,..,n—m, and U,i=_{u,.; O0<u; <Ok}, i=
h—m+1,..,n Let Uy=U, ® .. ® U;® .. ®Uy then D(»)={(u, k) : ue U,

k = ky} (see Figure 1). Let i = Hxll < rsnlaé . | x;]. We will call a vector u e R_:

well defined for a parameter k > k; if ue Uj.

Theorem 1. Let condition (3) hold i.e. ¢ > 0 and rank 4 = rank B = m, then there exists
ko > 0 and small enough é > 0 such that for any 0 < e <min{u*;|i=1,..,n—m}

and for any (u, k) € D(u*, kg, 6, £) the following statements hold true.

1) there exists a unique pair x =x(u, k)= argmin{F(x,u, k)| x efintQ, nQ} and

9 = %(u, k) such that F’ (%,u,k)— V4 =0

2) for the triple £ = £(u, k), & = f(u, k) = [diagk3+ 1) 'T_ yu, ¥ = V(u, k) =

(p—)A T(AA T)— ! the estimate

R -1

) max{J¥ — x*|, I — u*l, W= v*I} Sck fu—u*|
X

holds and ¢ > 0 is independent of k = ky,

3) for any fixed k > 0 we have x* = £(u*, k), u* = f(u*, k), v* = (u*, k) i.e. u* e R is a

fixed point of the mapping u — a(u, k):R'_: - R:_

4) the restriction of F(x, u, k) to'Q is a strongly convex function in x € R" ™™,

Proof

1) Let f=(u—u*)k" ", i=in, t=(),..,1,) SO,8)={t=(,..,t) |4]<é,
im 1y ean) By=(@ i1, n—m), & LK) =kifke+ )7, i=n—m+1,.,n
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&B(x, t, k)= (t'),(x, t,k),i=n—m+1,..,n). So, from (3) we have u*, > "~ "

. By de-
finition #* B= ﬁk(x*, 0,k)= 0™ for any k > 0. Now we consider the map

3 1 2
D(x, &y, v, 1, k: R T > R

A A A T
q)(xt quvs t, k)E((p'—(uN’ UB(X, ty.k))—VA) ’
-1 -1 -1 -1
tkx+1)  +k utlkx+1) —k @, i=1,..,n—m —Ax+q).

For any k > 0 we have ®(x*, u*y, v*, 0", k)= 02", The first step of the proof is to apply
the second implicit function theorem (see [3] p. 12) to the map ®(x, QN, v, t, k). So let

us proceed to verify the conditions of that theorem.

Let 0”7 the p X q matrix of zeros, 1? the g x g identity matrix , U* N=
[diagu* /= "; Ty =I[diag#)} ", Tp=[diags2} " " L Ay, k)= [diag (k x;+ )]} 2"

Ag(x, k) = [diag (k x;+ )]} _, _ p 4 1» Alx, k) = [diag (kx, + D] _ ;.

We consider the vector functions g;(x, l,l\N, v,1,k)=(p— (QN, ﬁB(x, Lk)—v A)T,
8y fos v, t, ) = (kx,+ )7 kT sk 4 )T kT

1 .
n’t\i,1=l,...,n—-m),

g3(x, iy, v, 1, k) = — A x + q and their Jacobians J_» (g{*))=(J, (g{*));
N

Jo (8L N L6l oM = (&2 ) &', 5 ()i 8'sy(#Dhi=1,2,3 for x = x*, ity = u*,

v=v*t=0" and any k >0. We obtain R
n—mn—m n-mm
I8 %, 1 0,0, K) = £, () = | o
X, U s U, = )= n— 2 -2 = ,
X gl N g 1x Om n—m k TB AB (x’ k)
’ x=x*1=0
n—m T
’ -1 , - N
J,Q (gl(.))=g“?(.)=[ m.n-—m]’ Jv(gy(.))=g]v(')=[ T:]'
N 'N 0 —B

'g2x(.)=[_kTNAN (x’k)—wNAN (x’k)90n mm]x=xt't=0=[—U*N;0" mm]

-1 n=-m

g, ()=—k I, g (e)=0""

N

mm

and



mn—m m,n

gad)=[-N=Bl g, ()=0"""", g (s)=0"

. 2 2
Therefore for the matrix @, = <b’x A (x*, u*y, v, 0", k):R " 5> R™"

uyv
we have
Y1 %) uy v
[ nn n—m T i
0 -1 —N
mn—m T
- B
(D(k): n-mm -1 n-m n—mm/|
—U*, 0 —k 1
mn—m m,m
-N -B 0

First of all we shall prove that <D(k) is nonsingular. Let w=(y,,, uy, V)
N e ;S Yy = R™, uye R"™™ veR™. To prove the nonsingularityf <D(k) we have to
show that <D(k)w = 02"=w = 0" for any we R>". We can rewrite <D(k)w = 0°" in the next

form
T n-m T m -1 n—m m
uy+ N v=0 Bv=0, U —k uy=0 , Ny +By,=0.

Due to nonsingularity B from BTv=Om we obtain v=0", then from
i Taking into account
1

uy + NTv=0""™ and v=0" we have uy=0""
why = (u*y, ., ut, ) > 0" "™ and uy = 0" ™™ from Uty, — k™ uy= 0"~ ™ we have
n= 0"~ ™ for any k > 0 that together \:/ith Ny, + By, = 0™ and nonsingularity B gives
Y= 0™. Soforanywe R2" we have Q(k)w =0"sw= 02", therefore CD(k) is nonsingular

for any k> 0.

Since O(x*, u*y, v"‘,O", k)=02", and the matrix (D(k) is nonsingular for any

k € [kg, k] it follows from the second implicit function theorem (see [3] p. 12) that there
exist £ > 0, & > 0 and smooth vector-functions x(t,k) = (x;(t,k), ... , x,(t,k)) = x( ¢ ),
fn(t,k) = (U (1, K), .., By _ o, K)) = lip(( 0 ), V(1K) = (v (8,K), ... , V,,(1,)) = V() defined
uniquely in a neighborhood of S(K, ) = {(t, k) | ;1 <é,i=1,...,n, k € [k, k;]} that



(6) D(x(1,k), By(£,0), VLK), 1K) = D(») = 0" V(,k) e S(K, 6)

and x(0,k) = x*, G(0,k) = u* y = (u*y, ... , u*, _ ), V(0,k) = v* for any k e [k, k;].
Let &(t, k) = 4R (o), 0 )=k t{k £(*)+1)" Visn—m+1,..,n; lgth)=
fp(o)= (@A) o )i=n—m+1, . n),4(t k) =8(s)=(Gy(*), ip(+)).

From (6) for any (¢, k) € S(K, 6) we have

T QN(’)

(7) A VO —A'v()=0"

® KA =glhkx( )+ 1)k wtka()+ ), =1, n—m
9 Ax(*)=gq.

We also define

(10) ﬁ,.(-)_=z,k(kx,(-)+1)”, i=n—m+1,..,n.

From (8) and (10) we obtain #(s)=A" Y(x(+), k)u and F' (x(s),u,k)=p—1(e)
Taking into account (7) we have F’  (x(¢), u,k) = ATV( ). In view of (9), convexity

F(x, u, k) in x and x — Q,=>Fx, u, k) > oo we conclude that

x(+) = argmin{F(x, u, k) | x € int @, n Q}.

So we proved the first part of Theorem 1.
2) From (10) we have
Y

R -1 11 —u* —1-1
h=kifkx(e)+1) =tlx(s)+k ) =—k—'(x,(-)+k ) Li=n—m+1,..,n

lior a small enough 6>0 and (,,k)eS(K,6) we have x{e¢)=a/2 so

2 . -1,-1
a,.(-)s—;(u,.—u*,.),,>n-mand||QB(.)-u*anza k™ ug — u* gl



Now we show that estimate (5) holds for x(¢, k), ﬁN(t, k), v(t, k). To this end we dif-

ferentiate the identities (7)-(9) with respect to r.

. x; () Xy a1 ()
L"““”=(i2’§-)))"~("=(;cl'_',,,(-)>"""’=(sc'(-')H )
J,(xN(o))=x'N’,(o):R"—-»R"-m,J,(xB(o))=x'B’t(-):R"—»RM,JI(GN(o))=0'N',(o):

R' >R ™" J (e )=t (¢): R R™, J(v(e)) =V (¢):R" > R™ - Jacobians of

the vector functions xp(e ), xg( ), z’z\N( .), QB( e)and v (o).

Differentiating (7) we obtain

@y l*)

y T , ( ) On,n
- Vi(e)= .
@y (o) !

The last system we can rewrite as follows

n—-mn

[Q’Nl(.)] T
(ll) ’m,n -4 v't(.)= A '
0 & p0)

DifTerentiating (8) with respect to ¢ we obtain

u
n—m mm

(12) —[diag (kt,+u*)] - Ay () g () =K &y (o) =—[Ay (20" "1

Then differentiating (9) with respect to 1 we obtain

(13) Ax' (o) =Nx'y (+)+ Bx'y (+)=0.

Multiplying both sides of the systems (12) to Ai,( ¢ ) we obtain

— [diag(kt, + u*,)]',' - '"x'N,,( )k IAf\.( )od'y (*)
—mm

(14) ‘ n
=—[A\*), 0 ]

Let
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[ nn n—m T )
0 I —N
0m,n-m —BT
. (')= . n—m n—mm -1 2 n—mm
k' A — [diag(kt,+ u* )], 0 —k Af¢) O
mn—m mm
—N —B
Let @'(e)=D"_» , then combining (11), (13), (14) we obtain
xupv(e)
3 n—mn T
% (*) N
A '—] uB"(.) ,—1
(15) wyfe)|=d (¢)x nemm_|= @ (*)XR(e)
, [+ 0" "]
v'(e) Om,n

In order to estimate the norm of the 2n x 2n matrix @' l( ¢ ) and the norm of the
2n x n matrix R(e) we consider the m x n matrix ' p(*) and the (n—m)x (n—m)

matrix Ay( ¢ ) in more detail. For the matrix

Ny
un—m+l,l(.)

iy (o) = Jf(+) =
ﬁ’n,t( ¢ )

E)
A

we have

n—

A mn—m -1 2 -1
o ()=[0"" " kA, ()R] -k Ty (o), k)xp (o).

Now we consider system (15) for ¢t = 0". Taking into account x{0,k) =
x%,=0,i=1,..,n—m, we obtain &' 5 (0, k) =[0™" ", kAZ " (x* k)] and A(0, k) =

1"~ "™ for any k> 0. Further we consider two matrices

>, 0,k)=0,= PuPul g R(0, k) = %
xd v P, P, R



where

n—m T
non -1 - N
Pll_o ’Plz mnrn—m _ T\
- U* n—~m,m -1 n—-m n—-mm
PZI— [ N ]’ P22 _m,n—m mm ’
- N —B 0
n-mn—m n-=-m,m In-m n—mm
R = _ -1 = -
1 mn—m kAB (x*,k) Rz [Om,n m mm ]
From (15) we obtain
x"(O,k)
A, -1
Wy 0,0 = @, «RO, k.
v (0, k)

To estimate the norms |lx’ (0, k)|, IIQ'N [0, k)| and [V’ (0, k)|l we have to estimate the

norm of the matrix
-1 n n
I‘I(A,p,q,k)=<bk RO A):R -R .

First of all note that 1’1—2l and 1’2'—1 ! exist and

P-l_ [_In—m NTB—T:I _ —U*l—vl On—m,m

-1 -1 -1
B NU* -8B

. -1 -1 . : .
The existence of Pj, and P,; guarantee the existence of the inverse matrix

I A e
P - Pl] P12
21 22

Moreover, we have



-1 Qn le
P = -
(19 [Q2l sz] ¢

' —1, -1 -1 1, p-1

where Q) = — Py Py (Pyy— Pyy Py Prg) 1 Qo =Py Py Pa—Pry) Py Py
-1,,n -1 -1 -1 -1 -1
Qua=Py ("= Pyp(Py Py Ppp—Ppy) Py Py ), O =(Pp— Py Py Py)

Formula (16) can be verified directly : PQ =1 2" Then

-1 -1 T _-T -1 _
1 | Ury —U*, N B o |-, o™
O =k -1 -1 -1 17 -1 Q=P = -1 -1 -1
-8B~ NU*, B NU*, N B B~ NU¥, -B
-1 " NB nn
Q21=P12 = [m,n—m —T]’ Q22=0
~B
Further
(4, p, g k)= 1 ) _|
O, R +0,R, M, (4,p, q,k)

and for the norm |T1(4,p, q, k)|, which subordinate with the vector norm

Ixll_ = max | x; |, we obtain

®© 1<i< K

IT1(4, p, 9, k)il = max{{[1,(4, p, g, k), IT1(4, p, 4, K)I}.

Then

_ -1 -1 . T -T -1
—U* kU N OB (kAL (x*, k)
N N B
m4,p.q. =1 _, IS I RS -1 -7 =1
B 'NUY, kBT NU*, BT (kA, (x*K)

o N BT (ks (x%,K)
nz(AsP,q’k)= mn-—m -T —1 .
0 ~B kA, (x* k)

Further



-1 -1 -1 T _ ~-T -1
I(4, p, ¢, Kl < max{jiU*, I + Ik U*y N B (kAg (x* k),
-1 -1 -1 -1 -1 -7 -1
IB- NU*ll+lk B NU*y B (KA, (x* K}

and
T T =1 -7, =1
IN,(4,p,q, Kl <max{IN B (kA (x* kDI IB (kAy (x* KNI}
Taking into account min u*.>0>0 and min  x* > 6>0 we obtain
l<isn-m ! n-m+l1<i<n !

—-1.—-1.n -1
) Jicn—msili<o . Hence

NU*5 <™ " and [k A7 ' (x*, K)ll = I[diag (*; +
-1 -1 -1 T -T -1 -1 -1 -T
in4,p,q. <o max{l+k o N B |,IB Ni(1+k o B )}
So for any k> ky=o 'max {IB” "I, INT B~ "} we have
-1 -1
\1,(4, p, ¢, k)| <26 max {1,|B N[}
Also

-1 T _-T -T
IN4,p,q, k<o max{IN B |.IB [}

Hence, there exists an independent on k> ky%o ! max B~ Tll, IN Tp~ TII} estimate

for the norm ||<D; ! R(0, k)|l = IT1(A, p, q, k)|, i.c. the next inequality
-1 -1 -1 -T T ~-T
P, RO,kI<20¢ max{l B NI,051B [I,05IN B [}=c,.

holds true for any k > k.

Taking into account (15) we obtain for small enough é > 0 and all (¢, k) e S(K, ) that

175 (et R), (et ), Vat, ) o, KIRGeCe, K)o, R = 107 (0 )R(# I < 2 ¢ for
N

Vt € [0, 1]. Hence
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x(t,k) — x(0, k) x(t,k) — x* ,

N A A ’— 1
fiy (6, k) = Gy (0,K) | = |y (0, ) —w*y | = j © (+)R(+ )] dr < 2,
0
v(t,k) — v [0, k) v(t,k) —v*
therefore

max {Jlx(t,k) — x*|, 4y (¢, k) — u* J, Iv(2, &) — v} < 2c, el = 2¢,llu — u*].

Let £k = (L355 k), Bk = (Gy( L5250, iy 252, 1), 0wk =

, k) and ¢ = 2 max{c,, o} = 2¢,, then for any (u, k) € D(u*, kg, 6, €) we obtain

w( u—;(u*

A A A -1
max{|X(u, k) — x*||, ha(u,k) — u*ll, IV, k) = v*I} <ck  llu— u*].

i.e. estimate (5) takes place.

3) Statement 3) is a direct consequence of estimate (5).

4) To prove the fourth part of theorem 1 we partition the vector x into two vectors
xy € R"™™ and xze R™. For any vector (u,k)e D(u* uy,d,c) we have
n
min u,>¢>0. To find the restriction of Flx,u, k)= (p,x)— X 4 In(kx; + 1) =
i=1

l<jsn-m jn—m 1 n
p,x)—k _21 uInkx; + 1) — k™ Y u In(kx; + 1) to Q we substitute the

i=1, i=n—-m+1
vector xp=— B (¢ — Nxy) into F(x, u, k). Then

OCy t, k) = (B Xy) — (g B (@ = Nx) =k Y wyIn(kx, + 1) -
i=1

K'Y wink(B (g - N+ 1).

t=n—m+1
The strong convexity of @(xy, 4, k) in R” "™ is furnished in the neighborhood of £(u,k)

for any (uk)e D(u* ky,d,¢) due to the correspondent properties of terms

o . .
-k Y ulin(kx,+ 1) since min _

u; 2 ¢>0. We complete the proof of theorem 1.
i=1 ’
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Remark 1.

All facts which have been stated in the theorem 1 for the Modified Frisch function

F(x, u, k) hold true for the modified Carroll’s function

n
-1 -1 . '
Conury=d @Dk ; u(ks+ 1) —1), ifxeintQnQ

oo, ifx¢intQ,nQ

Remark 2.

All results of the basic theorem remain true if instead of F(x, u, k) one will consider

the next MBF

n
-1 . .
P, K) = (P.x)—;k, winll 3 +1), ifxeint@,nQ

oo ’ IFX¢1ntanQ

with  different penalty parameters k,i=1,..,n for different inequalities

-1

x20,i=1, ., m K=(ky, . k), Q={x=(n., ) 5,2~k ,i=1,..,n} and

. ;n_ig k; > ky > 0 where ky > 0 is large enough. The same is true for the next version of
=iz n .

MBF that corresponds to Carroll’s function [4]

n
-1 -1
(p, x) + _5_ k  ul(kx+1) -1), ifxeintQ nQ
C(x,u,K)= = i l( [} k

oo , ifx¢intQ,nQ.

4. One-Parameter Shifted Barrier Function for the Primal LP

To use theorem 1 for solving dual pair of linear programming problems we should
first find (u,k) € D(u*, ky, ¢, 6).
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One can compute such an approximation by using the one-parameter Shifted Barrier

Function

| n . )
M(x,k) = R(x, e, k) = (px)— & "len(kxl+l), lfxemtnan'

oo, ifx€intQ,nQ

IfQ={x:A4x=¢q,x,20,i=1,...,n} is a polytope, then Q, NQ is a polytope too for
any k> 0.

The next theorem holds true.

Theorem 2. Let Q be a polytope, then

1) for any k > O there exists unique vector
x(k) = argmin {M(x,k)/x € Q}
and a vector v(k) such that
3 n
(20) M’ (x(k), k) — v(k)4 =0

2) if condition (3) is held and rank 4 = rank B=m i.e. x* and v* are unique solutions
to problems (1) and (2), then there exists k;>0 such that for the triple
x(k), u(k) = [diag(kx (k) + 1)~ '17_ 1e and v(k) = (p — u(k))A " (44"T)" ! the estimate

(21) max {be(k) — u*l, (k) — u*l, (k) = v*I} S ck

holds and the constant ¢ > 0 is independent of k = k.

Proof. 1) The function M(x, k) is strongly convex and continuous on int Q, n Q. Taking

into account that Q is a polytope and M(x,k) = oo as x — 30, we arrive at the conclu-
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sion that there exists a vector x(k) € int Q, n Q, which satisfies (20). Along with x(k)

minimization of M(x, k) over Q yield vectors «(k) and v(k) such that
M’ (x(k), k) — v(k)A = p — u(k) — v(k)A = 0

where u(k) = (u(k)) = ((kx k) + 1)~ 1, i=1, ..., n) = [diag(kx k) + )™ 'T}_ e,
e=(1,..,1)eR".

2) Taking into account condition (3) we have unique x* and v*, and if k — oo then

x(k) = x*, u(k) — u*, v(k) = (p — u(k)) A (44T~ > v* (see [5]).

Now we are going to estimate |JAx]| = [lx(k) — x*}l, §Aull = (k) — u*||, and [AV] =
iv(k) — v*|I.

We recall that the triple (x(k), (k), v(k)) satisfies the following system.

p—u(k)—v(k)A=0, Ax(k)=gq.

Since x(k) converges to x* and the primal problem is nondegenerate it follows that
for a sufficiently large k; and any & >k, we l:!we x{k)26/2>0,i=n—m+1,..,n
Therefore ufk) = V(3 l), i=n—m+1,. ,n Then u*;=0,i=n—m+1,..,n, so for
the vector Aug = (u(k) —u*,i=n—m +1,...,n) we have HAugl = 20~ L= 1. 1t follows
from p — u(k) — v(k)A = 0" that for the vectors PN=Pps 1Py ) PB=Pp_ 10+ s P>
up(k) = (uy(k), ... , u, _ . (K)), ug(k)=(u, _ ., 1(K), ..., 0 (K)), xp(K) = (x{k),i=1, ..., n — m),
xg(k) = (x{k),i=n—m+1,...,n), x(k)=(xp(k), xp(k)) we have

Py—ugk) = VION =0, py—u(k) = v(k)B=0", Ax(k)=g.

For the primal x* and dual v* solutions we obtain

py—Uty—VN=0 ' py—ut,—v*B=0, Ax*=g.

18



Therefore, for Ax = x(k) — x*, Auy = up(k) — u*y, Aug = ug(k) — u* g, Av =

v(k) — v* we obtain

Au,= AN, Auy = AvB, AAx=0.

i

From ugk) = (kx{k) + 1)~ 1 i=1,..,n—mwehave x{k) =k~ (1 = ufk)ugk))” !

So for large enough ky and any k > ky we have | x{k) | <2k~ M- u*; | u*; 1

i=1,...,n—m. Taking into account the strictly complementary slackness condition (3),
we have min{u*;|i=1,...,n—m} =0 >0 and x*N=0"-"'. Let max{ |1 —u*;|

|i=1,..,n— m}=p then for k > k; we obtain
-1 -1
WAx (Ol = Iy (k) — x* S 280 K.

From NAxy + BAxg = 0™ we have Axy = — B~ ' NAxy and JAxgl < IB™ "I INI | Axyl
<20 "Bk~ IBTIMI. So for ¢g=20""'Bmax{1, 1B '« INI} >0, which is inde-
pendent of k > ky, we have |Ax]| < gk~ 1

1

Taking into account that |Augll <26~ &~ ! we obtain

-1 -1 A -1 -1 =1
fAvi =B Auli<|B 1lAuli<20 <k |B |

*

and
-1 -1 -1
Mud <INiiavi<2e &k ENIIB |,

so for ¢ =2 max{q, o—l,a-lllB_ lll, a—llB_ll N}, that is independent on k 2 &g,

we have
max{le(k) — x*l, hk) — u*l, W) = vI} S ck .

Theorem 2 has been proved.
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Remark 3.

All facts of theorem 2 hold true for the Carroll’s Shifted Barrier function

G0+ D (ke + 1) ~1), xemtQ,nQ
=1

o , x¢intQ,nQ.

N(x, k) =

Remark 4.

All results of Theorem 2 remain true if instead of One-Paramecter Shifted Barrier

Function M(x, k), one considers the next Multi-Parameter Shifted Barrier Function

-1
,X)— ) k. In(k 1), ifxeintQ
Mx, K) = (p, x) Zl n(k,x, +1), ifxeintQ, nQ
oo , ifx¢intQ nQ.

or

-1 -1
)+ Dk (kx +1) =), xeim@,nQ
oo , x¢intQ nQ.

N(x, K) =

-1 . . .
- where Q, = {x=(x,..,%,): x5, =—k; yi=1,..,n} mlrénkiZko>0 and ky>>0 is

1<

large enough.

5. Primal MBF Methods

In this section we consider the primal MBF methods. Their convergence as well as

the rate of convergence are based on the primal MBF properties.

First we consider the permanent parameter version of the Primal MBF method.
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Let 0 <y <0.5 and k > kg are fixed, x" e int @, n @ and u’ =e=(1, .., 1) e R".

The permanent parameter version of the Primal MBF method consists of finding the
sequence {w' = (x’, u’, v)} 2 by formulas

Jc‘+ "= argmin{ F(x, us,k)/x e Q)

(22) 1 -1 1 . 1. T T-1
o't = pdiag(he ) W VT -’ T (4a)

The next assertion is a consequence of the theorems 1 and 2.

Assertion 1. If the dual pair linear programming problems (1)-(2) are nondegenerate,
then for a given 0<y<0.5 there exists such k;>0, that for the sequence

w' = ("o, Vs)}:__ o given by (22), the next estimate
s s s -1 s
(23) max {|x —x*|l, flu —u*), Iv = v} < (ck )le—u*l<y

holds true for any k 2 kg and ¢ > 0 is independent on .

So the sequence {(x’, v")}:"=0 converges to the primal x* and dual v* solution with
linear rate of convergence. By increasing t‘e parameter k one can make the ratio

0 < y < 0.5 as small as one wants.

*

The next version of the primal MBF method provides the possibility of changing the

parameter from step to step. Let {k > 0}:: 0 ks <k, koo, 7,=¢ ks l,

uo=e=(l,..., De R",xoeintﬂan.

The varying paraxheter version of the Primal MBF Method consists of finding the

sequence {w’ = (x’, u’, v)}72 o by formulas

xH "= argmin [ F(x, u:, k)| xe Q)

s+1

(24) . 5s+1 -1_n s s+1 s+1. T T-1
u =[diag(k,x, +1) )_,uiv =p-u JA (AA)

1



The next assertion is also a consequence of theorems 1 and 2.

Assertion 2 . If the dual pair linear programming probllems (1) - (2) are nondegenerate

and k — oo, then for the sequence {(xs, o, v’)};""= o defined by (24), the next estimate
s s s -
(25) max {flx —x*l, fu —u*l,Iv — v} <yo v, - v lle—ut,

holds true and y, — 0.

This means that by increasing the parameter k 2 &, from step to step, one can obtain
= method for simultaneous solution primal and dual LP with superlinear rate of con-

vergence.

To realize method (22) numerically we have to avoid solving the problem
X = argmin {F(x, u, k)/x € Q}

at every step and at the same time maintain estimate (23).

Let £ >0 and k>0 is large enough and x° e Q. ngQ, u=e=(1,..,1)e R". The

sequence {x", u",V'}; o We are finding by formulas

-"+1 ~
o -u

~1 . S+H1 -1
P& O s ™ Wdiaglks, ™+ 1) ]I' I

@9 g

7 = (diagh® T )T -7 4" ay’

The next assertion could be proven similar to Theorem 5 [21] (see also Lemma 2

from [24]).

Assertion 3. If the dual pair LP problems (1)-(2) is nondegenerate, then there exist such
kg > 0 and independent of k > k;, constant ¢ > 0, that for the sequence &, o, '\7‘)}:; 0

the estimate
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~S+1 St S+1 . -1 .5
27 max{x —x*h Ml —u*}, IV —v}<cl+mk Ju —ut|

holds true for any & 2 k.

Method (26) enables us to avoid the infinite procedure at every step. But inequality
(26) does not give any answer how many Newton steps one has to perform in order to

find ** ! and to remain estimate (27).

In the next section we consider the Newton Primal MBF method for solving dual pair
LP problems. This method enables us to estimate the number of Newton method steps,

which are sufficient in maintaining estimate (27).

The principal difTerence between the Newton Primal MBF Method and the Projected
Newton Method [1], [6], [9], [10], [14] (see also [12], [18], [19], [27], [30], [31] and
bibliography in it), consists of using MBF instead of CBF. Instead of changing at every
step the penalty parameter k > O in the Interior Point Methods, that are based on CBF,
we update the Lagrange multipliers (residuals), keeping fixed from some point the pa-

rameter k > k. N

The function F(x, u, k), as well as its derivatives, exist at the primal solution and the
condition number of the MBF Hessians on Q are stable in the neighborhood of the

(x*, u*) under any fixed k = k.

Both properties mentioned above allow us to get a better rate of convergence, for any
nondegenerate dual pair LP, with less computational complexity at every step, when

compared with Interior Point Methods, that are based on CBF.
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6. Primal Newton MBF Method

In this section we will describe the Primal Newton MBF Method for simultaneous
solution of primal and dual LP. Along with using the Newton Method for minimizing
Rx, u, k) in x and updating the vector u = (y,, ..., 4,), we adopt the penalty parameter

k > 0 at the proper level (k 2 kj) to guarantee estimate (23).

First of all we consider one Newton step for minimizing F(x, 4, k) on Q. Let
x € int Q, n Q and suppose (u,k) € D(u*, ky, 8, ¢) are fixed. To find the Newton's direc-
tion for minimizing F(x, u, k) on Q under the fixed vector u> 0 and fixed scalar £ > 0,

one has to solve the next problem
@8) Ll 0= argminl F (P 0, ) 8,0+ (P x,, K), DIAT =00,

Define
n n n n n n
U=[diagu},_,:R - R, A(x,k) = [diag(kx, + ])]1=; ‘R -R.

Then F' (x,u,k)=F' (¢)=p— UA™ 1(x, k)ei= p—-UA ](x,k)e and F'"' (x,u, k)=
F" [(¢)= kUA™ 2(x,k). So we rewrite problem (28) as follows

(29) L(x, u, k) = L(+) = argmin{ 3 K(UA™ "(e05, ) + (o — UA™ (x,K)e), D)/ AL = 0).

Having introduced the Lagrange multiplier vector, v = (v, ..., v,), that corresponds to

the system A{ = 0, we will obtain the system

KUA™ k) +p — UA™ ' (x,k)e = vA

(30)
A{=0

which is equivalent to problem (28). Let A(x,k)r = kU{, then { =k lA(x,k)U— L, we
can rewrite system (28) as

24



(31) {A- I(X,k)r = flTV —p+ UA— l(x,k)e
AU A(xk)r=0

or

(32) {' = Axk)4 Tv — (Alxk)p — Ue)
AU A(x,k)r=0.

Then system (32) can be rewritten as follows,

- % - % T -%
U r=U AxkA v—-U (A(xk)p— Ue)
(33) {

-4 -%
AU TA@x U r=0.

By setting U~ “y = h, from (33) we obtain

- Y T - %
h=U "Axj)Ad v—U  (A@x,k)p— Ue)

(34) -%
AU "A(x,k)h=0

or

(35) < _I%' — A(x, k)U 4 ) (h) (U_ %(Ue - A(x,k)p)).
AU " A(x k) 0

The least square problem (35) can be rewritten as
-~ T - 2 m
(36) v(x,u, k) =v(*)=argmin{l(AA(x,k)U ) v—-U (A(x,k)p— Ue)l,/veR }.
The least square problem (36) is equivalent to the next normal system of equations
2 -1.T -1
(AA (x,k)U A )v=AAx kYU A(x, k)p—e).

To describe the Primal Newton MBI Method we define the indicator function
v(w) : L, x R™ - R_:_ by formula
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o) = o(x, v) = max( max {—x), max (vA-p)), ), |(vA— P}
{=]

It is easy to see that
v(w) =0esw = w* = (x*, v*)
and for any bounded subset WcQ, x R™ there exists M > 0 such that
v(w) = v(w) — v(w*) < Mllw — w*|, Ywe W.

So for a fixed 0 < y < 0.5 there exists such kj > 0 that for any k > g ard for a sequence

w'= (x*, v")};’"= o» that is defined by (24), the next inequality
S, s
viw)<y.

holds true.
Now we are going to describe the Primal Newton MBF Method.

To maintain the Primal MBF Method pro;iertics without solving the unconstrained
optimization problem (24) at every step, one has to use a finite procedure, which enables
to find an approximation for £ with .:.umcient accuracy to remain the estimate (23).
~ Below we describe such a type of method, that is based on the Primal MBF Method and

an the global converging step size version of the Newton Method.

Let ¢>0 be small enough, {k}; gk 41>k Jim k =oo, k=k(0)=ky >0,

d0)=1,0<y < 1/2is fixed and Q} = {x=(x;, .., x) 15,2k~ Li=1,..,n).

We start with x: = xo € Q;:, uo =e=(l,..,1)e R™ and suppose X, %, v,

k(s),d(s) has already been determined. Then to find the approximation
u:+l v.r+l

(x’+ ! ) one has to fulfill the following operations:

26



0. start withx: =X
1. setu: =u’, k: =k(s), d: = d(s)

2. find
= U0x,u k)= (K U) A(x, K)V(x, 1, VA = p+ UA™ (x, K)e)

and set¢: =1
3. check x + 1 € Q, and Flx + t{, u, k) — Ax, u, k) < 1/3(F; (x, u, k), {)

- 4. if x + 1{ € Q,, the last inequality is fulfilled and r=1 set x: =x+ { and go
to 5; if x + 1{ € Q,, the last inequality is fulfilled and ¢t < 1 set x: = x + #{ and go to

2; if x + 1{ € Q,, and/or the inequality is not fulfilled set : = /2 and go to 3.
5. if | { |l <€ go to 6; otherwise go to 2

6. setx: =x, 0 =A"'E u,v=(p-n4T44AN L s=G W if
v(W)Sy‘“'l setx’ Pl =y’ PtV =95 =21,

ds+1)=d(s)+ 1, k(s+ 1)=k(s), s:=s+1,e:=¢yand go to I.

7. ifv($)>yd+l, set?’+l=argmin {[o(xi)li=l,...,s+l},ts+l=
max{t|3c‘+1(§’+l-f)e£2:},f; =;S+1;‘+1+(1_,s“);,u‘“=u°,

c:=ck—l,k(s+l)=ks+l,d(s+l)=l,si=s+land go to 0.

Assertion 4. If the dual pair linear prqgramming problems (1) - (2) are nondegenerate,

then for a small enough ¢ > 0 and 0 < y < 0.5 there exists such s, that for s 2 55!
1) the penalty parameter is permanent, i.e. k(s) = k-’o = k and the step size t = |;

2) every Primal Newton MBF Method step, i.e. every Lagrange multiplier update

(“large” step) req_uires O(Igzlgzc— l) Newton steps;

3) the sequence {w" = (x", v')};”, p converges to w* = (x*, v*) and the estimate
s 3 s 3
37 max{flx —x*l, hu —u*|Iv —v*I} <y, s25

holds true.

27



Assertion 5 follows from theorems 1 and 2 and the Newton Method properties (see
[29]). We will call the approximation (x,u®), i.e. the moment when the Primal
Newton MBF Method switches to the MBF trajectory, ﬁ “hot” start. Beginning at this
moment, one can update u, i.e. improve the current approximation twice (y<1/2) in

every O(Igzlgzc_ l) Newton steps in the worst case.

The number s, depends on the measure of nondegeneracy ¢ >0 and |B~ l|| as well
as on the size of the problem (see section 9) and can be decreased by increasing k.
Moreover, there exists such k; > 0, that 5y = 1 for any k 2 k. The “hot start” phenom-
enon will be considered in detail from both theoretical as well as practical view points

in forthcoming papers.
Rerﬂark 5.

The Primal Newton MBF Method can be furnished with a basis search procedure
after updating u. Let X < X << X and u P U =2 Y . I {iy,dgy ooy iy _ 3 VU

Upema 1o rdnd = {1 ,n} form the matrix B=(a;,i=1i, _, . 1, i,), and let

det B+#0 then find xg=B" lq and v =pBB-\l. If x;>0 and uy = py— VN >0 then

x=(0, xp) = x*, u=(uy, 0) =u*, v=v*

»

7. MBF for the Dual Problem.

In this section we introduce and investigate the MBF for dual problem (2).

LetV= {v:p—ATv20}= {v:r,(v)s(p—ATv),.zo,i= L. ,my={v:(p—(a,x) 20,
i=1,...,n} be the feasible set of dual problem (2). Therefore, for any k >0 we have
V={vik 'Inkrv)+ 1)20,i=1,..,n}.
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In order to introduce the MBF for the dual problem, we consider the Classical

Lagrangian for the next problem
(38) v* = arg max{(q, v)/k— ‘ In(k r(v)+1)20, i=1,...,n}

that is equivalent to (2).

Let y=(,...y,) is a vector of Lagrange Multipliers for problem (38),
Ve={viriwz—k iz, ... ,n}. Then

e n 1 1
L,y k)= (@) + K ) g In(kr(v)+ 1) VxR, xR, = R,
i=1

is a Classical Lagrangian for problem (38). The MBF for dual problem (38) we define

by formula

L(v,y, k), veint v,
P b=y _ o, véinV,

?
N7
Recall that 4 T_ (BT>’ SO py — NTv* >0" ", Pp— BTv*=0™. Condition (3) can

be rewritten as

T
y*,=0, p— (N v*),>0,i=1,..,n—m;
(39) i i ., i
y*>0,p—(B v*),=0,i=n-m+1,..,n

In other words the dual pair LP is nondegenerate if
T
o =min {min {p,— (N v*),]i=1,.. yn—m},min{y* |i=n—m+1,..,n}>0

and rank B=rank A =m.
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n—m,

For yy =0ps - 1Vp—m) AN Y=y _ o pr ,J,) we have y*, = x*), = ;

yrg=x*p> 0™. Taking into account (39) we obtain
1° P(v*, y*, k)= (q,v*) = (p,y*) = (p, x*)
for any k > 0.

Further, we have

n
, Y4
Pv(V,y,k)=q—Z k"'(X)+l ’
=1

where ;€ R ™ _ i column of the matrix A. Therefore again from (39) we obtain

n y*a;
2 PRl =P (v*x* k)=q— 2z

(enZm1 KRET

n m
=q— X yg=q-Bytp=q—Bxtp=0".

i=n—-m+1

for any &> 0.

The function P(v, y, k) is concave in ve V, fot any y € R: and k>0 so it follows from

P’v(V,y*, k) |v =v*t= Om that

v* e Arg max{P(v,y*, k)| ve R }.

Let A(v, k) = [diag(k r{v) + D)J} _ ;, Ap(v, k) = [diag(k r{v) + D))} Z |8 5(v, k) =
[diag(k rV) + DIy _ w4 1 Y =[dingy}_ . Yy =[diagy) 0}, Yp=

[diag y,-];'= n—m+ 1 then

P, vy, k)= — kAN ()Y A .

Taking into account (39) and Y*p = [diag y"‘,.];'= n—m+1=[diag x"',.];'= R
Xt Yoy =0" " T A v ) =1
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we obtain

3 P vy k) y o ye= Py (v, X% )= —k BY*; BT = —k BX*3 B

Let¥‘=min{y‘i|i=n-m+l,...,n},i*=max{y"‘,-|i=n—m+l,...,n} and
.. T . T
p = mineigval BB , M = maxeigval BB .

Then the next inequalities
4 ky* M(v,v) 2 (— P, (v*,y* kv, V) 2 ky* u(v, V), Vve R™
hold true for any & > 0.

So the condition number of the Hessian — P’ (v*,y*, k), i.e.

mineigenval B X*, B

T
cond(kBX*; B )=
maxeigval B X*, B

»
kY

is independent on k > 0 and can be estimated by

b4

m = WEM)

Moreover, the cond P"_, (v, y, k) is stable in the neighborhood of (v*, y*) = (v*, x*) for

any fixed £ > 0.

The function P(v, y*, k) is strongly concave in v e ¥, for any k>0, so taking into
account 2° we obtain
5° v* = argmax{P(v,y*, k)| ve R™)
for any k> 0.
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So the next theorem which describes the dual MBF P(v, y, k) properties at the primal

and dual solution takes place.

Theorem 3. If the dual pair linear programming problem is nondegenerate, then the
primal x* = y* and the dual v* solutions are unique and the properties 1°-5° take place

for any k> 0.

Now we are going to prove a theorem similar to Theorem 1 for the dual MBF
P(v,y, k). Lete>0 and § >0 be small enough and the number ko > 0 is large enough.
We consider m sets D{y*, kg, 6,€) = D{¢)={(, k) :y;2 &, |; —y* | < 8k, k2 ko),
i=n—m+1,..,nand (n — m) sets D{y*, kg, 6,£) = D{*) = {(y, k) : 0 <y, < 6k, k 2 kg}-
Then D(y*, kg, 8,€) = D(+) = D(*)® ... ®D{*)® ... @D, (*). '

Also for any fixed &k > 0 we define sets Y;‘ = {y;: max{e, y*; — 0k} <y, <y*; + ok},
i=n—m+1,..,nand Y, ={:0<y,<&k},i=1,..,n—m, Nowlet ¥, =
Y)® .. ®V® .. ®Y, then D(¢)={(, k) :y € Yy, k= ko).

Theorem 4. If the dual pair linear programming problem is nondegenerate, then there
exists k; >0 and small enough £¢>0 and § 0 such that for any (v, k) € D(y*, kg, 6, €)
the following statements hold true.

1) There exists a unique vector V=17, k) = argmin max{P(v,y, k)|ve R™} such that

n

A §: Y1 4
P' V, ,k = — e ————
Wy k=g o okrM)+1

n
. A -1 m
q—ZJI;g ‘=q_Ay=AA ("\"k)y=q_A.9=0 ’

[N

2) the estimate

(40) max{I¥ — v*|, If —y*} <k =
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holds true, and ¢ > 0 is independent of k 2= kg;

3) for the couple ¥ =%y, %) and § =$(.k) = A" "¢, k) we have v(y*, k) = v* and
POt k) =y% ie y*e Ri is a fixed point of the mapping y — y(y,k) for any k > 0;

4) for any fixed k > ky there exists 0 < a, < 1 such that
A A =2, T
cond(—P" (V,y,k))=condAA (V,k)YA 2o, n

foranyyeY,.

Proof 1) We will prove Theorem 4 following the scheme that we used to prove Theorem
1. Let k> 0 is large enough and ¢ > 0 and 6 > 0 are small enough. We consider three
vectors: 1=(t,=(;—y*)k" i=1,..,mPp=Ci=n—m+1,..,n) and h(v,1, k) =
k nim tkr(v)+ 1 la,-. Also we consider a set S(0,6)={r: || <é,i=1,..,n} and
a é;;onal matrix Yp = [diag yi];'= n—m+1 Foranyk>Oandxe S(x*, )=
{x:]lx — x*|| <€}, t € S(0, ) the vector function h(v, t, k) is smooth and h(v*,0, k) = o"
K, (v*,0,k)=0"", h'fn (v,0,k)=0"".

X

On the S(x*, €) x S(QB, £) x S(0, 8) x (0, + oo), we consider the map ®(v, ﬁB, t, k):

R "+ 1, R™ defined by formula :

n
(b(v,yha’ 1, k) = (q - Z .i\’[ - h(V, 1,k);

{=n—-m+1

-1 - -1 -1
k (ki +y*)kr(v+1) —k P, i=n—m+1,..,n)

Taking into account (39) and h(v*,0, k) =0" we obtain ®(x*,y*p,0, k)= 0*™ for

Y k>0. In view of &' (v*,0, k) = h'}\ (v*,0,k)= 0™ ™ we obtain
B
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mm
®, =0, (v:.y*, 0,k 0 -5
= ! A v ] 1 g ] = -— m .
k vy,( y B ) _ Y‘B BT —k 1 I
Because of Y* > 0 and the fact that rank B = m, matrix @, is invertible and

k_‘(Y' BT)—IB—I —(Y* BT)—I
@n w:‘=( S o )

Let k; > kg be large enough, K= {0 € R") x [kg, k,]. Since ® (x*,y*5,0,4)=0""
and the matrix ®, is nonsingular for all k e [kg, k] it follows from the second implicit
function theorem (see [3] p. 12) that there exist ¢ >0 and & >0 and smooth enough
vector-functions v(1,k) = (v, (1,K), ... , V,(t:K)) and Pg(t,k) = B, _ 4 1), -, P(1,k)) de-
ﬁned. uniquely in the neighborhood of S(K, ) = {(t,k): || <é,i=1, , N,

k € [kg, kyJ) that v(0, k) = v*, §5(0, k) = y* g and

OVR), o1k, 1, k) = D(V(), Fy (+),0) =0

for Y(1, k) € S(K, 8).

X

2) To prove estimation (40) we are rewriting the last identity. We obtain

.
n

(42) a— Y. HtKa— kvt k), k=0

1=n T4
@) KPR -k Nk )+ 1) =0 i=n—mt 1,
We also define

44) Dt Ky =kt rv(e, )+ 1) i1, n—m.

Note that ﬁ,(O, ky=y* =x%=0,i=1,..,n—m.  Thereforc for the vector
I R) =) = (0, K}, ... .y _ g (1, K)) We obtain Iip(e) =y pl =W If
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5 >0 is small enough, then for any (, k) e S(K,8), we have fjv(e)—v*|<e and

—p*
Ji ky - .(r‘(v(o))+k—])_l, so we

r,(v(o))z-g-,i= 1, ...,n—m, therefore ﬁ,(l, k)=
yi—y' .
have §(+) == St i= 1, n—m, and (s 0l = D K) =y 0l <

2 ,-1
ok vyl

Now we are going to show that estimate (40) holds for v(1, k)=v(e) and
Dot ) =9g(¢) =By _ m41(*)s s 9()). To this end we differentiate the identities

(42) and (43) with respect to .

From (42) we obtain

(45) 0" eV (1, k)~ BY'y (6, k) =k ({1, k), 1, k).

Let Ag(t, k) = Ag( ) = [diag(k rv(t, k) + DI/, _ 4 1) DA, K) = Bp(0) =
[diag(k r{v(t, k)) + DI} 1 -

From (43) we obtain

. n -2 T , -1 A
(diag(k t,+y*)),__ms1 D5 (*)B Vi (e)—k yp ()
mn—-m ’

(46) - |
=00 ;4 ()1 !

Multiplying both sides of the system to Ai () we obtain

[diagtk 1,4+ )], B V() =k Ap(s)y (+)=

mn—m

(o 185 ()]

(47

Let

m,m

0 -B

-1 m

Q' (o)= . T
—[diagk 1, +y*)1B  —k I

then combining (45) and (47), we obtain
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" (*) - K (v(e),°) -
(48) ,\v @) mn—m ]=(¢"(-)) "% R().
Vg (*) [0 185(°)]

Considering the last system for ¢ = 0" we obtain

V'r (0, k) -1 h" (V(O, k), 0, k)
.VAB,,(O, k) - [d)k ] [[OM,n—m’ ]m] ].

n—m, om. m]

Taking into account /', (v(0, k), 0, k) = [N k[diag(k r{v*) + 1) l]-

i=1"

[N(k Ay (0, K)); 0™ ™) = [NTdiag(py — N7 v*);+ k= '3} Z{";0™ ™] and (41) we obtain

i=1"

v, (0,4) KBy BT By |
55100 ! o
Nk &, '©0,8) o™ | _
Om,n—m I’"

-1 T-1_-1 -1 T—1
kK~ (Y*,B) B NkA, (O.K) —(v*,B)

o = Y(4,p,4, k).

— B~ N(kA,' (0, 4)) 0

Now we are going to show that there exists k0 > 0 and an independent on k 2 k; esti-

mate for the norm [|¥(4, p, ¢, k)l

Let 4, =k~ '(¥*, BTY ' B™! Nk Ay (0, k), A=~ (15 BT,
-1 -1 mm
Ay =—B NKkA, (0,K), Ay=0 .
Then
1¥(4, p, q, I < max{|4, 1 + 14,1, I4,,1}.

Further, we have kA}; '(0, k) = [diag((py — N7 v*);+ k= )7 2" and [lkay '©, W)l <
WU*y ll. Therefore
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-1 -1 =T =1 -1 -1 =1
I, <k §Y*, HIB HIB NANIRU*, B 040 <UY*5 1B | and

-1 -1
4,0 <UB  HIMHU*, |
Taking into account (39) we obtain

-1 -2 _-T -1 -1 =T
4, l<k o B |IB RN I4,ll<e B |and
-1 -1
i4,l<e 1B NN

Hence
-1 -1 =t _-T -1 -7 -1
¥4, p,q. k<o max{k o B 1IB WINI+IB I,IB [N
-1 -7 -1 —-1__=1 -1
<o max{|B Wk o B HINi+1),0B HINI}.
Therefore

-1 ~T -1
¥4, p, g, <20 max{|B [|,0.51B |IN}=c

for any k> ky =0~ "|B” | IN|. Hence

max{|lv' (0, k), IIP" 5 (O, Pl <c, Vhzk,
Taking into account (48) we obtain for_ small enough 8 > 0 and all (¢, k) e S(X, d) that
10 (v(x 1, k), Pylr 1, Ky T 1, OR(V(z 1, K), T4, K < 2 ¢,
for Vte[0,1]. So
v(¢, k) = v(0, k) v(t, k) — v*
[ﬁ,(r. k) = 9500, k)] B [y“,(r. k) —y*,] -
Jol g l(v('t t, k), ﬁB('t 1, k), v 1, KR(v(t t, k), T ¢, k)[(]d

and
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A 2¢
max{(fv(t, k) — VI, Wyt, k) = y* gl < 2l == Iy — 7.

.V

Let 3y, k) = v( k) and $(y, k) = G( L=2—, k), $5( Z=2—, k) then for

¢ =2max{q, o }, the next estimate
max{|¥(y, k) — v*I, P, k) - y*I} < Ilv vl

holds true for V(y, k) € D(y*, kg, 4, £), i.e. we have proven estimate (40).
3) Statement (3) follows from estimate (40).

4) Statement 4) follows from the nonsingularity conditions of (39) and estimate (40).

We have proven Theorem 4.
Remark 6.

All results of Theorem 4 remain true if instchd of P(v, y, k) one will consider next the

multiparameter MBF for the dual problem

»

-1
(9, V)+Zk, yin(kr(v) + 1), veint¥,

—oo , véint¥,

P(v,y, K)=

where Vk={v:r,(v)2—k,-—l,i=l,...,n} mm k2k0>0 and k;>0 is large

1<i<
enough.

The same is true for the next version of MBF that corresponds to Carroll’s function

for the dual problem
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(q v)_z,.: k"y,((k r(v) + ) —1), veintV
o, y, K) = '.' 1 1 ’ k

i=1
oo , V¢ inth

Now we will consider the one parameter Shifted Barrier Function for the dual prob-
lem. The one parameter Shifted Barrier Function for the dual LP is obtained by settir_\g
y=e=(l,..,1) e R" in the Modified Barrier Function for the dual problem. We have

@)+ Y Imkr)+ 1), ve int ¥,

N(v, k)= P(v,e, k) = )
— oo , vé int V-k

-
B

The next assertion is a consequence of Theorem 4.
Assertion 5. Let ¥ be a polytope, then

1) for any k > 0 there exists a vector
v(k) = argmax(N(w k) | v e R")
such that .

N (v(k), k) = g— A~ AV(K), K)e=0"

2) if the complementary conditions in (39) are fulfilled and rank A = rank B = m, then
v(k) is unique and there exists ky >0 such that for the couple of vectors v(k) and

(k) = A~ L(v(k), k)e, the estimate
(49) max{llv(k) — v*}, k) —y*l} <ck ‘

holds and the constant ¢ > 0 is independent of k > k;,
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Remark 7.

All statements of Assertion 5 hold true for multiparameter Shifted Barrier Functions

P(v, e, K) and Q(v, ¢, K), if | min k> k.

<is<n

8. Dual MBF Method

In this section we consider a method for simultaneous solution primal and dual LP, .
based on MBF for the dual problem. First we consider the permanent parameter ver-
sion. Let k2> kg is fixed, Veint V, and yo= e=(1,..,1)e R" are initial approxi-

mations for dual and primal problems.

The permanent parameter version of the dual MBF method consists of finding a se-

oo

s =0 DY formulas:

quence {v', "}

s+1

v = argmax {P(v, y:, k){ve Rm}

s+ -1 s+1 s

(50) ,
y =4 (v Lky.

The next assertion is a consequence of Theorem 4 and Assertion 5.

X
Assertion 6. If the dual pair linear programming problems are nondegenerate, then for
any fixed 0 < y < 0.5 there exists such 120 > 0 that the sequence v, y"}:°= o converge to

the dual v* and primal y* = x* solution and the next estimate
5 - 5 . s
(31) max{lv — v*l, iy —y*l}<vy

holds true for any & > k;.

The varying parameter version of the Dual MBF Method one can obtain by changing

from step to step parameter k. Let Ve Vio y0 =e=(l,..,1) e R" and we consider the

o0

sequence {k} _ o:k <k, |,k — oo. The varying parameter version of the Dual MBF

Method consists of finding a sequence {v", y"};’°= o by formulas



s+1 s m
a) v = argmax {P(v,y ,k)|veR }

-1 s+41

(52) 541 5
)y =A (v Lky.

The next assertion which is a consequence of Theorem 4 and Assertion 5 takes place.

Assertion 7. If the dual pair linear programming problems are nondegenerate, then for
any sequence {k,};’:o there exists a sequence (y,};"; o 0522y 2y and
¥s — O that {v", y‘}.‘;’"’==o converges to the primal-dual solution (v*, y*) = (v*, x*) and the

next estimate
5 « 5 .
max{lv —v¥,lly —y*l} Svyyxy, ... xv,

holds true.

Now we are going to describe the Dual Newton MBFF Mcthod. To this end we in-

troduce an indicator function v(w) : V, x R_': - Ri by formula

V() = (v, ) = max{IP" (v, 3, k), ypax (=}, D, 1rfv)[5).

im]
It is easy to see that v

V(W) = Oeow = w* = (v*, y*) = (v*, x*).

For any bounded WcV, x R_': there exists such M > 0 that
- w(w) = v(w) — v(w*) < Mljw — w*jl, Ywe W.

So for 0 <y < 0.5 there exists such k > k; that for the sequence

(w' = (v, y")}:‘;= o defined by (52) the next estimate

3 E
viw)<y
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holds true.

The Dual Newton MBF Method consists of using the Newton Method for finding
an approximation V*1 for the dual vector v’ ! (see (51a)) and update the primal

vector y = (y,, ... , J,) by using instead of v'* ! the vector ¥V * ! in formula (52b).

Let £ > 0 be small enough, {k)7 o: &, , | >k, lim &, = oo, k = k(0) = Ky,
d0)=1,0<y<0.5is fixedand V' = {v:r() 2k~ ',i=1,...,n}.

We start with v="'e V: , yo =e=(1,..,1)e R, let ¥,V', ys, k(s), d(s) be already
found. To find the next approximation (vs+ l, ys+ l) one has to fulfill the next oper-

ations:

0. start withv: =V
1. sety: =y° k: =k(s),d: = d(s);

2. find { by solving the normal system of equations
-2 T -1
AA (V,K)YA [=q—AA (v,k)y

andsett?: =1; '!

3. check v+ t{ € ¥V, and inequality
(53) P(v+1t{,y,k)— P(v,y, k) 2 O.SI(I”V(v,y, k)’ O

4. if x+1{ e V,, inequality (53) is fulfilled and =1 set v: =v+{ and go to §; if
v + t {¢V, inequality (53) is fulfilled and < 1 set v: =v+¢{ and go to 2;if

v + 1 {¢V, and/or inequality (53) is not fulfilled, set £: = 0.5¢ and go to 3;

5. if ]li < e go to 6; otherwise go to 2.

6. setV:=v,5=A"'§ ky,w=_@,5) and if v(w)<y® ! set v

start with v ===v"+l

+1 +1

=';’ys =;’
yAs+ 1)=d(s)+ 1, k(s+ 1)=k(s),s+1: =s,6: = yc and
goto l.

7. ifvw)>y? !

set'\‘r's+l-argmax{(q,v'.)|i=l,...,s+l,} L=
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max{t |V + 1t —v) e V), ¥: ST L BRI AR

W=e=(,.,DeRe: =k L kis+1)=k ,,,s+1: =sand go t0 0.

The next assertion is a consequence of Theorem 4, Assertion 5 and the Newton

method properties (see [29]).

Assertion 8. If the dual pair linear programming problems are nondegenerate then for
any fixed 0 <y <0.5 there exist a small enough ¢ >0 and such number s, that for
s2 5

1) the parameter &k = k(s) = k‘o is permanent, v+ 1{ € ¥, and inequality (53) is
fulfilled for t = 1.

2) every Dual Newton MBF “large” step, i.e. every update y requires O(/n In e )

Newton steps of maximization P(v,y, k) inve V,,
3) the sequence {w" =, y"}:°= o converges to w* = (v*, y*) = (v*, x*) and the es-

timate
5 . 5 » §
max{llv —v*,ly —y*l}<vy,s25,

holds true. i

Moreover, for any 0 <y < 0.5 there eXists such k; that for any & > kg all statements of
Assertion 8 take place for s5=1. Parameter k; depends on parameter 0<y<0.5,
measure of nondegeneracy o > 0, mineigval B” B as well as on the size of the problem.

In the next section we shall consider this question in more detail.

9. Condition Numbers of Primal and Dual LP

In this section we introduce the condition numbers for the primal and dual LP. These
notions are different from the condition for the LP that was introduced in [16]. The

condition numbers of the primal and dual of LP will be characterized by the key pa-
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rameters that accumulate the most important information about the primal and dual

LP.

The condition number of the dual pair of LP is responsible for the "hot start”, rate
of convergence of primal and dual MBF methods and complexity of the primal and dual

Newton MBF Methods.

n
Let us recall that the norm {4 = 4] = "}aé,,, p |¢§,~,~|, is subordinate to the
sjsEm =

vector norm [xfj = fi] = rsn‘aé . EAR

Let n(Av j q) = n(As pq, °‘°)’ n](Av P q) = n](A- pq, °°) and nz(Av.P’ q) =
I,(4, p, 4, o0), then

—U*;] -on—m.m On—m,n—m NTB—TX*;I
n](AvP’q)= -1 -1 mm vnz(A’p’q)= mn—m -7 =1
B NU*, 0 0 -B x*,
and
IT1(4, p, @Il = max{lT1,(4, %, @I, IT1,(4, p, 9lI}
where .
-1 -1 -1
i1, (4, p, @)l = max{jU*, I, 1B NU*, I}
and

T -T -1 -T -1
W4, p, = max{IN B~ X, I,1B~ Xx*; I.

We will say that the primal P(4, p, q) is scaled by the vector t=(y,, ..., Ly oo s ) > 0"
if instead of the matrix A=(N, B) and the vector g one takes the matrix
A =TB=(N,B)=(TN, TB) and the vector § = Tq where T = [diag tj]]'."= , it is clear
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that the feasible set {x: Ax=¢q, x> 0"} is an invariant with respect to scaling the primal

problem P(4, p, 9).

Before we estimate the norms I1,(4, p, g)l, \1,(4, p, g)ll and T1(4, p, g)ll, let us con-

sider some other invariants of the problem P(4, p, q) with respect to scaling.

We consider the scaled matrixes N = TN and B = 7B and the scaled vector 7g=1Tq,
PsB T TN=py—ppB™ ' N=py—v* N=u*y, hence Uy = [diag 5" =

Uy

Further ¥p =B~ ! g=(TB)~ ! Tg=B ! Tg=B" ! g = x*p, therefore

= . _an
XB=[dlagxi]i=n—m+l=X*B'

Taking into account B ' N =(TB 'TN)=B"'Nand T ' = U*;,l we obtain
B 'NUy =8 ' Nusy! Also B MY = N7 YT = o™ ) =

NI ' T Y = NTTT ' B~ T=N"B™ 7 hence, N B~ TX,=NTB" Txe3 !,

In other words the matrices U*, X* 5, B~ kNU“,';,1 and NT B~ TX"‘; l, the vectors
u* = (u*y, u*p), x* = (x*), x* p) and hence the measure of nondegeneracy o > 0 are in-

variants with respect to scaling the pri;nal' problem P(A, p, q).

Later we will assume that the primal problems have already been scaled by the vector

-1 -1 . .
t=(ll,...,tj,...,tm),tjzlldill = (max |a.|) ,j=1,..,m, i.e. we assume that

. I'sisn” 1
W= max |a;|=1j=1,..,m.

Problem (1) with nai I=1,j=1,..,mwe will call normalized primal LP. The value

cond P(A, p, q) = [T1(4, p, ¢l

we will call condition number of the primal LP problem P(A, p, q).
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Let us estimate cond P(4, p, q) for the normalized P(A4, p, q) We have

-1 -1 -1
I,(A, p, Ol < max{§U*, LLIB N NU*, |} <

- - n—m
o max{l,|B llg)asxm ‘-Zl Iaﬁl}s
o 'max{l(n—m)IB" I}.

Then 1™ '§ < Vm 1B™ 'L, also 1Bl + 1B ", = (M 1~ )" and B, = M*, therefore

BB~ i<mu™ )% So IN,(4, p, gl < o™ "max{l,(n — m)(m u~ 1)),

It is casy to show that for any matrix B = nb{;ﬂg =f.m

such that n;;e}_x | byl <1 we

have u < m therefore
-1 -1 %
MA,p,qll<o (n—m)mu ) .
For the norm |I1,(4, p, g)} we obtain

T -T -1 -7 -
M4, p, gl <max{IN B || }.x*, I, \(B Y X4 1)
L T
<o 1B ImaxgNT), 1)

m
-1, _-T
<o 1B~ uls nax_ {IZ‘ |¥”|,1}5a 18~ "im.

Then |B~ "< Jm 1B~ Th, = Jm 1B~ |,-=(mu W therefore
-1 -1 %
M, (A, p,9l<0 (mu ) m.

Assertion 9 For any nondegenerate normalized primal linear programming problem

P(A, p, q) the next estimate
-1 -1%
condP(4,p,q)<o (mp ) max{n—m,m)

holds true.
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Now we will introduce and estimate the condition number of the dual problem

D(4, p, q).

Let us consider the matrix

mn—m (v BT)—I
= = - - B
\P(A’p! q) \P(Aopo q, °°) _B—l NU"NI om’m

The value

cond D(4, p, q) = ¥(4, p, 9)|

we will call condition number of the dual LP problem D(A, p, q).

Before we estimate the cond D(A, p, q) let us consider the scaling issue for the dual
problem. We will say that the dual problem D(A4,p,q) is scaled by a vector
§=(8), ., 8,) > 0" if instead of the matrix A = (N, B) and vector p we consider the ma-
trix 4 = AS = (N, B) = (NS, BSp), where S = [diag 5]} _ , Sy = [diag 5]; _ |
Sp = [diag s,.];'= n —m+ 1 and vector p = pS = (py, pg) = (py Sy, P Sp)- First of all note

=pBB°1=v‘.

—_— -1

- = 1 -1 -1 -1

Therefore the solution of the dual"problem D(A, p, q) is an invariant with respect to

scaling the dual problem, i.e.

v* =V =argmax{(q, V) | F(V)=(p -V 4),20,i= l; - )

Matrices Y*, B  and N Uty ! are also invariant with respect to scaling the dual
problem. In fact, we have fg= (7, _ 4 1o 1 F) =B lq = (BSp) lq =Sp 1p~ lq =
Sy ' v*p So Vp=[diagi)_,_my1=S55 V*p=V"35S; and VB = y*;5; ' x
Sp BT = ) o BT, Also r(v)=(p — vA) = (py, — VN, pg — VB) = (u, up), so UN =
[diag(F — VA )j];.';,"' = [diag(p — v*4 )j]}’; 1 = [diag((p - VAT o) = Uty Sy
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Therefore NU ' =N S U*N SN~ e U‘;l. Now we are ready to estimate the
norm I'¥(4, p, 9l

We will assume that the dual problem D(4, p, q) is normalized, i.e. is scaled by the
vector s = (s, ... S ... 5,), ;= lafl” L l(g}gém | a;1 ) l, i.e. we assume that fla}l = 1,

i=1,..,n. Then
T-1 -1 -1 -1 -T -1
(A, p, Il =max{li(Y*,B) LIB NU*,l}<e¢ max{iB |, IB N}

-— - — 1 n
Taking into account |B TI <JmiB le =(mpu l)/', and ||N|| = Lnjaé(ml p) aj,-I <
&= j=1

(n — m), we obtain
-1 -1 %
“’(A» P q)" S0 (m H ) (n - m)

Assertion 10. For any nondegenerage normalized dual linear programming problem the

next estimate
-1 -1 %
cond D(4,p,q)<e (mu ) (n—m)

holds true.

R
From the proof of Theorem 1 one can seé that the estimate of the norm |I1(4, p, g, k)|
is independent on k > cond P(A, p, q). The constant ¢ in Theorem ! can be estimated

by Ofcond P(A, p, 9)). Therefore, for a fixed 0<y<0.5 one can find
ko=0(y" Icond P(A, p, q) that for any fixed k > k; Assertion 1 holds true.

The same is true for the dual problem D(4, p,q). The norm {|¥(A4, p, ¢, k)|l is inde-
pendent on k> cond D(4, p, g), the constant ¢ in Theorem 2 can be estimated by
O(cond D(A, p, q)) and for any fixed 0 <y < 0.5 one can find kg = oy lcond D(A, p, 9)
that for any fixed k > k; Assertion 6 takes place.



Moreover cond P(A, p, q) is crucial for the "hot start” of the primal Newton MBF
(see Assertion 4) while cond D(4, p, q) is crucial for the "hot start” of the Dual Newton
MBF (see Assertion 8). '

In order to reach the "hot start”, one has to perform oWJny ! in cond P(A,p, q)
Newton steps by minimizing Primal M(x, k) or on v~ ! n cond D(A, p, q)) by mini-
mizing Dual N(v, k) Shifted Barrier Functions, starting at any “warm start” (see [7]) and
increasing k by a factor (1 — « n"")-l after every Newton step, where « is a universal

constant (see [12] , [27]).

From the “hot start” on one can decrease 0(s/n ) to O(/n n) the number of Newton
steps required to reduce the gap between primal and dual objective functions by a fixed

factor. In the next section we are going to make a few comments on this matter.

10. Concluding Remarks

The difference between Classical Interior Point Methods that are based on CBF and

Newton MBF methods result from the difference between primal {x(k), u(k)}:

X

*(k) = argmin (7, — kY. Inx|xeR,nQ)

J=1
k) =Kk '[diagx, (K)]e, koo

or dual {v(k), y(k)}:

v(k) = argmax {(q, V) + k- ! Z In r,(v) Ive Rm}

Ak =k~ '[diagr, '(v(k)]e, k - oo.
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CBF trajectories and primal {x(1, k), &(t, k)) or dual {v(z, k), A1, k)}(lil = O and
k = O(condP(A, p, q)) or k = 0(condD(A, p, q)) are fixed) MBF trajectories.

The Classical Interior Point Methods follow along the CBF ‘trajectory turning from
one "warm start” to another "warm start” by performing one Newton step and updating

the penalty parameter.

Every Newton step improves the current objective function value by a factor
(1—an” 0’5) where a is a universal constant (in [27] the corresponding result was proved
for a =41" l).‘ So to improve the current approximation twice, one has to perform
0(~/n ) Newton steps. The primal or dual Newton MBF methods follow from some point

along the MBF trajectory changing Lagrange multipliers instead of the parameter

k>0.

Having a couple (x°,u’) that is well defined i.e. X* is in the Newton area (“warm

start”) (see [29]) for the problem

3@, k) = argmin{F(x, 7 , k) | x € Q, 0 Q)

X
and " € Upkzkg=00" 'condP (4, p, q)) one can obtain an approximation x 1 for

the vector x(u", k) with accuracy ¢ > 0 in O(nine l) Newton steps.

For £ > 0 small enough we can maintain estimate (37) for a fixed 0 <y < 0.5
and a triple EVYLEYLVYY, whee #t'=aA" 1@+ ue®  and

;s+l=(p_;s+l)AT(AAT)—l.

Moreover as it turns out for any nondegenerate dual pair LP and any fixed

0<y<05 there cexists such g and Ay =0y !cond P(A,p,q)) or

*) Recently S. Smale and M. Shub proved that such a result remains true with

a=13""
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kg = oy Icond D(A, P, q)) that for any s > 5, and any k 2 &, the existence of a well de-
fined couple (x°, &) implies that the couple =* + l, P l_) is also well defined. It means

that ¥ * ! is well defined for the problem

2@ k) = argmin (Rx, @7 k) | x€Q, 0 Q)

~s+1

and u € U,.

In other words, starting from (X0, ) (“hot start”), one can improve the current
approximation at least twice (y < 0.5) in every O(ln In e~ l) Newton steps. The “hot start”
phenomenon was made possible because of the MBF’s properties at _primal and dual
solution as well as in their neighborhoods, where MBF’s not only exist and are smooth

enough, but have stable condition numbers for their Hessians.

To reach the "hot start” one can use CBF or one-parameter Shifted Barrier Functions
starting from any "warm start” and a fixed £ > 0. Due to the self-concordant properties
of CBF or Shifted Barrier Functions (see [20]) one can reach the "hot start” in
0(/n in(y™ 'cond P(4, p, q))) or O(/n In(y” 'cond D(A, p, g)) Newton steps by updating

at every step the penalty parameter & in a wa? that we described above.

To estimate the number of Newtor; steps that one has to perform, beginning at the
“hot start” up to an approximation for primal and dual solution with accuracy ¢ =
2" L ( L — is the input length), we assume that P(A, p, q) or D(A, p, q) are normalized
and max | ;| = 1, max(1p;1,1,1) <2, min{l a1, 151,141} 22 em<n).
So the input length L can be estimated by 0(n3). Using e =2 2L in Primal or Dual
Newton MBF methods, we obtain that, beginning at the "hot start”, every Lagrange
multipliers update requires O(in L) Newton steps and allows us to improve the current

approximation at least twice (0<y<O0.5) for a fixed k>k;, where
In ky=0(In vy~ cond P(4, p, q)) or In ky=0(iny~ "cond D(4, p, 4.).
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In other words in O(/n 1) Newton steps one can improve the current approximation
at least twice. This means that beginning at the “hot start”, one has to perform
O(L—O(Iny lcond P(A, p,q)) s Inn) Newton steps to obtain an approximation for
(x*,v*) with accuracy e¢= 2L in case of Primal Newton MBF and
O((L — O(in y—‘ cond D(4, p, g))inn) in the case of Dual Newton MBF. So the total

number of Newton steps can be estimated by
-1 -1
N<O(/niny cond P(4,p,q)+O(L—iny cond P(4,p,q))inn).

for the Primal Newton MBF. We have the same type of estimation for the Dual Newton
MBF. In the case where the primal or dual condition number is y 2L, we obtain the

classical estimation N < 0(/n L) (see [7], [10], [12], [27], and [30]).

The analysis that was undertaken in this paper shows the principal difference between
CBF and MBF approach as well as the possibility to speed up essentially the process
of solution dual LP in the final stage by changing the Lagrange multipliers instead of the

penalty parameter.

Of course it is possible to use some other procedures to speed up the solution process
in the final stage. In particular, the “purification” procedure (see Remark 5) might be

effective in the case of nondegenerate dual pair LP.

However, we would like to emphasize that the main results obtained in this paper

remain true if only one of the dual pair LP has a unique solution.

Moreover, the implementation of the MBF approach for solving LP that was recently
accomplished at the IBM T.J. Watson Research Center, allows us to observe the "hot

start” phenomenon practically for all LP (more than 80) that were solved.
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The MBF theory also allowed us to develop a primal-dual MBF method that stands
to the Primal Newton MBF as Primal-Dual Predictor-Corrector (see [77]) to the
Projected Newton Method [9].

The practical aspects of the Newton MBF methods will be considered in a forth-

coming paper where the Newton MBF methods will be compared with CBF as well as

with primal-dual predictor-corrector approach (see [17]).

It gives me great pleasure to dedicate this paper to Professor J. Ben Rozen on the

occasion of his seventieth birthday.
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