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Abstract. We presentand analyze an interior-exterior augmented Lagrangian method for solving constrained op-
timization problems with both inequality and equality constraints. This method, the modified barrie—augmented
Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods.
Itis based on the MBAL function, which treats inequality constraints with a modified barrier term and equalities
with an augmented Lagrangian term. The MBAL method alternatively minimizes the MBAL function in the pri-

mal space and updates the Lagrange multipliers. For a large enough fixed barrier-penalty parameter the MBAL
method is shown to converg@-linearly under the standard second-order optimality conditiGisuperlinear
convergence can be achieved by increasing the barrier-penalty parameter after each Lagrange multiplier update.
We consider a dual problem that is based on the MBAL function. We prove a basic duality theorem for it and show
that it has several important properties that fail to hold for the dual based on the classical Lagrangian.

1. Introduction

In this paper we develop a new method for solving constrained nonlinear optimization prob-
lems involving both inequality and equality constraints. Our method, the modified barrier—
augmented Lagrangian (MBAL) method, is a combination of the augmented Lagrangian
method for equality constraints of Hestenes [10] and Powell [14] and the modified barrier
function (MBF) method of Polyak [12]. Variants of the latter method have been considered
by Breitfeld and Shanno [4] and Conn et al. [5]. Since the modified barrier function can
be viewed as an interior augmented Lagrangian, the MBAL method can be viewed as an
interior-exterior augmented Lagrangian method.
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The idea of combining a barrier function and a penalty function approach to solve con-
strained optimization problems with both inequality and equality constraints was suggested
nearly thirty years ago by Fiacco and McCormick ([18]). Their interior-exterior method
uses a classical barrier function to treat the inequality constraints and a penalty function
to treat the equalities. In their approach the barrier-penalty parameter is the only means
by which the computational process can be controlled. Therefore to guarantee convergence
this parameter has to be increased to infinity, which leads to numerical problems due to the
ill-conditioning of the Hessian of the barrier-penalty function.

The MBAL function used in the MBAL method eliminates major drawbacks of the
barrier-penalty function while retaining its best features. In contrast with the barrier-penalty
function, the MBAL function exists at the solution and inherits the smoothness of the
objective and constraint functionsin a neighborhood of that solution. Under standard second-
order optimality conditions the MBAL function has a unique global minimizer for any vector
of positive Lagrange multipliers for the inequality constraints and any vector of Lagrange
multipliers for the equality constraints when the barrier-penalty parameter is large enough.
The dual function based on the MBAL function is smooth and the dual problem based on
it has several important properties.

Finally, the MBAL method convergdd-linearly for a fixed barrier-penalty parameter ata
rate that can be made as fast as desired by using a large enough value for the fixed parameter.
Since this parameter does not have to be increased to infinity to ensure convergence as in
the classical barrier-penalty approach the condition number of the Hessian of the MBAL
function remains bounded allowing Newton’s method to be applicable for minimizing the
MBAL function in a larger region Q-superlinear convergence can be achieved by choosing
a sequence of penalty-barrier parameters tending to infinity.

Although the augmented Lagrangian method was originally designed for problems with
equality constraints, it was extended to handle inequality constraints by Rockafellar [15].
This extention has been well studied and shares many of the positive qualities of the MBAL
method (e.g., see Chapter 5 in [3]); however the augmented Lagrangian for inequality
constraints is differentiable only once even if the objective and constraint functions possess
higher differentiability. Itis also possible to extend the modified barrier function method to
handle equality constraints by replacing each equality by two inequalities. This approach
not only increases the number of constraints but also, more importantly, introduces an
ill-conditioned barrier for the equalities; hence it is not recommended.

The main contribution of this paper is the demonstration that the MBAL method has a
rate of convergence that is up@superlinear like the augmented Lagrangian and modified
barrier function methods, using proof techniques similar to those used in [3] and [12]. The
MBAL method converges globaly in the dual space. It converges globaly in the primal space
if global unconstrained optimization is performed on every iteration. Another contribution
is the development of some duality results based on the MBAL function.

Our paper is organized as follows. In the next section the general nonlinear programming
problem and the basic assumptions under which our convergence results hold are stated.
The MBAL function, on which our method is based, is introduced in Section 3. We describe
the MBAL method in Section 4 and present convergence and rate of convergence results
for it and discuss some aspects concerning the practical implementation of the method in
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Section 5. Proofs of the main results presented in Section 5 are given in Section 6. Duality
results based on the MBAL function are discussed in Section 7. An appendix containing
two technical lemmas concludes the paper.

2. Problem statement and basic assumptions

In this paper we consider the following general nonlinear programming problem:

minimize fy(X)
st. fix)=0 i=1,...,p, Q)
gix)=0 j=1,...,q,
wherex € R", and we assume thdb, fq, ..., fp andgy, ..., gq are C2 functions from

R" - R.
The classical Lagrangian for this problem is:

L(x,u,v) = fo(x) —u' f(x) — v g(x),

whereu € Rﬁ, veRYandf(x) = (fu(x), ..., fp(x)) andg(x) = (gi(X), ..., gq(X)) are
column vectorsRY denotes the nonnegative orthan®Jf, andRY, its interior.

Let x* be a strict local minimum of problem (1) and ={i : fi(x*) =0} ={1,...,r}
be the set of indices of the inequality constraints that are active at that point. Throughout
this paper we assume that the standard second-order sufficient conditions for an isolated
local minimum hold ak*, namely:

e C1. The gradient¥ fi(x*), i=1,...,r andVvg;(x*), j=1,...,qarelinearly inde-
pendent hence, there exists a unique Lagrange multiplier veotos (u*, v*) e RY x
RY such that:

p q
Vi LOX, U, v*) = Vio(x") = > urv fi(x*) = Y " vivgj(x*) = 0. 2)
i—1 =1

e C2. The Hessian of the Lagrangiarnix, u, v) with respect tox at (x*, u*, v*),
P q
VZLX Ut v%) = V2 o(x*) = Y ui Vi (x*) = ) viv2g;(x"),
i=1 j=1
is positive definiteon the affine subspace tangent to the feasible set ate.,
y' V2 L(X*, u*, vy > 0, ®)
forally e Y ¢ R", where

Y={y:yIVix)=0,i=1...,r, y'VgxH=0j=1...,q).
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e C3. Strong complementary slacknessholds for the inequality constraints; i.e.
u'fix)=0i=21...,p (4)
u'>0,i=1....r; ix)>0,i=r+1...,p. (5)

3. The modified barrier-augmented Lagrangian function

We define the modified barrier—augmented Lagrangian funétion u, v, k): R" x Rfﬂ X
RY x R., — R by the formula:

p
fox) —k™> i In(kfi (x) + 1)

i=1

F(x,u,v, k) = d d . .
( v,k —Zv,-gj(x)+k/ZZgJ-2(x), if X € intQy
=1 =1
00, if X & intQy,
whereQy = {x: fi(x) > —k™1,i=1,..., p}. F(X, u, v, K) contains modified barrier terms

for the inequality constraints in (1) and augmented Lagrangian terms for the equality con-
straints in (1). If the complementary slackness condition (4) holds at the pdint*, v*),
then for anyk > O:

(P1)  Fx*,u", v, k) = fo(x"),
(P2) Vi F(X*, u*, v*, k)

*

p u q
= V fo(x*) — ; Koo 17 100 - ;(v; — kgj (X*) Vg(x*)

P q
= Vfo(x*) = D UV i(x*) = Y vivgj(x") =0,
i=1 =1

]
(P3)  VZF(xX*,u*,v*, k)

= V2 L(x*, u*, v*) + KV f T (x*)U*V f (x*) + kVg' (x*)Vg(x").

HereV f (x) andVg(x) are the Jacobian matrices of the vector functibrendg respec-

tively, andU* is a diagonal matrix with diagonal entrigs, i =1,..., p.
In contrast with the classical barrier-penalty function, the MBAL function is defined
at x* and has the same order of smoothness as the funcfigrs i = 1,..., p, and

g;(x), j =1,...,qinaneighborhood ofx*, u*, v*). Moreover, from property P3, and
Lemma A.1 in the Appendix, we have

Theorem 3.1. Suppose that the second-order optimality conditi®is-C3hold at x*.
Then there exists ak> 0 such that for every k> kg, the matrifoXF(x*, u*, v*, k) is
positive definitei.e., F(x, u*, v*, k) is strongly convex at*
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4. The modified barrier-augmented Lagrangian method

If the second-order sufficient conditions C1-C3 hold at a solutibto problem (1), it
follows from properties P1-P3 and Theorem 3.1 that to solve problem (1)—i.e., to find a
global minimizex*—one need only find the unconstrained minimum of the smooth strongly
convex functiorF (x, u*, v*, k) in a neighborhood aof*, for k > 0, fixed but large enough.

We shall show that, if the vector of Lagrange multipliers= (u, v) € R}, x RYis
close enough taw* = (u*, v*),

X = X(u, v, k) = argminfF(x, u, v, k) | x € R"}

is a good approximation te*. It turns out that the minimizet can be used to improve the
approximationw = (u, v) to the optimal Lagrange multiplieis* = (u*, v*) provided that
the fixed penalty-barrier parametes O is sufficiently large. Consequently, by alternatively
minimizing F (X, u, v, k) and updating the Lagrange multipli€ts v), we are able to solve
problem (1) starting fronanyinitial point (x, w), X € int Qg andw = (u, v) € RL x RY,
for a choice of the penalty-barrier parameitéhat is large enough; i.e., we have a globally
convergent method.

Let us consider this in more detail. Assuming that the unconstrained minitkizer
X(u, v, K) exists, we have

VxF (X, u, v, k)

p
i=1

Uj o q - » o
mv fi (%) — ;(v] - kg] (X)Vg;x) =0. (6)

After defining new Lagrange multipliers by the formulas

- Ui i
RTTIES L .
0 =vj —kg®). I=1...q, ®

we can rewrite (6) as
P q
ViF (R, 0, 9, K) = V fo(R) — Zaini X) — Zﬁngj(ﬁ)
i—1 =1

= V,L(X, 0, 9) = 0. (9)

Therefore, the unconstrained minimizerwf F(x, u, v, k) is a stationary point of the
classical Lagrangiah(x, 0, v). In the convex cask is the minimizer of this Lagrangian.
Letw(u, v,k) = (4, v) = w. First,w(w*, k) = w* for any fixedk > 0; i.e.,w* is a

fixed point of the mappingg — w(w, k). Second, it will be shown later that

% — w*|| < Ck~Hw — w|| (10)
and

IR — x*|| < Ck Hlw — w*|, (11)
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whereC > 0is independent & > 0. Here and throughout the paper the ndrthdenotes
thel-norm||-||«. In other words, by finding an unconstrained minimizer for the MBAL
function F (X, w, k) in x and updating the Lagrange multipliers we can shrink the distance
between(x, w) and (x*, w*) by a factor that can be made arbitrarily small by increasing
the barrier-penalty parameter> 0.

The above reasoning gives rise to what we call the MBAL method, whtiséeration is:

Given a penalty parameterk> 0 and estimategx®, us, v®) of (x*, u*, v*), where
us e RY,, v® e RYand ¥ € intQ, compute

x5t = argmin(F (x, %, v, k%) : x € R"}, (12)

USH = u i=1 (13)
b kRt + 17 =4 b

v =0t — kg (x*th, j=1.....q. (14)

J

Inthe next section we prove that the MBAL method with a fixed barrier-penalty parameter
ks converges linearly whenever the second-order optimality conditions are fulfilled and
k® > 0 is large enough. Although this result holds for fidédand ill-conditioning of the
Hessianv2, F (x, w, k®) is less of a problem a&® — x* in this case, it is useful in practice
to increase th&® from step to step to obtain superlinear convergence. However, one has to
be careful to make sure that the current primal minimiet lies in Q,s+1. One way to get
around this difficulty is to replace the logarithmic barrier term by a quadratic barrier when
the argument of the barrier term is smaller than some given value (e.g., see [2]). Atruncated
modified barrier method incorporating this approach has been used successfully to solve
large-scale truss-topology design problems (see [1] and [2]) and encouraging numerical
results have been reported recently by Breitfeld and Shanno [4] and by Nash et al. [11]
for different versions of this method. Alternative ways of controlling the increak&amd
obtaining a good rate of convergence for shifted barriers are described in [5].

We now introduce some notation, thatis used in the rest of the paperaheb be vectors
in RP. Thena™ b denotes the usual scalar produadb.denotes the vector with components
a;b;, a/b or ab—! denotes the vector with componeatgh; and In(a) denotes the vector
with components Itg;). That is, we denote the componentwise operations on vectors as if
the vectors are scalars. We also aggandap_r) to denote the vectors that consist of the
firstr and the lasp — r components, respectively, of the vecépande to denote a vector
of ones of appropriate dimension.

5. Convergence results

In the proof of our main theorems we ne%%*” to be small, and hence we require the
neighborhood ofv* = (u*, v*) to depend ork. Therefore, for a gived > 0 andky > 0,
we define the following set

D", 8, ko) = {(w, k) = (U, v, K) : lw —w*| <K, Ug) > 0, Up-r) =0, k= ko},

which is a truncated cone. We can now state our main results.
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Theorem 5.1. Suppose that conditiort31—-C3hold at a strict local minimum %of prob-
lem (1). Then there existk> 0 andé > O such that for any triplgu, v, k) = (w, k) €
D (w*, é, ko, ), with Jw| bounded the following statements are true

e F(x,u, v, k) has a uniqgue minimizet = X(u, v, k) with respect to x within some open
ball centered at X; i.e.,

ViF(X,u,v,k) =0

and F(x, u, v, k) is strongly convex in a heighborhood sof

e For the triple (%, 0, 9) : 0 = u(kf(X) + DL, o = v — kg(X) the following estimates
hold

& * c *
1% =X = - llw —w,
(15)

. C
1 —wll < llw —w,

wherew = (0, 0) and C > O is independent of k.

To prove the global convergence of the MBAL method we require the following addi-
tional assumption:

Al. There exists &, > 0 such that, for all fixedi > 0 andv and all finite«, the level sets
Lo(u, v, ko) = {x € R" | F(X, U, v, ko) < a}
are bounded.

Theorem 5.2. Suppose that conditionf81-C3hold at a (global) solution x* to prob-
lem (1) and assumptio®\1 holds. Then there is agk> 0 large enough so that for any
triple (u,v,k) € D(w*, o, kg) the vectork in Theoremb.1 is the global minimizer of
F(x, u, v, k).

Proofs of the above results are given in the next section. First, however, we discuss
Assumption Al and show that it is not unduly restrictive and consider some of the important
consequences and extensions of these results.

It is easy to verify that Assumption Al is satisfied in the following cases given that

fo, f1, ..., fpandgy, ..., gq areC? functions fromR" to R.
(i) Problem (1) is a convex programming problem (i.e(x) and—fj(x),i = 1,..., p,
are convex functions arg}, j = 1, ..., g, are linear functions) whose set of optimal

solutions is bounded.
(i) There exists &g such that the se®,, is compact.
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(iii) There exists &g > 0 andr > 0 such that
max{ lrgz?’(){ fi(x)|x e Qko}} <t
and fo(x) is bounded below o, .

The above cases demonstrate that Assumption Al is likely to be satisfied by most non-
linear programming problems that arise in practice. It also follows from this assump-
tion that, for allk > ko and any fixedu € R? andv € R9 and all finite, the level sets
L, (u, v, k) are bounded. To prove this we note that it follows from the mean value formula
In(1+1t) =t/(1+ t), wherer is some scalar between 0 ahdhat In(1+t) > t/(1+1)
forallt > —1. Hence

d 1P
a(F(x, u,v, k) = ﬁ i;ui[ln(kﬁ ) + 1) — kfi (x)/ (ki (x) + D]
+}Xq:g-2(x)>0
2647 7

which implies that for allk > ko, F(X,u,v,k) > F(x,u, v, kg) and L,(u, v,k) C
Lo (U, v, ko).

Theorems 5.1 and 5.2 have several important consequences which we now discuss.

The MBAL method reduces the solution of problem (1) to a sequence of unconstrained
minimization problems. Moreover, even though problem (1) is nonconvex, Theorem 5.1
shows that these unconstrained minimization problems are smooth and the MBAL function
is strongly convexin a neighborhood of each unconstrained minimizer as long as the standard
second-order optimality conditions are satisfied and the finite barrier-penalty par&kmeter
is chosen large enough.

A strong point of the MBAL method as stated by (12)—(14) is that it determines a global
minimizerx* of problem (1). However, this requires finding the unconstrained global mini-
mizer of the MBAL function on each iteration, which is a weakness because this function is
not, in general, convex. After the firstiteration, this global minimization is not that difficult
if a large enough barrier-penalty parameter is chosen, since by Theorexd, 5tk global
minimizer found on the last iteration, is then closetaand hence, taS*1, and the MBAL
function is strongly convex in a neighborhoodxsf2.

Itis easy to see from Theorems 5.1 and 5.2 that if the MBAL method stau8,at®, k°)

e D(w*, 8, ko), then all iterategu®, v5, k%) € D(w*, 8, kg) andw® remains bounded as
long asks is chosen so tha®/k® < 1. Thus, one has complete freedom in choosing the
initial estimatesu® RL andv® € RY of the optimal Lagrange multipliens* andv*;

i.e., the MBAL method is globally convergent, assuming that the solution to problem (1)
is unique. However, if the initial estimateig andvg are far fromu* andv*, one must pay

the price of using suitably large barrier-penalty parameters

If the parameterk® remain finite, it follows from Theorems 5.1 and 5.2 that the MBAL
method converges at least Q-linearly. A superlinear rate of convergence for the MBAL
method is achieved if the sequence of barrier-penalty paramig@rss chosen so that
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lims_, o k¥ = co. The price paid for this, however, is that the subproblems that need to be
solved become increasingly ill-conditioned as in the classical penalty-barrier method.

Instead of a single barrier-penalty paramdteone can choose a barrier parameter for
each inequality constraint and a penalty parameter for each equality constraint, i.e., instead
of the MBAL function, one can consider the function

p
F(x.u, v, K) = fo() — >k MuiIn(k fi(x) + 1) —
i=1 j

2 2 Kj 2
vigi () + ) 5 gf(x),
j=1 j=1

whereK = (ki, ..., Kp, 1, ..., kg). All basic results of Theorems 3.1, 5.1 and 5.2 remain
valid as long as mifk;, x;} = k > kg andkg is large enough.
We note that simple bound constraints on the varialaes; x; < bj,i = 1,...,nare

handled by the MBAL method just like any other inequality constraints, in contrast with
approaches like the one proposed in [5] that treat them in a special manner. Interestingly,
such constraints have the effect of adding positive diagonal terms

d; = K[ uf” (kg — xp) + D72+ uP ko — ) + D]

to the Hessian of the MBAL function increasing its positive definiteness, wiiérand
u(jz) are the positive Lagrange multipliers corresponding tojthaipper and lower bounds,
respectively.

Suppose thatin each iteration of the MBAL method (12)—(14) the global minimization of
the MBAL function is replaced by a local minimization. It then follows from Theorem 5.1
that such a local version of the MBAL method will be convergent to a strict local minimum
x* of problem (1), provided that the local minimizets* of F (x, us, v, k%) computed by
the method are those local minimizersredx, us, vs, k®) that are closest tw*. Fortunately,
this will usually happen if the unconstrained minimization routine that is used to compute
x$*1is a descent method that is started from the previous local minimizéfon the other
hand, the local minimizers>*! are not in the neighborhood of the same local minimiZer
after some iteration, then our convergence analysis does not apply. Similar remarks apply
to “global” MBAL method if problem (1) has multiple solutions.

The MBAL method (12)—(14) involves finding the global unconstrained minintasfr
the MBAL function on each iteration. As this requires an infinite number of operations in
general, the “pure” MBAL method is not practical. Rather, only an approximatimnthe
exact minimizerk can be computed in practice. Analogous remarks apply to the “local”
version of the MBAL method wherg is a local unconstrained minimizer of the MBAL
function andX is an approximation t&. If X is required to satisfy, for some > 0, the
inequality

IVeF (X, U, v, K[| < vk KF ) + D7 —ull + v Ilg®ll, (16)
then an analog of Theorem 5.1 withreplaced byk, w by w (computed using) andC

by C(1+ y) can be proved. In particular, using arguments similar to those used to prove
Theorem 5in [12] and Lemma 2 in [13], the following assertion can be proved.
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Assertion 5.3. If the assumptions of Theorehl are satisfied then there exists &n
within some open ball computed &t that satisfie¢16) and

- Cl+vy)

[X — x|l < Tllw—w*ll,
_ . Ca+y) ¥
[ —w*|| < Tllw—w (B

6. Proof of Theorems 5.1 and 5.2

Before we prove the Theorem 5.1 let us consider the main ideas behind our proof. One can
rewrite (6)—(8) as the following system of equationsfoti, andv:

r q
Vo(R) — D GV R = Y 9;Vg;(R) — h(R, Ugp—r). k) =0, (17)
i=1 j=1

where
O = u(kf, (%) +&) 7", (18)
U= v —kg(X), (19)

and
P
h(R, Up-n. K) = Y uikhR) + DV HR). (20)
i=r+1

Itis easy to see tha&t = x*, U¢) = U, andd = v* satisfy this system for arly > 0 and

Uep—ry = Ui,_r)- Moreover, forkg large enough we shall show that for any triple v, k) =
(w,k) € D(w*, 8, ko) one can obtain the solutioh = X(u, v, k), Gy, = G¢y(u, v, K)
andv = 9(u, v, k) to the system (17)—(19). Taking into account the smoothness of this
solution as a function afw, k) = (u, v, k), we can compute its Jacobian and prove under the
second-order optimality conditions C1-C3 that, for any fiked ko, there existC > 0,
independent ok, such that

max{ || Vi, X (w, K) I, || Vi gy (w, K) |

Vi, K} < C, (21)

forany(w, k) € D(w*, 8, kg). Sincex* = X(w*, k), ug, = Oy (w*, K) andv* = 0(w*, k),
we can then boun@g — x*||, |0¢) — Ul and||v — v*|| in terms of|lw — w*|. We then
show thatF (X, u, v, k) is strongly convex af.

Proof of Theorem 5.1:  First we have to prove thdt (x, u, v, k) has a local minimizer

X whenever(w, k) € D(w*, 8, ko). For convenience let us shift the neighborhooduvdf

to an appropriate neighborhood of the origin in the dual space by introducing the vector
t = (Y, t¥) = (w — wHk™ L, where

tY=u—-uHk?t and t'=(@w—vHkL (22)
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Then in terms of, the vector of updated Lagrange multipliers corresponding to the active

constraintgi) = (ktf) + uf)) (ke (R) + e) L. Therefore,k—l(kt(‘;) + uf ) (ko (%) +

&)1 — k104, = 0. Keeping in mind thatf, , = 0, the updated Lagrange multipliers
corresponding to the passive constraints

A -1
u(P—f)(X’ t(up—r)’ k) = kt(up—r)(kf(P—f)(X) + e(P—f)) : (23)

Let us also define
p p
h(x. tf_;). k) = Z 0 (x, ', K)V fi (x) = k Z tY(kf, (x) + 1)1V £ (x).

i=r+1 i=r+1

It is clear that the vector-functiom(x, t(“p_r), k) is smooth up to second-order and

h(x*, 0, k) = 0, Veh(x*, 0, k) = O"x1,
Vo, h(x*,0,k) = 0™, V;h(x*, 0, k) = 0"<9.

Fork > 0, consider the mappin@ (x, O, 9, t) : RM+P+20 . Rn+r+a;

\% fo(X) -V f(r)(X)TO(r) — Vg(X)Tﬁ - h(X, t(up_r), k)
Dy (X, Oy, 0. 1) = | k2(ktd, + uz,)) (ke (0 + &) 7 — k)
k~Y(kt" +v*) — g(x) — k1D
corresponding to the system of Egs. (17)—(19). We now showdth@}j satisfies the con-
ditions of the implicit function theorem and apply that theorem to obtain estimates of the
proximity of (X, 0, ) to (x*, u*, v*).
From condition C1 and the formulas for the Lagrange multiplier updates,

Dy (X, Ufpy, v*,0) = 0.

The Jacobian ofby(x, O, 0, t) with respect to(x, O, D), at (X, U, 0, t) = (X*, UGy
v*, 0),

Voy = V(x,g(r),ﬁ)((bk(x*, U?r), V¥, 0))
ViL (¢, s, 0% =V fI(x*) = Vkg' (x%)
= | —Ug Vi fi (x) k" 0> ; (24)
—Vxg(x*) (s —k=tpd
whereU;, = diag(uy)]_;.

Fork = oo this matrix is nonsingular. This can be proved by trivially extending Lemma
1.27 in [3]. Thus, fork large enougtV @y is nonsingular and there exists a scalas 0



66 GOLDFARB ET AL.

independent ok > kg such thaI1|Vd>k‘l|| < p. Consequently, it follows from the second
implicit function theorem ([3], p. 12) applied to the systdm(x, U, v, t) = O that there
exist smooth vector-functiong't), 0 (t) andd(t) such thai(0) = x*, 0¢)(0) = Ut and
v(0) = v*, and in the neighborhoo8(s) = {(t) : ||t|| < 8} andk > ko),

Dy (X (1), Ay (1), D(t), t) = 0. (25)

Therefore, forx(-) = x(t) we obtain from the firsh equations of (25)

P q
VeF(X()), 0,9, K) = Vo(x()) = Y GOV Fix() = > 5;()Vgj (X()) = 0;
i=1 j=1
(26)

i.e., X(-) is a stationary point of the MBAL function. Before we show th&{) is a strict
local minimum of this function, we first prove the validity the estimates (15).

Let Opr)(t, K) = Op_r (X(t, k), t(“pfr), k) ande = min{ fi(x*) :r +1 <i < p}. Since
ast — 0, x(t) —» x*, fix@®) —» fi(x*) >a > 0,i =r +1,...,p, it follows that
fi(x(t)) > a/2fori =r +1,..., pand anyt € S(§) for § > 0 small enough. Hence,
from (23) and the definition df,_), we have

Up—r) — U{pr)

lj'(pfr)(') =< ket/2

. .
or, sinceu¢,_, =0,

1060 () = Ufp [ = 0oy O] < 207k ugpr) — Ufppy |- (27)

From the implicit function theorem we havetat 0

Vi(X(®), Gy (1), D)) |,y = = VO Vi D (X*, Ul v*, )| -

Hence, fott close enough to O it follows from the bound Gid (see (24) and the discussion
below (24)), that

[(x(®), Q) ), 1)) — (x*, u*, v*) | <1/p] Du(X*, Uf;y, v*, t) — Pu(X*, Uf;), v*, 0) |
(28)

This estimate can also be derived from an extension of the implicit function theorem given
in [7].
From the definition ofby

[@K(X*, UF, v*, 1) — DX, U™, 0%, )| < [[h(X*, tpory, K) | + L4+ 1711 (29)
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where

p
Y kG0 + DTV Fi(x)

i=r+1

P Y
S U oW gt

i=r+1 ak

(¢t W] = k

S '
for some constart;.
Recalling the definition (22) dt andt” and combining (27)—(31) we conclude that, for
k large enough, there exists a const@ntndependent ok such that

C
< e — | (30)

. * . C
1% = X1 = I%Gw, k) =X < 2w —w],
c (31)
b —w*ll = llbw, k) —wll < llw —wl,

From (26) it follows thak is a stationary point oF (x, u, v, k). To show thatitis a local
minimum we now prove thdE (X, u, v, K) is strongly convex in a neighborhood f

P
VEF®R U0, k) = VHoR) = Y GV HiR) +kVFR)TUD VR
i=1

q
— " 9;V2g; (%) + kvg; (0T Vg; (%)
j=1
= V2L, 0,0) +kviRTUDIVE(R) +kVgR)TVg(R),
whereU = diag[ui (kfi (%) + 1711}, D = diag[(kfi (%) + 1)]}. Consider théth diagonal
element olU D%, where 1< i <r. For all (w, k) € D(w*, 8, ko), ko > O large enough,
ands > 0 small enough, it follows from the Lipschitz property of & function f; (x), in

any bounded neighborhood »f, from the fact thatf; (x*) = 0 and from (31) that
kfi () < k(fi(®) — fi(x*) < kM IR = x*|| = MiCllw — w™|,

where M; is a Lipschitz constant foff; (x). Sincew is in a compact sekf;(X) + 1 is
bounded independent kf hence, for sufficiently largk > 0 and sufficiently smali > 0,
it follows from (31) and the fact that® > 0 that; (kf (%) + 1)~* > w; > 0, wherey; is
independent ok. Also from (31) we have

V2 L(X,0,0) = V2 L(x*, u*,v*), VIR ZVFi(x*), and VgR) = Vgx®).
Therefore,

V2 F(X, u,v,k)
= V2 L(x*, u*, v*) + kV F(x)TUD IV (x*) + kvg(x*)Vg(x")T,
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and it then follows from optimality condition C2 and a lemma of Debreu [6; p. 296] (see
also Lemma 3 in [9]), that there exists > 0 large enough, such that for &l > ko,
VfXF(f(, u, v, k) is positive definite; i.e.F (X, u, v, k) is strongly convex ag, for X in a
neighborhood ok*. Hencex is a local minimum ofF (x, u, v, k). O

Proof of Theorem 5.2: Since from Theorem 5.X is the minimizer ofF (x, u, v, k) ina
neighborhood ok* andg(x*) = 0, f(x*) > 0 andu > 0,

F(),z! u’ v? k) S F(X*7 u? v’ k)
k
= fox") = k7T In(kf (x) + &) — v g(x") + S9N = fo(x"). (32)
Now suppose that there exists a vectaz R" and a numbek > 0 such that
F(X,u,v,k) < F(&, U, v,k) — A.

Then from (32) and the definition &f(x, u, v, k), X € Q, and we obtain

p
F(X,u,0, K = fo(0) —k™ Ui In(kfi (%) + 1) — v g(x) + gng(fon%
i=1

< fo(x*) — A.
Hence
- _ - o ko x
fo®) < fox) +k* 3 uiInkfi(®) +1) +07g(x) — S 193 A
i:fi(x)>0
fox) +kt Y uIn(kfi(®) +1) A 1”«/&902) v |
= To i i — A=z =
ifi(X)>0 2 \/R 2
1
+ Il (33)
From the boundedness vwfandv (recall thatw is bounded), Assumption Al (recall that
the level set ¢,x+ (U, v, K) € L ¢, (U, v, ko)) and the continuity offi, i =1,..., p, we
have that
k™ Y uinkfi(x) +1) = Ok tInk)
i:fi(%)>0
and

1 B
Envu% Ok™).

Hence from (33)

13
\/E 2
< fo(x*) — i + Ok tInk) + O(k™). (34)

fo(X) < fo(x*) — i + Ok tInk) + Ok — %uﬁg(i) -
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Therefore fok > 0 large enough

A
fo(X) < fo(x™) — > (35)

We show now that for largk > 0, X has to be “close” to the feasible region of problem
(2). Indeed, from the first inequality in (34) and Assumption A1 we have that

2
< fo(x*) — fo+ O™ + Ok tInk),
2

1 ~ v
> H\/EQ(X) — W

where fo = inf{ fo(X) | X € L t,x+ (U, v, ko)} > —o0. Hence||vKkg(X) —
from above, which implies that

NG I3 is bounded

lg®)3 < Ok™).

Let Qe = {x: fix) > -k Li=1..p, |gX] = Ok2),j=1,...,q}. Then
X € Q by the above reasoning and the fact that/, > || - || Hence

fo(X) = min{ fo(X) : X € Q).

By the nondegeneracy assumptions C2—C3 and Theorem 6 of [[8], p. 34], which quantifies
how a local minimum of problem (1) and its objective value change when that problem is
slightly perturbed, and recalling that is a global minimum of problem (1) we obtain

r q
fo(X) > fo(x*) =k > uf —k72 Y vt
j=1

i=1

Therefore, folk > kg andkg > 0 large enough we have

A
fo(X) > fo(x*) — k

which contradicts (35). This completes the proof of the theorem. O

7. Dual problems

While the classical Lagrangian is of great importance in constrained optimization, it has
well known drawbacks. First, its unconstrained minimum may fail to exist even for optimal
Lagrange multipliers and even when the second-order optimality conditions are fulfilled.
Second, the dual function that is based on it is, in general, not smooth even if the functions
from which it is formed are smooth.

We show in this section that these basic drawbacks are eliminated by using the MBAL
function. Moreover, the dual problem based on this function has some important properties
that the dual problem based on the classical Lagrangian lacks. The results below are gene-
ralization of results by Rockafellar in [16] for problems with both equality and inequality
constraints.
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The dual function and the dual problem based on the classical Lagrangian for problem
(1) are, respectively,

Y(w) = YU, v) = inFl‘n L(x,u,v) (36)
and
w* = (u*, v*) = argmaxy (u, v) |u € RY, v e RY}. (37)

Consider now the dual function and the dual problem corresponding to the MBAL func-
tion F(x, u, v, k):

dk(w) = (U, v) = in}%c F(x, u, v, k) (38)
xeR"
and
w* = argmaxex(w) |w € RY x RY}. (39)
Both dual functions) (w) and¢x(w) are concave and both dual problems (37) and (39)
are convex programming problems. However strong duality only holds in general for the
“augmented” dual problem (39). Before proving this we first state and prove a result about

the continuous differentiability oy (w).

Lemma 7.1. If AssumptiorAl holds then there exists agk> 0 and§ > 0 such that
ok (w) is twice continuously differentiable in @*, §, ko).

Proof: Clearly,¢x(w) isconcave forevery > 0. If w € D(w*, 8, ko) thenby Theorems 5.1
and 5.2 F (x, u, v, k) has a unique minimizer = X(w, k) and is strongly convexin a neigh-
borhood ofk. Thereforegy(w) = mingcgrn F (X, w, K) = F(X(w, K), w, K) is smooth and
Vudk(w) = V, X()VxF (X, w, k) + V,F(X, w, K). Moreover, fork > kg

R(w*, k) = x*.
SinceVy F (X, w, k) = 0 atx = X(w, K) it follows that

Vi) = V,, F (&, w, k) = —[k 1k RE) + DT, g&RE]T
and

V2,0() = VuX()VE,F (). (40)

By differentiatingVy F (X, w, k) = 0, with respect tav we obtain

V,X() = =V2,FRE), w, K) - (VEF&E), w, k)
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which when substituted into (40) yields

V2,0() = =2, FO)(VEFRE), w. k) V2, F(). (41)
Note thatv2, F(-)~1 exists becausE (x, w, k) is strongly convex in a neighborhood %f
Finally,

V2 F()=V2,FO)T = —[VI&O)TD, Vg&RH)T]. (42)
O

It is well known that for nonconvex optimization the basic duality theorem of convex
programming is not true. However, for the dual problem based on the MBAL function, if
the second-order sufficient conditions hold, then the basic duality theorem remains true
and the second-order sufficient conditions are satisfied for the dual problem. The following
theorem, which is an analog of Theorem 4 in [12], is a statement of these facts.

Theorem 7.2. Under the second-order sufficient conditidb$—C3and AssumptiorAl,
there exists k> 0, such that for any k> kg the following statements are true
(i) The existence of a solutior xo the primal problem(1) guarantees that the dual
problem(39) has a solutionw* = (u*, v*) and that

fo(X™) = ¢ (U™, v™).

(i) The second-order sufficient conditions are satisfied for the dual prot3&m
(i) (x*, w*) = (x*, u*, v*) is a solution to the primal and dual probleni¥) and (39) if
and only if itis a saddle point of &, w, k); i.e.,

F(x, w* k) > F(x*, w*, k) > F(x*,w,k), ¥xeR", weR} xR%
Proof:  Our proof of parts (i) and (ii) are similar to the proof of Theorem 3 in [12].

(i) Dueto C1 there exists@a* = (u*, v*) € Rﬁ x RY such that the Karush-Kuhn-Tucker
conditions hold. Let us prove that* is the solution of the dual problem (39). First,
note that (39) is a convex programming problem since dual fungijom) is concave.
Also ¢k (w) is smooth and

Vw¢k(w*)
r q

__r—M 1 " 1 " ———
= [0, ..., 0.k In(kf, 2 (x*) + 1), ... K~ In(kfp(x*) + 1), 0, ... 0],

or
u'>0= d,¢(w*) =0, i=1...r,

uf =0=d,¢w") <0, i=r+1...p
dy,pk(w) =0, j=1,....q.
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In other words, the optimality conditions for the convex program (39) are satisfied at
w = w* = (U¥, v*), thereforepy (w*) = max{gx(w) |w € RY x RY}, and

o(w™) = infy F(X, w*, k) = F(X*, w*, k) = fo(x¥).

(i) Consider the classical Lagrangian

p
Lw, 1K) = d(w) = Y Al

i=1
for the dual problem (39). Then
V2, L(w, A K) = VI ¢(w) (43)

and the affine subspace tangent to the set of feasible dual solutiaris=at(u*, v*)

isY ={yeR}xRI:(Yrj1=VYs2=...=Yp = 0)}. Using condition C1 and
formulas (41), (42) and (43) and by employing considerations similar to those, which
has been used to prove Theorem 3 in [12] one can show th&tfoky andkg large
enough,

yTV2 Lw* 2* Ky <0, VyeV.

The gradients =(0,...,0,1,0,...,0),i=r + 1, ..., p of the active constraints

for the dual problem are linearly independent and corresponding Lagrange multipliers
A= ktInkkfi(x*)+1) >0, i =r +1,..., p. Consequently, this proves that the
second-order sufficient conditions are satisfied for the dual problem (39).

(iii) Suppose thatx*, w*) is a solution to the primal-dual pair of problems (1) and (39).
Then from Theorem 5.2 it immediately follows that

F(x, w*, k) > F(x*, w*, k) V¥xeR"

Nowgi(x*) =0,i =1,...,q,and Inkfi(x*) +1) =0,i =1,...,r. Therefore,
replacingv* by anyv € R9 anduf,, by anyu., € R, does not changg (x*, w*, k).
Also, since Itk fi(x*) +1) > 0, i =r + 1,..., p, F(X*, w*, k) does not increase if
uf,_,, = Oiis replaced by anyi, 1) € RY™". Thus we have that

F(x*, w*, k) > F(x*, w,k) Vw e R? x RY,

which concludes our proof that the primal-dual solutian, w*) is a saddle point of

F(x, w, k).
Now suppose&x*, w*) is a saddle point of (x, w, k) and f; (x*) < 0 for somei.
Letd = (Ui, ..., U 4, U’ + €, u;"H,...,u’;), for somee > 0, andv = v*. Then

clearly, F(x*, w*, k) < F(x*, w, k), which contradicts our assumption that, w*)
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is a saddle point. Assume now that for some; (x*) # 0. Letd = u* andv = v*
except that; = v + € if gi(x*) > 0andy; = v — € if g (x*) < 0. Then again
Fx*, w*, k) < F(x*, w, k), and we have a contradiction. Hence, we conclude that
x* is feasible for the primal problem.

Assume that for somig fj (x*) > 0 andu > 0, and letl = (uj, ..., Uf_;, U — €,
Ui, ..., Up), foruf > e > 0, andv = v*. AgainF(x*, w*, k) < F(x*, w, k), which
contradicts our assumption that', w*) is a saddle pointu* fi (x*) =0, i =1,..., p

and it follows from the dual feasibility ofv* that for anyx feasible for the primal
problem,

fo(X)

v

p q q

fox) — k™ > urInk i) + 1) — Y " vigi () +k/2> " gi(x)
i=1 j=1 i=1

= F(, w*, k) > F(x*, w*, k) = fo(x*).

Hencex* solves the primal problem (1) and" solves the dual problem (39). O
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