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Introduction 

The real world is complex. When faced with a challenge, you can wade through a flood 

of options before arriving at the best outcome, if you arrive there at all. 

 

Over the last 70 years, mathematicians, together with engineers, doctors, and economists, 

learned how to transform real-life problems into mathematical equations. By solving the 

mathematical problem, one finds the best possible answer to the real-world dilemma. 

This process is called optimization. 

 

Over time, mathematicians have developed a number of tools for solving optimization 

problems. In this article, we will discuss one such tool, which happens to be suitable for 

solving a number of real-life nonlinear optimization problems (NLP) that were 

considered intractable just a few years ago. 

 



The approach is based on the Nonlinear Rescaling (NR) principle originally introduced 

by Roman Polyak more then a quarter century ago back in the former Soviet Union. The 

NR approach is now used worldwide and has been critical for a range of applications, 

from processing image data to aiding the design of rigid towers to solving classification 

problems arising in statistical learning theory. 

 

More recently, researchers began using nonlinear rescaling to tackle large-scale NLP 

facing doctors planning radiation therapy for their patients. For some patients, the method 

has meant the difference between recovery and suffering from a debilitating illness. A 

deeper look into the legacy of nonlinear rescaling reveals how we could never tackle 

some of the modern world’s most complex problems without the aid of mathematics.  

 

Optimization 

“Nothing happens in the world without a law of optimization having a hand in it,” said 

Leonard Euler a few centuries ago.  

Companies rise and fall on their ability to optimize profits. Industries rise and fall on their 

ability to optimize their production lines. Countries rise and fall on their ability to 

optimize their economy in time of peace, and their military operations in time of war. 

 

Despite its novel uses, optimization is not a novel concept. “People have been thinking 

about optimization since the ancient Greeks learned that a string with a given length 

encloses the most area when it is formed into the shape of a circle,” said Roman. 

 



Planning our budget, finding the shortest path to our friend for a party, or finding risk-

free investment with the best possible return—all these are everyday optimization 

problems. 

 

Linear Optimization 

For much of the last century, one of the most effective optimization techniques has been 

linear programming (LP). If a business, such as an automobile manufacturer, wants to 

streamline production of a new car, linear optimization can reveal how to manage 

constraints such as limited energy resources, materials and labor to maximize profit. 

 

Finding the cheapest way to deliver goods from a number of supply points with given 

supplies to a set of destinations with given demands is a typical linear programming 

problem .It has been considered by Leonid V. Kantorovich before World War II and 

independently by Tjalling C. Koopmans during the war. In 1975, they shared the Nobel 

Prize in Economic Sciences “for their contributions to the theory of optimum allocation 

of limited resources.” 

 

Every optimization problem has its objective function reflecting our target, and 

constraints reflecting the fact that our resources are limited. We have to find the best 

solution within available means. Shown on a graph, the LP problem would plot the 

constraints as intersecting straight lines and the solution lies in a vertex of the resulting 

polygon. 

 



In 1947, George Dantzig devised the Simplex method for solving LP. The method was 

one of 10 best algorithms in the 20th century. The Simplex method travels from one 

vertex to another, improving the objective function up to the point when there is no better 

vertex. 

 

For decades, this was, and still is, one of the best tools for handling LP problems. 

Practitioners solved thousands of real-life problems and saved billions of dollars. Only 

the late 80s simplex method got a strong competitor--the interior point methods (IPMs). 

While linear problems have a specific meaning to mathematicians, they can be better 

understood when one thinks about two traits that help define them: proportionality and 

additivity. 

 

With proportionality, both the objective function and constraints have a linear cause-and-

effect relationship with the outcome. For example, LP formulations assume that revenue 

is proportional to the fixed price of a product, independent of how much of it has been 

produced. It might contradict in some cases to the basic economic law of supply and 

demand. 

 

With additivity, the impact of any one factor adds to the impact of the others, regardless 

of how the various factors interact with each other. For example, let’s consider an auto 

company which produces several types of cars. 

 



In the LP formulation the total revenue of the company is the sum of the revenue of each 

type of cars independent of how many of them have been produced. Reality does not 

necessarily conform to the direct cause-and-effect environment of the linear world. 

While LP methods are fast and work well, when one solves  transportation, diet or 

assignment problem, most processes in real life cannot be modeled as an LP. In the real 

world, answers are riddled with complexity and do not satisfy the two fundamental LP 

assumptions: proportionality and additivity. Nonlinear factors play a critical role in 

yielding the best solutions of many real-world problems. 

 

Nonlinear Optimization 

Radiation Therapy Planning (RTP), truss topology design (TTD), finding an optimal 

portfolio, optimal distribution of electricity across a power grid, antenna design, medical 

diagnostics or drug discovery, just to mention a few, are all Nonlinear Programming 

(NLP) problems. 

 

The first two critical steps in NLP were made in the 17th century.  

First, Fermat (1601–1665) introduced the optimality criteria for unconstrained 

optimization, allowing us to distinguish the minimum or maximum of a nonlinear 

function.  

Second, Newton (1642–1727) devised a method for finding an extremum of nonlinear 

function or solving systems of nonlinear equations. Since then, the Newton method 

(1669) has been one of the most important tools in mathematics in general and in 

optimization in particular. 



It is sufficient to say that Newton method played the key role in recent developments in 

the Interior Point Methods, which were the mainstream in optimization over the last 20 

years.  

 

The Newton method starts in the neighborhood of the extremum. Each step requires 

solving a linear system of equations doubling the number of exact digits at the solution. 

In very few steps, the method produces an approximation with up to ten digits of 

accuracy. The main limitation, however, is the local nature of the method — it converges 

to the solution only from a starting point in a small neighborhood of the solution. 

 

The main NLP tool was and still is the Lagrangean, a function introduced by Lagrange in 

1797. The Lagrangean combines the objective function and the constraints with weights- 

Lagrange multipliers, which one can view as prices for constraint violation. At the 

solution Lagrangean balances the gains of the objective function with the losses related to 

the constraint violation. Therefore, having the optimal Lagrange multipliers (prices), 

sometimes one can solve an NLP by finding one unconstrained optimizer of the 

Lagrangean, which is much easier than solving the original NLP.  

 

One can view the classical Lagrangean as the bridge between constrained and 

unconstrained optimization. The bad news, however, is that the bridge, unfortunately, 

doesn’t always work, because the unconstrained Lagrange optimizer often doesn’t exist at 

all. We will see later how it can be fixed in the framework of the NR approach.  

 



Over the last 50 years, several methods for solving NLP have been introduced. The most 

important requirements to such a method are: numerical stability (the method shouldn’t 

fail), speed, and accuracy. The NR principle leads to such NLP methods, which met, to a 

large degree, all three requirements.  

In short, the NR principle consists of replacing the original problem by an equivalent one, 

i.e., a problem which has the same solution. The Lagrangean for the equivalent problem 

is the basic tool in the NR theory. 

 

The equivalent problem one obtains by nonlinear rescaling the objective function and/or 

the constraints. For rescaling, one uses a nonlinear scalar function of a scalar argument 

with particular properties. The NR method requires a positive scaling parameter, one for 

all constraints, or a vector of positive scaling parameters, one for each constraint.  

 

The NR method alternates finding an approximation for the unconstrained optimizer of 

the Lagrangean for the equivalent problem with updating Lagrange multipliers (prices). 

The NR process can be viewed as a pricing mechanism. If the unconstrained optimizer 

violates a particular constraint, it means that we overused the corresponding resource. 

This leads to the price increase for this resource. If the optimizer strongly satisfies a 

particular constraint, then the corresponding resource is only partially used at this stage of 

the game, and the price for this resource will be reduced. 

 

The NR methods offer explicit simple formulas for prices update. The rescaling 

drastically sharpens the price reaction to the constraint violation. It has strong impact on 



the computational process. In very few steps (price updates) one finds a good 

approximation for the optimal prices or optimal Lagrange multipliers.  

 

What remains is finding the unconstrained optimizer of the Lagrangean for the equivalent 

problem. We have to keep in mind two important points: First, the unconstrained 

optimizer of the Lagrangean for the equivalent problem always exists. Second, after very 

few updates, the current optimizer is always in the neighborhood of the next one and can 

be used as a starting point in the Newton method for finding the next optimizer. 

 

This makes the Newton method very efficient in the neighborhood of the solution. Each 

subsequent price update requires less Newton steps. At some point the NR method 

reaches the so-called “hot” start, when only one Newton step is required for the Lagrange 

multiplier update. Each update, in turn, often produces an extra digit of accuracy. It 

reduces substantially the number of Newton steps and allows finding approximations 

with very high accuracy. The main secret lies in the fact that NR method uses the 

Lagrangean for the rescaled problem. Such Lagrangean has several important advantages 

over the classical Lagrangean for the original problem.  

 

Over the last 15 years, the NR methods were tested on a number of real-life applications, 

as well as on special sets of problems designed to fail the NLP solvers. The NR methods 

proved to be numerically stable and, in many instances, produced solutions with 

unprecedented accuracy in very reasonable time. 

 



Let us concentrate on one important application: saving lives. 

 

Saving Lives 

Each year about 500,000 people receive radiation therapy treatment in the United States 

alone. The fundamental predicament of radiation therapy treatment is that it does not only 

affect ill but also healthy tissue. Therefore, for each individual patient, a treatment plan 

has to be established such that the radiation effects are sufficient to target the tumors 

while providing acceptably small radiation levels for neighboring healthy organs. 

The technique of using beams of radiation to kill cancer cells is known as Intensity 

Modulated Radiotherapy Treatment (IMRT). Mathematicians have realized that planning 

radiation therapy can be formulated as an NLP problem. 

German researchers Rembert Reemtsen of Brandenburg Technical University in Cottbus 

and Markus Alber of the University Hospital of Tübingen used the NR approach for 

solving the IMRT problem. In the case of IMRT, the correspondent nonlinear 

optimization problem maximizes radiation to the tumor under constraints that limit the 

exposure to healthy cells. The problem incorporates thousands of variables, such as beam 

angles and tungsten block positions, radiation intensity, and tens of thousands constraints, 

which are limiting the negative effect of radiation therapy on the healthy organs. The 

IMRT became a perfect candidate for using the NR approach due to its extreme stability 

and very high accuracy. 

 

Combining the NR methodology with their own ideas and other modifications appeared 

in the last decade, Alber and Reemtsen were able to generate solutions with accuracy 



unprecedented so far. Their findings were published in the June 2007 issue of 

Optimization Methods and Software. 

 

Tackling a model developed at Tübingen, the end result is an improved way to plan 

radiation therapy—one that has successfully treated real-world cases. Currently, the 

method is integrated into a full treatment system that is finding its way into various 

hospitals around the world. The treatments are helping doctors kill more tumor cells and 

fewer healthy ones in thousands of patients undergoing radiation therapy. 

 

Turning Theory into Practice 

One of the basic ideas in modern optimization is replacing a constrained optimization 

problem by a sequence of unconstrained optimization problems, which are much easier to 

solve. As we already saw using the classical Lagrangian, this does not always work.  

 

In the 1950s and 1960s, the so-called barrier functions were introduced. For constrained 

optimization, the barrier function infinitely grows when the approximation approaches 

the boundary. Therefore the minimizer of the barrier function practically always exists, 

and it is an interior point of the feasible set. By increasing the barrier parameter, the 

minimizer gets closer to the optimal solution. This was the main idea of barrier methods 

for many years. 

 

In the late 1960s, Fiacco and McCormick developed the corresponding theory called the 

Sequential Unconstrained Minimization Technique (SUMT), which became a classic in 



Applied Mathematics. The main problem with the barrier function is that when the 

approximation gets closer to the solution it becomes more and more difficult to find the 

unconstrained minimizer of the barrier function. In a sense, the barrier function separates 

the optimal solution from the interior feasible set by an “infinite” wall: the barrier. Due to 

the singularity of the barrier function at the solution, the Newton method loses its 

efficiency near the solution, exactly where one can expect the method to be most 

efficient. The calculations become unstable; therefore, it is difficult if not impossible to 

find solution with high accuracy, which is absolutely critical in case like IMRT. 

 

It was another 20 years before Yu.Nesterov and A. Nemirovsky discovered the 

remarkable Self-Concordance (SC) property of the log barrier function. The SC property 

became the foundation for the Interior Point Methods. Due to the SC properties, it 

became possible to improve substantially both the complexity bounds of the IPMs and 

their numerical efficiency. In spite of very impressive results, the SC theory has not 

removed the intrinsic difficulties associated with the singularity of the log barrier 

function at the solution and the need of unbounded increase of the barrier parameter to 

guarantee convergence.  

 

The irony: The main difficulties associated with both classical Lagrangians and classical 

barrier functions had been resolved by Roman Polyak years before the IPM era even 

started. Unfortunately, it would be ten years before the optimization community learned 

about his discovery. 

 



The first realization of the NR principle was the Modified Barrier Functions (MBFs) 

theory and methods developed by Polyak in the early 1980s. The MBF theory and 

methods eliminate not only the basic drawbacks of both the classical Lagrangean and the 

classical barrier functions, but it also combines the advantages of the two classical 

optimization tools. 

 

First, MBFs removes the “infinite wall,” allowing the approximation to be outside the 

feasible set. In this regard, MBF is an exterior point method.  

Second, along with the barrier parameter logarithmic MBF has an extra tool--the vector 

of Lagrange multipliers that characterize the prices for constraints violation. The extra 

tool eliminates the need of unbounded increase of the barrier parameter to guarantee 

convergence. At the same time, it allows improving the convergence rate and reducing 

the computational effort per step as compared to the classical barrier methods.  

Third and most important, it restores the efficiency of the Newton method near the 

solution. In fact, Newton MBF method is much more efficient in the neighborhood of the 

solution then far from it. This allows MBF method and its modifications to find solutions 

with very high accuracy, which is critical in cases like IMRT.  

 

Polyak and his colleagues have been refining NR concept for the last 25 years, adding 

new techniques and modifications that have proven to be valuable for a wide range of 

real-world applications.  

In an important early effort, Aharon Ben Tal and Michael Zibulevsky made a slight 

modification of the MBF. Their penalty/barrier method is a particular realization of the 



NR principle. The penalty/barrier method was developed at the Technion in Israel and 

had the most direct impact on the design of large-scale trusses. 

 

A truss is a set of pin-jointed straight bars. The bars are subjected to axial tension and 

compression when the truss is loaded at the joints. With a given load and a given set of 

joints at which the truss is fixed, one has to find such bar volumes that the equilibrium 

conditions are satisfied. While one can see numerous examples of trusses on a trip down 

any major highway, the structures are far more complicated to build than they seem and 

the interlocking triangles composing a truss can be assembled in almost countless ways. 

One has to find a way to compose them that the construction not only can withstand 

given load, but it is as light as possible.  

 

Before the NR tool emerged, the Israeli team could only handle relatively small problems 

(150 constraints or so). Using NR approach, the Technion researchers and others were 

able to tackle truss design problems with as many as 200,000 constraints and 5,000 

variables and yield very accurate results much faster than other nonlinear optimization 

solvers. 

 

One of the leading research groups studying truss design and other structural optimization 

problems has been guided for many years by Jochem Zowe at University of Erlangen-

Nuremberg in Germany. Zowe and his team have used the software package that emerged 

from the Technion developments as their main optimization tool, and their work has 

affected structural designs around the globe. 



 

The NR method and its progeny have been critical for applications ranging from the 

layout of the interlocking metal beams in tower trusses to strategies for distributing 

electricity across a power grid. 

 

Recently the NR approach was used in statistical learning theory. For many years, the 

Support Vector Machine (SVM) technique developed by Vladimir Vapnik was and still is 

one of the basic tools used for data classification. 

 

Roman Polyak and his former students Shen-Shyang Ho and Igor Griva developed the 

NR SVM model, which allows attaching to each vector of the data set specific waits 

(Lagrange multipliers), which characterize the contribution of each particular vector to 

the classification rule. The extra information allows, on the one hand, reduction of the 

number of support vectors practically without compromising the quality of classification 

and, on the other hand, improves the classification of the new cases due to the “double 

conformation” process. In other words, due to the extra information, the NR SVM along 

with classification of the new case provides conformation that the case belongs with high 

probability to a particular class and does not belong to the alternative class. In short, the 

NR approach substantially reduces the number of support vectors by removing vectors 

with small contribution into the classification rule and improves the quality of 

classification by using the “double conformation” procedure. 

 



Lately the NR approach has been used for solving Semi-Definite Optimization, which has 

a wide area of real-world applications. The NR theory became the foundation for one of 

the best NLP solver, PENNON, developed by Michal Kocvara (Czech Republic) and 

Michael Stingl (Germany). 

 

A Researcher’s Story 

Under normal circumstances, science is an international endeavor. But the circumstances 

under which Roman developed the NR theory were far from normal. In 1979, he was 

fired from his job in Kiev because of his desire to emigrate from the Soviet Union.  

 

The authorities refused to grant him and his family an exit visa without any particular 

reason. He became a refusenik, which meant that he couldn’t get a job according to his 

qualifications, publish papers, travel, or even participate in any scientific meetings.  

Roman continued his research in isolation from the scientific community.  

  

He recognized the limitations of both SUMT and classical Lagrangean. At the same time, 

it was clear that both classical tools have important elements, which can complement 

each other. It was evident that the basic idea of the barrier method to keep the 

computation strictly inside the feasible set contradicts to the purpose of constrained 

optimization-finding the solution on the boundary.  

 

Those days, removing the “barrier” was very much on his mind. He first shifted the 

barrier and then introduced the pricing mechanism for penalizing constrained violation.  



The pricing mechanism replaced infinite penalty for constrained violation by a reasonable 

price increase, which depends on the size of the current deficit of a particular resource. 

That allowed the current approximation to stay outside of the feasible set, which makes 

MBF an exterior point method 

 

The “freedom” of constraints violation substantially increased the efficiency of Newton 

method and allowed discovering the “hot” start phenomenon in constrained optimization. 

 

Wide recognition of Roman’s results had to wait until 1988 when the Soviet government 

finally granted Polyak permission to leave the Soviet Union. Some of his colleagues were 

already familiar with his original work; therefore, at the end of 1988, he was offered a 

visiting position in the Mathematical Sciences Department, IBM T.J. Watson Research 

Center.  

 

It was at IBM that his ideas were tested in the early 1990s and his paper “Modified 

Barrier Functions (Theory and Methods)” was published in 1992 in Mathematical 

Programming, the leading world journal on optimization. 

 

While the human drama came to the happy end, the drama of ideas is still far from over.  

In the summer of 2006, Roman Polyak and his former PhD student Igor Griva announced 

a new optimization milestone: They had achieved a new level of speed and accuracy for 

solving real-life NLP problems by introducing a new Exterior Point Method, which is 

based on the NR theory. Their findings were published in Mathematical Programming.  



.  

The Newton method is the critical component of the NR success story. For hundred of 

years, the Newton method was local. Substantial efforts have been made for its 

“globalization,” i.e., to make sure that Newton method does not fail far from the solution. 

  

Recently Roman developed the co-called Regularized Newton method, which allows 

finding the unconstrained optimum for any convex function from any starting point. 

Moreover, the Regularized Newton method retains under the standard conditions all of 

the best properties of the classical Newton method in the neighborhood of the solution, in 

particular, its quadratic convergence rate.  

The corresponding paper will be published soon in Mathematical Programming.  

 

Professor Roman Polyak together with his graduate students and colleagues advancing 

the NR theory and methods and finding new NLP real-life applications. Recently, he and 

his former PhD student Igor Griva were granted a U.S. patent for their NR optimization 

tools. 

 

Roman is currently working on a book that will summarize the developments of the NR 

theory and methods for the last 25 years. 

 

 

 

 



 

 


