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HISTORICAL NOTE

In 1797 in his book ‘‘Theorie des func-
tions analytiques’’ Joseph Luis Lagrange
(1736–1813) introduced the Lagrangian
and Lagrange multipliers rule for solv-
ing optimization problems with equality
constraints.

. . . If a function of several variables should be
a maximum or minimum and there are
between these variables one or several
equations, then it will be suffice to add to the
proposed function the functions that should be
zero, each multiplied by an undetermined
quantity, and then to look for the maximum
and the minimum as if the variables were
independent; the equation that one will find
combined with the given equations, will serve
to determine all the unknowns.

J.-L. Lagrange

The Lagrange multipliers rule is only
a necessary but not sufficient condition
for an equality constrained optimum. The
primal–dual (PD) vector is neither a max-
imum nor a minimum of the Lagrangian:
it is a saddle point. Nevertheless, for
more than 200 years the Lagrangian has
remained an invaluable tool for optimization.
Moreover, with time, the great value of the
Lagrangian has become increasingly evident.
The Lagrangian is the main instrument for
establishing optimality conditions, the basic
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ingredient in the Lagrange duality, and one
of the most important tools in numerical
constrained optimization. Any PD method for
solving constrained optimization problems
in one way or another uses the Lagrangian
and the Lagrange multipliers.

OPTIMIZATION WITH EQUALITY
CONSTRAINTS: LAGRANGE SYSTEM OF
EQUATIONS

Consider q + 1 smooth enough func-
tions f , gj : IRn → IR, j = 1, . . . , q and the
feasible set

� = {
x : gj(x) = 0, j = 1, . . . , q

}
.

The equality constrained optimization (ECO)
problem consists of finding

(ECO) f (x∗) = min{f (x)|x ∈ �}.

The Lagrangian L : IRn × IRq → IR1 for (ECO)
is given by the formula

L(x, v) = f (x) −
q∑

j=1

vjgj(x).

Let us consider the vector function gT(x) =(
g1(x), . . . , gq(x)

)
, the Jacobian J(g(x)) =

∇g(x) = (∇g1(x), . . . , ∇gq(x)
)T and assume

rank ∇g(x∗) = q < n. (1)

Then for x∗ to be a (ECO) solution, it is nec-
essary the existence of v∗ ∈ IRq that the pair
(x∗, v∗) is a solution to the following Lagrange
system of equations:

∇xL(x, v) = ∇f (x) − ∇gT(x)v = 0, (2)

gi(x) = 0, i = 1, . . . , q. (3)

We consider the Hessian

∇2
xxL(x, v) = ∇2f (x) −

q∑
i=1

vi∇2gi(x)

1
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of the Lagrangian L(x, v). The regular-
ity condition (1), together with sufficient
condition for the minimizer x∗ to be isolated
that is

〈∇2
xxL(x∗, v∗)ξ , ξ〉 > ≥ m〈ξ , ξ〉,

∀ξ : ∇g(x∗)

ξ = 0, m > 0, (4)

comprise the standard second-order optimal-
ity conditions for the (ECO) problem.

Application of Newton’s method to the
nonlinear PD system of Equations (2), (3)
leads to one of the first PD methods for con-
strained optimization [1].

By linearizing the system (2), (3) and
ignoring terms of the second and higher
order, one obtains the following linear PD
system for finding the Newton direction
(�x, �v):

[ ∇2
xxL(·) −∇gT(·)

∇g(·) 0

] [
�x
�v

]
=

[ −∇xL(·)
−g(·)

]
.

(5)

Let S(y∗, δ) = {y = (x, v) : ‖y − y∗‖ ≤ δ},
where ‖‖ is the Eucledian norm, δ small
enough, and 0 < ε � δ is the desired
accuracy. The following merit function

ν(y) = ν(x, v)

= max
{
‖∇xL(x, v)‖, max

1≤i≤q
|gi(x)|

}
, (6)

measures the distance between the PD
approximation (x, v) and the solution (x∗, v∗).
If f and gi are smooth enough and the
second-order optimality conditions for
(ECO) are satisfied, then for y ∈ S(y∗, δ) we
have

ν(y) = 0 ⇔ y = y∗, (7)

and there are 0 < m0 < M0 that

m0‖y − y∗‖ ≤ ν(y) ≤ M0‖y − y∗‖. (8)

The PD method for (ECO) consists of the
following operations:

PDECOM-Primal–Dual Equality Constrained Optimization Method
Step 0. Let y ∈ S(y∗, δ).
Step 1. If ν(y) ≤ ε, Output y as the solution.
Step 2. Find �x and �v from (5).
Step 3. Update the primal–dual pair by the following formulas

x := x + �x, v := v + �v.

Step 4. Goto Step 1.

If the standard second-order optimality
for conditions for (ECO) are satisfied, the
Lipschitz conditions for the Hessians ∇2f (x),
∇2gi, i = 1, . . . , q hold, y = (x, v) ∈ S(y∗, δ) and
δ > 0 is small enough, then the PDECOM
generates the PD sequence that con-
verges to the PD solution y∗ = (x∗, v∗) with
quadratic rate; that is, the following bound
holds:

‖ŷ − y∗‖ ≤ C‖y − y∗‖2, (9)

where C > 0 is independent from y ∈ S(y∗, δ)
and depends only on the problem data [1].

AUGMENTED LAGRANGIAN AND
PRIMAL–DUAL AUGMENTED LAGRANGIAN
METHOD

For a given k > 0, the augmented Lagrangian
(AL) L : IRn × IRq × IR+ → IR1 is defined by
the following formula [2,3]:

L(x, v, k) = f (x) −
q∑

j=1

vjgj(x) + k
2

q∑
j=1

g2
j (x).

(10)
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The AL method alternates the uncon-
strained minimization of the AL L(x, v, k) in
the primal space with a Lagrange multipliers
update.

Let δ > 0 be sufficiently small, 0 < ε � δ

be the desired accuracy, k > 0 be sufficiently
large, and y = (x, v) ∈ S(y∗, δ). One step of the
classical AL method consists of finding the
primal minimizer

x̂ = arg min
x∈IRn

L(x, v, k), (11)

followed by the Lagrange multipliers
update.

In other words, for a given scaling param-
eter k > 0 and a starting point y = (x, v) ∈
S(y∗, δ), one step of the AL method is equiv-
alent to solving the following nonlinear PD
system for x̂ and v̂:

∇xL(x̂, v̂) = ∇f (x̂) −
q∑

j=1

v̂j∇gj(x̂) = 0, (12)

v̂ − v + kg(x̂) = 0. (13)

Application of Newton’s method for
solving the PD system (12)–(13) for
(x̂, v̂) together with a proper update of
the penalty parameter k > 0 leads to
the primal–dual augmented Lagrangian
(PDAL) method for solving (ECO) problems
[4].

By linearizing the system (12)–(13) and
ignoring terms of the second and higher
order, we obtain the following linear PD
system for finding the Newton direction
(�x, �v):

[ ∇2
xxL(·) −∇gT(·)

∇g(·) 1
k Iq

] [
�x

�v

]

=
[ −∇xL(·)

−g(·)

]
, (14)

where Iq is the identity matrices in IRq
. Note

that if k → ∞, then the system (14) gets
close to the system (5). Therefore, by chang-
ing k > 0 properly it is possible to achieve a
quadratic rate of convergence for the PDAL
method.

PDALM - Primal–Dual Augmented Lagrangian Method
Step 0. Let y ∈ S(y∗, δ) and k > 0 is large enough.
Step 1. If ν(y) ≤ ε, Output y as a solution.
Step 2. Set k = ν(x, v)−1.

Step 3. Find �x and �v from (14).
Step 4. Update the primal–dual pair by the formulas

x := x + �x, v := v + �v.

Step 5. Goto Step 1.

If the standard second-order optimality
conditions for (ECO) are satisfied, the Lips-
chitz conditions for the Hessians ∇2f (x), ∇2gi,
i = 1, . . . , q hold, y = (x, v) ∈ S(y∗, δ), and δ > 0
is sufficiently small, then the PDALM gener-
ates a PD sequence that converges to the PD
solution y∗ = (x∗, v∗) with a quadratic rate,
that is Equation (9) holds [4].

OPTIMIZATION WITH INEQUALITY
CONSTRAINTS

Let f : IRn → IR1 be convex and all
ci : IRn → IR1, i = 1, . . . , p be concave and

smooth functions. Consider a convex set
� = {x ∈ IRn : ci(x) ≥ 0, i = 1, . . . , p} and the
following convex inequality constrained
optimization (ICO) problem:

(ICO) f (x∗) = min{f (x)|x ∈ �}.

Let us assume that

(a) The primal optimal set X∗ is not empty
and bounded.

(b) The Slater’s condition holds; that
is, there exists x̂ ∈ IRn : ci(x̂) > 0, i =
1, . . . , p.
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Due to the assumption B, the Karush–Ku
hn–Tucker’s (KKT’s) conditions hold
true; that is, there exists a vector
u∗ = (u∗

1, . . . , u∗
p) ∈ IRp

+ such that

∇xL(x∗, u∗) = ∇f (x∗) −
p∑

i=1

u∗
i ∇ci(x∗) = 0, (15)

ci(x∗) ≥ 0, u∗
i ≥ 0, i = 1, . . . , p, (16)

and the complementary slackness conditions

u∗
i ci(x∗) = 0, i = 1, . . . , p (17)

hold true.
Let I = {i : ci(x∗) = 0} = {1, . . . , r} be the

set of indices of the active at x∗ constraints,
cT

(r)(x) = (
c1(x), . . . , cr(x)

)
be the vector func-

tion of the active at x∗ constraints and
∇c(r)(x) = J

(
c(r)(x)

)
be the corresponding

Jacobian. The standard second-order opti-
mality conditions for (ICO) consists of
existence u∗ ∈ IRp

+ and m > 0 such that

rank
(∇c(r)(x∗)

) = r, u∗
i > 0, i = 1, . . . , r

(18)

and

〈∇2
xxL(x∗, u∗)ξ , ξ〉 ≥ m〈ξ , ξ〉, ∀ξ : ∇c(r)(x∗)ξ = 0.

(19)

The dual to (ICO) problem consists of find-
ing

(D) d(u∗) = max
{
d(u)|u ∈ IRp

+,
}

,

where d(u) = infx∈IRn L(x, u) is the dual func-
tion.

For convex (ICO) that satisfies the Slater
condition we have

f (x∗) = d(u∗).

The PD methods generate PD sequences
{xs, us}∞s=1 that

f (x∗) = lim
s→∞ f (xs) = lim

s→∞ d(us) = d(u∗).

LOG-BARRIER FUNCTION AND
INTERIOR-POINT METHODS

The (ECO) problem is not combinatorial by
nature because all constraints are active at
the solution (by definition, active constraints
are those that are satisfied as equalities).
At the same time, the methods for (ECO)
require an initial approximation from the
neighborhood S(y∗, δ). The (ICO) in general
and convex (ICO) in particular, are combina-
torial by nature because the set of active at
the solution constraints is unknown a priori.
On the other hand, for convex (ICO) there
is no need to have an initial approximation
y ∈ S(y∗, δ).

Consider PD interior-point methods
for convex optimization that are based
on the classical log-barrier function
β : int � × IR+ → IR defined by the formula

β(x, μ) = f (x) − μ

p∑
i=1

ln ci(x).

Let ln t = −∞ for t ≤ 0; then for any given
μ> 0 the Frisch log-barrier function F : IRn ×
IR+ → IR is defined as follows:

F(x, μ) =
{

β(x, μ), x ∈ int �;
∞, x /∈ int �.

The classical sequential unconstrained mini-
mization technique (SUMT) [5] finds the PD
trajectory {y(μ) = (x(μ), u(μ))} by the follow-
ing formulas:

∇xF(x(μ),μ) = ∇f (x(μ))

−
p∑

i=1

μ
(
ci(x(μ))

)−1 ∇ci(x(μ)) = 0 (20)

and

u(μ) =
(
ui(μ)) = μ

(
ci(x(μ))

)−1 ,

i = 1, . . . , p
)

. (21)

Equation (20) is the optimality condition for
the unconstrained problem

x(μ) = arg min
{
F(x, μ)|x ∈ IRn}

.
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Thus, for a given μ > 0, finding the PD
approximation from Equations (20), (21) is
equivalent to solving the following system
for (x̂, û):

∇xL(x̂, û) = ∇f (x̂) −
p∑

i=1

ûi∇ci(x̂) = 0,

ûici(x̂) = μ, i = 1, . . . , p. (22)

It follows from Equation (20) that x(μ) ∈
int �. It follows from Equation (21) that
u(μ) ∈ IRp

++, that is x(μ) and u(μ) are pri-
mal and dual interior points. It follows from
Equations (20), (21) that

∇xF(x(μ), μ) = ∇xL(x(μ), u(μ)) = 0,

or

d(u(μ)) = min
x∈IRn

L(x, u(μ)) = L(x(μ), u(μ))

and the PD gap (i.e., the difference between
the values of the primal and dual objective
functions) is

�(μ) = f (x(μ)) − d(u(μ))

=
p∑

i=1

ui(μ)ci(x(μ)) = pμ,

that is

lim
μ→0

x(μ) = x∗ and lim
μ→0

u(μ) = u∗.

(23)

Finding (x̂, û) = (x(μ), u(μ)) or its approxi-
mation from Equation (22) and reducing μ > 0
is the main idea of the SUMT [5].

Solving the nonlinear PD system (22) is an
infinite procedure in general. The main idea
of the PD interior-point methods is to replace
the nonlinear PD system (22) by one Newton
step toward solution of the system (22) and
follow that by the barrier parameter update.
For a given approximation y = (x, u) and the
barrier parameter μ> 0, the application of
Newton’s method to the nonlinear PD system

(22) leads to the following linear PD system:[ ∇2
xxL(x, u) −∇c(x)T

U∇c(x) C(x)

] [
�x
�u

]

=
[ −∇L(x, u)

−Uc(x) + μe

]
, (24)

where C(x) = diag
(
ci(x)

)p
i=1 , U = diag (ui)

p
i=1,

and e = (1, . . . , 1)T ∈ IRp
.

The system (24) finds the Newton direction
�y = (�x, �u), which is used to update the
current approximation y = (x, u) :

x = x + α�x; u = u + α�u. (25)

One must determine the step length α > 0
in such a way that a new approximation
y = (x, u) not only remains primal and dual
interior, but also remains in the area for
which Newton’s method for PD system (22) is
well defined for the updated barrier param-
eter [6]. For some classes of constrained
optimization problems, including linear pro-
gramming problems (LPs) and quadratic pro-
gramming problems (QPs), it is possible to
take α = 1 in Equation (25) and update the
barrier parameter μ by the formula μ =
μ(1 − ρ/

√
n), where 0 < ρ < 1 is independent

on n. The new approximation belongs to the
neighborhood of the solution of the system
(22) with μ replaced by μ. Moreover, each step
reduces the PD gap by the same factor (1 −
ρ/

√
n). This leads to polynomial complexity

of the PD interior-point methods for LP and
QP [6]. LP, QP, and QP with quadratic con-
straints problems are well structured, which
means that constraints and epigraph of the
objective function can be equipped with a
self-concordant (SC) barrier [7,8].

If (ICO) problem is not well structured,
establishing polynomial complexity of the
path-following methods becomes problem-
atic, if not impossible. Nevertheless, the
PD interior-point approach remains produc-
tive and leads to globally convergent and
numerically efficient PD methods [9–13].

There are two main classes of PD meth-
ods for (ICO): interior-point PD method based
on the path-following idea (which goes back
to SUMT) and exterior-point PD methods
(which are based on nonlinear rescaling (NR)
theory [14–16]).
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PRIMAL–DUAL INTERIOR-POINT METHODS

Consider the following problem

min f (x),
s.t. c(x) − w = 0,
w ≥ 0,

(26)

which is equivalent to (ICO) problem.
The log-barrier function F(x, w, μ) = f (x) −

μ
∑p

i=1 ln wi is used to handle the nonneg-
ativity of the slack vector w ∈ IRp

+, which
guarantees the primal feasibility.

One step of the path-following method
consists of solving the following (ECO)
problem:

min F(x, w, μ),
s.t. c(x) − w = 0, (27)

followed by the barrier parameter μ> 0
update.

The Lagrangian for the problem (27) is
defined by formula

L(x, w, u)

= f (x) − μ

p∑
i=1

log wi −
p∑

i=1

ui(ci(x) − wi).

Let W = diag (wi)
p
i=1 and U = diag (ui)

p
i=1.

The following Lagrange system of equations

corresponds to (ECO) (27).

∇f (x) − ∇c(x)Tu = 0

−μe + WUe = 0 (28)

c(x) − w = 0

Application of Newton’s method to nonlin-
ear PD system (28) leads to the following
linear PD system for finding the Newton
directions:⎡
⎣ ∇2

xxL(x, u) 0 −∇c(x)T

0 U W
∇c(x) −Ip 0

⎤
⎦

⎡
⎣ �x

�w
�u

⎤
⎦

=
⎡
⎣ −∇f (x) + ∇c(x)Tu

μe − WUe
−c(x) + w

⎤
⎦ ,

(29)

where ∇2
xxL(x, u) = ∇2f (x) − ∑p

i=1 ui∇2ci(x) is
the Hessian in x of the Lagrangian for (ICO)
problem.

For convex (ICO) the merit function

ν(y) ≡ ν(x, w, u) = max
{‖∇xL(x, w, u)‖,

‖c(x) − w‖, ‖WUe‖,
}

is used. Under the standard second-order
optimality conditions, the merit function ν(y)
satisfies Equations (7) and (8).

Take δ > 0 to be sufficiently small and 0 <

ε � δ to be the defined accuracy. Consider
the following PD interior-point method:

PDIPM - Primal–Dual Interior-Point Method
Step 0. Let y ∈ S(y∗, δ) = {y : ‖y − y∗‖ ≤ δ} be the initial approximation.
Step 1. If ν(x, w, u) ≤ ε, Output y = (x, u) as a solution.
Step 2. Calculate the barrier parameter μ = min

{
θμ, ν2(x, w, u)

}
, 0 < θ < 1.

Step 3. Find �x, �w, and �u from (29).
Step 4. Calculate the parameter κ and the step lengths αP and αD by formulas

κ = max
{
κ, 1 − ν(x, w, u)

}
, 0 < κ < 1,

αP = min
1≤i≤m

{
1; −κ

(ws)i

(�ws)i
: (�ws)i < 0

}
,

αD = min
1≤i≤m

{
1; −κ

(us)i

(�us)i
: (�us)i < 0

}
.
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Step 5. Update the primal–dual pair by the formulas

x̂ := x + αP�x, ŵ := w + αP�w, û := u + αD�u.

Step 6. Goto Step 1.

If the standard second-order optimality
conditions are satisfied for (ICO), the Hes-
sians ∇2f (x) and ∇2ci(x), i = 1, . . . , p are Lip-
schitz continuous, δ > 0 is sufficiently small,
and a starting point y ∈ S(y∗, δ), then the PD
sequence generated by the PDIPM converges
to the KKT’s point with a quadratic rate
[10,17].

PRIMAL–DUAL NONLINEAR RESCALING
METHOD

Consider a class 
 of strictly concave and
twice continuously differential functions
ψ : (t0, t1) → IR, −∞ < t0 < 0 < t1 < ∞ that
satisfy the following properties:

10.ψ(0) = 0.

20.ψ ′(t) > 0.

30.ψ ′(0) = 1.

40.ψ ′′(t) < 0.

50.there is a > 0 that ψ(t) ≤ −at2, t ≤ 0.

60.a)ψ ′(t) ≤ b1t−1, b) − ψ ′′(t) ≤ b2t−2, t > 0,

b1 > 0, b2 > 0.

The following transformations ψ ∈ 
 sat-
isfy the above properties:

1. Exponential transformation [18]

ψ1(t) = 1 − e−t.

2. Logarithmic MBF [14]

ψ2(t) = ln(t + 1).

3. Hyperbolic MBF [14]

ψ3(t) = t
1 + t

.

Each of the above transformations can
be modified in the following way. For a

given −1 < τ < 0 we define quadratic
extrapolation of the transformations
1 − 3 by the formulas

4.

ψqi (t) =
{

ψi(t), t ≥ τ ,
qi(t) = ait2 + bit + ci, t ≤ τ ,

where ai, bi, ci one finds from the fol-
lowing equations: ψi(τ ) = qi(τ ), ψ ′

i(τ ) =
q′

i(τ ), ψ ′′
i (τ ) = q′′

i (τ ).

Modification 4 leads to transformations
that are defined on (−∞, ∞) and, along with
penalty function properties, have some addi-
tional important features [15,16,19].

Due to 10 − 30 for any ψ ∈ 
 and any k > 0,
the following problem

f (x∗) = min
{
f (x)|k−1ψ(kci(x)) ≥ 0,

i = 1, . . . , p
}

(30)

is equivalent to the original (ICO)
problem. The classical Lagrangian
L : IRn × IRp

+ × IR+ → IR1 for the equivalent
problem (30) is defined by the formula

L(x, u, k) = f (x) − k−1
p∑

i=1

uiψ(kci(x)).

The NR principle consists of transforming
the original (ICO) problem into an equivalent
one and then using the classical Lagrangian
for the equivalent problem for theoretical
analysis and numerical methods. In contrast
to SUMT, the NR principle leads to exterior-
point methods. Convergence of the NR meth-
ods is due to both, the Lagrange multipliers
and the scaling parameter updates.
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We use the following merit function:

ν ≡ ν(x, u) = max
{
‖∇xL(x, u)‖, − min

1≤i≤p
ci(x),

p∑
i=1

|ui||ci(x)|, − min
1≤i≤p

ui,

}
. (31)

For convex (ICO) under the standard
second-order optimality condition, the merit
function (31) satisfies Equations (7) and (8).

For a given u ∈ IRp
++ and k > 0, one step

of the NR method with scaling parameter
update consists in finding

x̂ = arg min
{
L(x, u, k) | x ∈ IRn}

, (32)

or

x̂ : ∇xL(x̂, u, k) = ∇f (x̂) −
p∑

i=1

ψ ′ (kci(x̂)
)

ui∇ci(x̂) = 0,

followed by the Lagrange multipliers update
by formula

ûi = ψ ′ (kci(x̂)
)

ui, i = 1, . . . , p,

or

û = 
 ′ (kc(x̂)
)

u, (33)

where 
 ′ (ksc(x)
) = diag

(
ψ ′ (kci(x)

))p
i=1 , and

scaling parameter update by formula

k̂ := ν(x̂, û)−0.5. (34)

In other words, for a given Lagrange
multipliers vector u ∈ IRp

++ and the scaling

parameter k > 0, one step of the NR method is
equivalent to solving the following nonlinear
PD system:

∇xL(x̂, u, k) = ∇f (x̂) −
p∑

i=1

ψ ′ (kci(x̂)
)

ui∇ci(x̂)

= ∇xL(x̂, û) = 0, (35)

û = 
 ′ (kc(x̂)
)

u, (36)

for x̂ and û, followed by the scaling parameter
k > 0 update by Equation (34).

Application of Newton’s method for solv-
ing the nonlinear PD system (35)–(36) for
x̂ and û leads to the primal–dual nonlinear
rescaling (PDNR) method for solving (ICO)
problem [20].

By linearizing Equations (35)–(36) and
assuming that u = 
 ′ (kc(x)

)
u, we obtain the

following linear PD system for finding the
Newton direction (�x, �u):

[ ∇2
xxL(·) −∇cT(·)

−U
 ′′ (·)∇c(·) 1
k Ip

] [
�x
�u

]

=
[ −∇xL(·)

1
k (u − u)

]
, (37)

where ∇c(·) = ∇c(x), 
 ′(·) = 
 ′′ (kc(x)
) =

diag
(
ψ ′′ (kci(x)

))p
i=1 , U = diag (ui)

p
i=1 and Ip

is an identity matrix in IRp
.

Let δ > 0 be small enough and 0 < ε � δ

be the desired accuracy. Then for a given
x ∈ IRn, Lagrange multipliers vector u ∈ IRp

++,
and scaling parameter k > 0, one step of the
PDNR method consists of the following oper-
ations:

PDNRM - Primal–Dual Nonlinear Rescaling Method
Step 0. Let y = (x, u) ∈ S(y∗, δ).
Step 1. If ν(y) ≤ ε, then output y as a solution.
Step 2. Set k = ν(x, u)−0.5.

Step 3. Find �x and �v from (37).
Step 4. Update the primal–dual pair by the formulas

x̂ := x + �x, û := u + �u.

Step 5. Goto Step 1.
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If the standard second-order optimal-
ity conditions are satisfied, the Lipschitz
conditions for the Hessians ∇2f (x), ∇2ci,
i = 1, . . . , p hold, and y = (x, u) ∈ S(y∗, δ),
then the PDNR algorithm generates a PD
sequence that converges to the PD solution
with 1.5-Q-superlinear rate. A small mod-
ification of the PDNR algorithm generates
a PD sequence that converges from any
starting point y = (x, u) ∈ IRn × IRp

++ with
asymptotic 1.5-Q-superlinear rate [20].

PRIMAL–DUAL EXTERIOR-POINT METHOD
FOR INEQUALITY CONSTRAINED
OPTIMIZATION

Due to properties 10 and 20 for any given
vector k = (k1, . . . , kp) ∈ IRp

++, we have

ci(x) ≥ 0 ⇐⇒ kiψ(kici(x)) ≥ 0, i = 1, . . . , p.

Consider the Lagrangian L : IRn × IRp
+ ×

IRp
++ → IR

L(x, u, k) = f (x) −
p∑

i=1

k−1
i uiψ(kci(x))

for the equivalent problem. Let k > 0, x ∈ IRn,
u ∈ IRp and k = (ki = k(ui)−1, i = 1, . . . , p).

One step of the NR method with ‘‘dynamic’’
scaling parameters update maps the given
triple (x, u, k) ∈ IRn × IRp

+ × IRp
++ into the

triple (x̂, û, k̂) ∈ IRn × IRp
+ × IRp

++ defined by
formulas

x̂ : ∇xL(x̂, u, k)

= ∇f (x̂) −
p∑

i=1

ψ ′(kici(x̂))ui∇ci(x̂)

= ∇f (x̂) −
p∑

i=1

ûi∇ci(x̂), (38)

û : ûi = uiψ
′(kici(x̂)), i = 1, . . . , p, (39)

k̂ : k̂i = kû−1
i , i = 1, . . . , p. (40)

Such a method was considered in Ref. 18 for
exponential transformation ψ1. By removing
the formula for the scaling vector update (40)

from the system (38), (39), (40) we obtain the
following nonlinear PD system:

∇xL(x̂, û) = ∇f (x̂) −
p∑

i=1

ûi∇ci(x̂), (41)

û = 
 ′(kc(x̂))u, (42)

where 
 ′(kc(x̂)) = diag(ψ ′(kici(x̂)))p
i=1. To

measure the distance between the current
approximation y = (x, u) and the solution y∗,
the merit function (31) is used.

Due to Equation (40), the Lagrange mul-
tipliers that correspond to the passive con-
straints (LMPC) converge to zero with at
least a quadratic rate. Therefore, for 0 <

ε � 1, it requires at most s = O(ln ln ε−1)
Lagrange multipliers updates for the LMPC
to become of the order of O(ε2). So the PD
system (41), (42) is reduced to the following
nonlinear PD system:

∇xL(x̂, û) = ∇f (x̂) −
r∑

i=1

ûi∇ci(x̂), (43)

ûi = uiψ
′(kici(x̂)), i = 1, . . . , r, (44)

where I∗ = {i : ci(x∗) = 0} = {1, . . . , r}.
Application of Newton’s method for solv-

ing the PD system (43), (44) leads to a local
PDEP method for (ICO) problems. Start with
linearization of the system (44); due to the
property 20 of the transformation ψ ∈ 
,
the inverse ψ ′−1 exists. Therefore using the
identity ψ ′−1 = ψ∗′, where ψ∗(s) = inf t{st −
ψ(t)|t ∈ IR} is the conjugate of ψ , and denot-
ing ϕ = −ψ∗, we can rewrite Equation (44) as
follows:

ci(x̂) = k−1uiψ
′−1

(
ûi

ui

)
= k−1uiψ

∗′
(

ûi

ui

)

= −k−1uiϕ
′
(

ûi

ui

)
.

It follows from property 30 of transforma-
tion ψ that ϕ′(1) = 0. Assuming x̂ = x + �x
and û = u + �u, and ignoring terms of the
second and higher order, we obtain

ci(x̂) = ci(x) + ∇ci(x)�x
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= −k−1uiϕ
′
(

ui + �ui

ui

)

= −k−1uiϕ
′
(

1 + �ui

ui

)
= −k−1ϕ′′(1)�ui,

i = 1, . . . , r,

or

ci(x) + ∇ci(x)�x + k−1ϕ′′(1)�ui = 0,

i = 1, . . . , r.

By linearizing the system (43) at y = (x, u),
we obtain the following linear PD system for

finding the PD Newton directions:
[ ∇xxL(·) −∇cT(·)

∇c(·) k−1ϕ′′(1)Ir

] [
�x
�u

]

=
[ ∇xL(·)

−c(·)
]

(45)

where Ir is the identity matrix in IRr and
∇c(x) = J(c(x)) is the Jacobian of the vector
function c(x).

Let δ > 0 be small enough and 0 < ε � δ be
the desired accuracy. Then the PDEP method
for (ICO) problems consists of the following
operations.

PDEPICOM - Primal–Dual Exterior-Point Method for ICO
Step 0. Let y = (x, u) ∈ S(y∗, δ).
Step 1. If ν(y) ≤ ε, then output y as a solution.
Step 2. Set k = ν(x, u)−1.

Step 3. Find �x and �v from (45).
Step 4. Update the primal–dual pair by the formulas

x̂ := x + �x, û := u + �u.

Step 5. Goto Step 1.

Under the standard second-order optimal-
ity conditions and Lipschitz conditions for
the Hessians ∇2f (x), ∇2ci, i = 1, . . . , r, the
PDEP algorithm generates a PD sequence
that converges to the PD solution y∗ = (x∗, u∗)
with quadratic rate. The globally convergent
PDEP method with an asymptotic quadratic
rate is given in [21].

PRIMAL–DUAL EXTERIOR-POINT METHOD
FOR OPTIMIZATION PROBLEMS WITH BOTH
EQUALITY AND INEQUALITY CONSTRAINTS

Consider p + q + 1 twice continuously dif-
ferential functions f , ci, gj : IRn → IR, i =
1, . . . , p, j = 1, . . . , q and the feasible set

� = {
x : ci(x) ≥ 0, i = 1, . . . , p;

gj(x) = 0, j = 1, . . . , q
}
.

The problem with both inequality and equal-
ity constraints consists of finding

(IECO) f (x∗) = min{f (x)|x ∈ �}.

We use ψ ∈ 
 to transform the inequal-
ity constraints ci(x) ≥ 0, i = 1, . . . , p into an
equivalent set of constraints. For any fixed
k > 0, the following problem is equivalent to
the original (IECO) problem due to the prop-
erties of ψ ∈ 
; that is,

f (x∗) = min{f (x)|k−1ψ(kci(x)) ≥ 0,

i = 1, . . . , p; gj(x) = 0, j = 1, . . . , q}.

For a given k > 0, the AL Lk :
IRn × IRp

+ × IRq → IR1 for the equivalent
problem is defined by the formula

Lk(x, u, v) = f (x) − k−1
p∑

i=1

uiψ(kci(x))

−
q∑

j=1

vjgj(x) + k
2

q∑
j=1

g2
j (x). (46)

The first two terms define the classical
Lagrangian for the equivalent problem in the
absence of equality constraints. The last two
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terms coincide with the AL terms associated
with equality constraints.

For a given k > 0 and y = (x, u, v) ∈ S(y∗, δ),
a step of nonlinear rescaling-AL method
maps the triple y = (x, u, v) into the triple
ŷ = (x̂, û, v̂), where

x̂ = arg min
x∈IRn

Lk(x, u, v), (47)

or

x̂ : ∇f (x̂) −
p∑

i=1

uiψ
′ (kci(x̂)

)∇ci(x̂)

−
q∑

j=1

(
vj − kgj(x̂)

)∇gj(x̂) = 0, (48)

ûi = uiψ
′(kci(x̂)), i = 1, . . . , p; (49)

v̂j = vj − kgj(x̂), j = 1, . . . , q. (50)

The system (48)–(50) can be replaced by
the following nonlinear PD system:

∇xL(x̂, û, v̂) = ∇f (x̂) −
p∑

i=1

ûi∇ci(x̂)

−
q∑

j=1

v̂j∇gj(x̂) = 0, (51)

û − 
 ′ (kc(x̂)
)

u = 0, (52)

v̂ − v + kg(x̂) = 0, (53)

where 
 ′(kc(x̂)) = diag(ψ ′(kci(x̂)))p
i=1.

We use the following merit function:

ν(y) = ν(x, u, v)

= max{‖∇xL(x, u, v)‖, − min
1≤i≤p

ci(x),

max
1≤i≤q

|gi(x)|,
p∑

i=1

|ui||ci(x)|, − min
1≤i≤p

ui}.

(54)

Under the standard second-order opti-
mality conditions, ν(y) possesses properties
(7), (8).

Application of Newton’s method to the
system (51), (52), (53) for x̂, û, and v̂ from
the starting point y = (x, u, v) ∈ S(y∗, δ) leads
to the PD exterior-point method (PDEPM)
[22]. By linearizing the system (51), (52),
(53) and ignoring terms of the second and
higher order, we obtain the following linear
PD system for finding the Newton direction
�y = (�x, �u, �v):⎡

⎢⎣
∇2

xxL(·) −∇cT(·) −∇gT(·)
−U
 ′′ (·)∇c(·) 1

k Ip 0

∇g(·) 0 1
k Iq

⎤
⎥⎦

×
⎡
⎣ �x

�u
�v

⎤
⎦ =

⎡
⎢⎣

−∇xL(·)
1
k (u − u)
−g(·)

⎤
⎥⎦ , (55)

where ∇c(·) = ∇c(x), ∇g(·) = ∇g(x), 
 ′(·) =

 ′′(kc(x)

)=diag
(
ψ ′′(kci(x)

))p
i=1, u =
 ′(kc(x)

)
u,

U = diag (ui)
p
i=1, and Ip, Iq are the identity

matrices in IRp and IRq respectively.
The PD exterior-point method for con-

strained optimization problems with both
inequality and equality constraints consists
of the following operations.

PDEPM - Primal–Dual Exterior-Point Method
Step 0. Let y ∈ S(y∗, δ)..
Step 1. If μ(y) ≤ ε, then output y as a solution.
Step 2. Set k = ν(x, u, v)−0.5.

Step 3. Find �x, �u, and �v from Equation (55).
Step 4. Update the primal–dual pair by the formulas

x̂ := x + �x, û := u + �u. v̂ := v + �v.

Step 5. Goto Step 1.
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Under the standard second-order optimal-
ity conditions and Lipschitz conditions for
the Hessians ∇2f (x), ∇2ci, i = 1, . . . , m, ∇2gi,
i = 1, . . . , q, for any y ∈ S(y∗, δ), the PDEPM
algorithm generates the PD sequence that
converges to the PD solution with 1.5-Q-
superlinear rate [22].

CONCLUDING REMARKS

As we have seen, any PD method for con-
strained optimization is associated with par-
ticular PD nonlinear system of equations.
Application of Newton’s method to the sys-
tem is equivalent to one step of either an
interior- or an exterior-point method. There-
fore, the computational process is defined by a
particular PD nonlinear system and excellent
convergence properties of Newton’s method.
As a result, under the standard second-order
optimality conditions, the PD methods gen-
erate sequences that converge to the PD
solution with an asymptotic quadratic rate.

As a practical matter it is worth mention-
ing that in the neighborhood of the solution
the PD interior-point method generates a
sequence similar to that generated by New-
ton’s method for solving KKT’s system, while
the PD exterior-point method generates a
sequence similar to that generated by New-
ton’s method for solving the Lagrange system
of equations that correspond to the active con-
straints. Unlike the former nonlinear system,
the latter system does not contain comple-
mentarity equations. Therefore, the practical
PD exterior-point method often is capable of
finding the PD solution with a very high of
accuracy.
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